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ABSTRACT We model the yield curve in any given country as an ob-
ject lying in an in�nite-dimensional Hilbert space, the evolution of which
is driven by what is known as a cylindrical Brownian motion. We assume
that volatilities and correlations do not depend on rates (which hence are
Gaussian). We prove that a principal component analysis (PCA) can be
made. These components are called eigenmodes or principal deformations
of the yield curve in this space. We then proceed to provide the best ap-
proximation of the curve evolution by a Gaussian Heath-Jarrow-Morton
model that has a given �nite number of factors. Finally, we describe a
method, based on �nite elements, to compute the eigenmodes using his-
torical interest rate data series and show how it can be used to compute
approximate hedges which optimise a criterion depending on transaction
costs and residual variance.
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0.1 Introduction

In�nity is a word that economists usually do not like. Nothing, in econ-
omy, can be considered either as in�nitely large, or as in�nitely small. The
size of worldwide markets is �nite, as well as the total number of vari-
ous stocks and bonds. Conversely, transactions cannot be in�nitely close
in time (a minimum time period is required between two transactions on
the same asset) and price variations cannot be less that a �tick�, neither
can they be in�nitely large. Nevertheless, two seminal articles introduced,
perhaps unwillingly, in�nity into the �nance literature1 . The �rst one is

1One should add that the theoretical justi�cation of arbitrage theory is itself an �
actually questionable �"in�nity" argument: if some true arbitrage opportunity existed,
it could be implemented with an in�nite nominal amount, hence reducing it to zero.
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Robert C. Merton�s article on continuous time �nance [34, 1973] (see also
[35] and ref. cit.). Indeed, considering the possibility of continuous time
trading replaces the setting of a �nite set of random innovations by the
in�nite-dimensional Wiener space of Brownian motions. Although we just
said that such trading strategies are physically impossible to execute, we
consider this theory as �nancially extremely signi�cant. The reason is that
when one wants to study the results of a given trading strategy over a time
period that is huge compared to the minimal trading interval, then any
discrete time approach based on the maximal trading frequency would be,
for an equivalent numerical precision, much more complex to implement
than the corresponding continuous time limit. Consequently, though prac-
tical hedging should be performed with a view of optimizing a near future
situation, according to all particularities of the market at the present time,
pricing, which is based on an average of the resulting wealth of forecasted
hedging strategy, is better handled in a continuous time framework2 .
The second article is Heath-Jarrow-Morton interest rate model [26]. This

model, which we call H.J.M. in the sequel, �summarizes�information about
the interest rate market (Libor, Libor futures, swaps, �xed income assets,
etc.) into a �yield curve�or, more precisely, a curve of �forward spot rates�.
The knowledge of this curve is equivalent, through a simple integration with
respect to maturity, to the price of zero-coupon bonds of any maturity.
Again, here the word �any�means a continuum of maturities. The set of
possible curves is an in�nite dimensional functional space and the market
cannot be described by a �nite set of �market variables�, although only
�nitely many assets are traded. One could argue that the model can be
reduced to a �nite-dimensional subspace and that the knowledge of a �nite
number of variables is enough to describe the whole market. In fact, this
argument does not hold. Even if, as explicated in Heath-Jarrow-Morton
article, the in�nitesimal evolution of the curve is given by a �nite number
of �factors�, the support of the distribution of possible curves after an
arbitrarily small, but �nite, amount of time is in general equal to the whole
functional space3 . Economically speaking, one must understand that both
the �nite number of factors and the continuous curve are introduced for
the sake of simplicity, but none of them corresponds to reality: the total
number of asset prices is �nite, and the number of sources of noise, though
also �nite, is much larger than what is currently implemented in most
trading �oors.
A few articles describe capital markets as a random �eld. The �rst one

that came to our knowledge is Kennedy [30]. This model is a Gaussian
random �eld which could be considered as a generalization of the Gaussian
H.J.M. model with volatility factors which do not depend on the level of the

2�Hedge in discrete time �nance, price in continuous time �nance�(N. Taleb, 1996).
3 In [37], Musiela gives an example of a one-factor HJM model with this property.
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rates. In the example he provides, the forward spot rate f(t; T ) is a �Brown-
ian sheet�, which is in contradiction with statistical evidence. Indeed, the
process f(t; T ) has a very asymmetrical behavior with respect to its two
variables. For �xed T ; it behaves as a stochastic process with respect to the
current date t ; but at a given date t the curve T 7�! f(t; T ) is generally
smooth. In the random �eld framework, this can be achieved by requiring
the correlation function of the �eld to be smooth along the diagonal in the
transverse direction. See Bricio-Hernandez [9] for a theoretical study of this
topic and Turner [44] where a statistical study of the correlation function,
showing this smoothness along the diagonal, is performed.
In this article, we develop another approach towards an in�nite dimen-

sional model, based on so-called �cylindrical Brownian motions�. These
processes are a generalization multidimensional Brownian motions to in�-
nite dimensional Hilbert spaces. They were introduced by Gaveau in 1953
(see [24]). We refer to Yor [46] and to Da Prato-Zapczyk [15, p. 96] for
a complete presentation of this theory. Our model can be seen as a limit
case of H.J.M. model in in�nite dimensions. As in Brace-Gatarek-Musiela
model (B.G.M.), we consider the term structure of interest rates as an ob-
ject in a certain functional space. We then proceed to study the motion
of the vector representing this object. For simplicity reasons, we chose to
work in a framework where rates are Gaussian. However this theory can be
easily generalized to B.G.M. log-normal setting, or to any speci�ed di¤u-
sion process for the term structure in which rate volatilities depend on the
global term structure. Obviously certain technical assumptions apply.
Under very natural hypothesis4 , we show that this type of motion can

always be decomposed into an (in�nite) sum of one-dimensional Brownian
motions, which we call eigenmodes or principal deformations. This turns
out to be a principal component analysis (P.C.A.) of the motion. Listing all
the works on the yield curve P.C.A. would be impossible. Let us mention the
initial study (as it came to our knowledge) of Litterman and Scheinkman
[32], the theoretical article of the Banque de France [23], and the statistical
analysis cited in this article. It is shown in sect. 0.8 that the n-factor H.J.M.
model that best reproduces an in�nite dimensional di¤usion of the yield
curve, in the sense of minimizing the variance of the error, is provided by
the truncated P.C.A.
R. C. Merton said in his preface to Continuous-time Finance: �The con-

tinuous time model is a watershed between the static and dynamic mod-
els of �nance�. Similarly, we could say that this �functional analysis�
of term structure models � a less polemical term than �in�nite dimen-
sions�, though representing the same thing � is a watershed between one-
dimensional and multi-dimensional arbitrage pricing.

4We assume that the price of zero-coupons always depends continuously on the ma-
turity, and that their variance is �nite at all time.
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From the point of view of risk management, this approach allows a sub-
stantial reduction of the computational burden relative to the usual �buck-
eting�method, while not losing any precision on market data �tting and
risk evaluation. For this purpose, performing a P.C.A. of a statistically
estimated variance-covariance matrix of the yield curve movements is of
little help because of the high instability of this matrix. We recommend to
choose a �xed series of basic deformations of the yield curve, which could
be inspired by Fourier analysis or wavelets. A thorough historical analysis
has to be performed to �nd the minimum number of terms one needs in
order to reproduce, up to a tightly controlled error, all possible variations,
even in case of crisis. In [16], we provide an example of such basic deforma-
tions for which seven terms are su¢ cient to reproduce the variations of all
exchange quoted Euro-dollar futures over a 10-years period with an error
that never exceeds two basis points. The same number of terms applies
to cash and swap rate variations from one month until thirty years.5 In
comparison, Basel committee recommends to use 13 buckets in yield curve
deformations.
Option pricing theory faces an unexpected di¢ culty in the in�nite di-

mensional setting. Even if the whole volatility structure of the yield curve
� that is, rate volatilities and correlations � is deterministic and known,
some options may not support perfect replication, although they may have
an �arbitrage price�. In fact one will seek a sequence of �almost replicating�
strategies, with a wealth variance tending to 0 and converging sequence of
initial price. This leads us to introduce the notion of �quasi-arbitrage�,
that is, a sequence of trading strategies with returns bounded from below
and wealth variance tending to 0. Only in the absence of quasi-arbitrage
(A.Q.A. assumption) will an equivalent risk-neutral probability exist. Then
an option price is the risk-neutral expectation of its discounted pay-o¤. This
theoretical impossibility to perfectly replicate options does not create more
di¢ culty in practical dynamic hedging than the inability to implement of
a purely continuous time dynamic hedging. In a sense, it induces even less
risk for, as mentioned above, the �spatial uncertainty�, which measures
how rate interpolations can be inaccurate, is much less unpredictable than
the time uncertainty, which measures rate variations between two dynamic
hedging transactions. Actually, traders often use linear interpolations to
evaluate, when necessary, the rate to apply on a period which corresponds
to no standard products. This practice justi�es our approach based on the
yield curve regularity.
This article is organized as follows. After preliminaries and notations

5However, it does not correctly shows bond yield variations because, for economical
reasons that are not the topic of this article, each bond price is subject to its own
individual source of noise and the �smooth curve principle�only applies up to a limit of
20-30 bp�s error size that connot be captured by smooth functions of the maturity. Note
that usual one-year buckets face the same inaccuracy.
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(sect 0.3), we �rst expose (sect.0.5) the in�nite dimensional di¤usion of the
yield curve and study the existence of an absolutely continuous risk-neutral
probability, introducing the notion of quasi-arbitrage. In sect. 0.7, we show
that such a model can be seen as a limit case of H.J.M. �nite dimensional
model (in fact an extended version of the strict H.J.M. framework). In
particular, we show in sect. 0.8 the possibility of performing an in�nite
dimensional P.C.A. In sect. 0.10, we provide basic option pricing formulas.
The last part (sect. 0.11 and 0.12) is devoted to numerical methods for the
three following purposes: option pricing and hedging, calibration, P.C.A.
computation. Hedges optimizing a cost vs. residual variance criterion are
provided when transaction costs apply.
In this study, we assume that rates only follow (in�nite dimension) dif-

fusion processes. In particular, we exclude jumps and other processes not
driven by Brownian motions.

0.2 History, Tribute and Recent Bibliography

A �rst version of this article was written in 1994, while the author was
working Société Générale in the �xed income and foreign exchange deriva-
tives trading room. This version has been �nalized in 2001, but was never
published before. This work raised the interest of Marek Musiela, who at
that time was teaching at the University of New South Wales in Sydney,
and was at the origin of the long and fruitful scienti�c relationship be-
tween the author and Marek Musiela. Modeling yield curves with in�nitely
many risk factors raised a lot of skepticism from the mathematical �nance
community at this time, and Marek Musiela was one of the �rst person to
perceive this deep fact that in�nite dimensions do not come as an increase
in complexity of the models but, on the contrary, as the necessary path to
the most parsimonious models of a complex reality.
Since then, many authors wrote on in�nite dimensions modeling of the

term structure, and also of other aspects of �nancial markets, such as
volatility surfaces. Let us cite here only major references, which the reader
is invited to consult, as well as other articles cited in those references. One
of the most complete study on this topic is Damir Filipovic�s thesis [21].
A good statistical study of the regularity properties of the yield curve in
the US has been performed by Bouchaud & al. [5]. Another approach to
in�nite dimensions modeling is through stochastic partial di¤erential equa-
tions (SPDE), see Cont�s article [12] on this matter. In [37], Musiela and
Sondermann pointed out that even a one-factor model can lead to a yield
curve lying in an in�nite dimensional space.
As general references to interest rate modeling , we recommend books by

Musiela and Rutkowski [38], Brigo and Mercurio [10] and Rebonato [41],
who also wrote in 2003 a thorough survey of interest rate modeling , as it
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appeared at that time [42].
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0.3 Notations and De�nitions

The framework described here is the classical framework of Heath-Jarrow-
Morton [26], Brace-Gatarek-Musiela [6], El Karoui-Myneni-Viswanathan
[20] and Jamshidian [29]. It is extended in the sense that each individual
forward spot rate or discount factor is driven by its own Brownian motion
(possibly correlated to others).

0.3.1 Term Structure of Interest Rates

We denote by z(t; T ) the discount factor applying on the period [t; T ] ; that
is, the price at time t of an asset delivering one unit of numeraire at time
T and let :

`(t; T ) = � log z(t; T ) y(t; T ) =
1

T � t `(t; T ) (1)

so that y(t; T ) is the continuously-compounded zero-coupon rate, or yield,
over the time period [t; T ] . One has z(t; t) = 1 ; `(t; t) = 0 ; z(t; T ) > 0 :
We shall not make any assumption about positive interest rates, for our
model will be of Gaussian type, which does not prevent from negative rates,
although with a very low probability. Such an assumption may be achieved
by changing the volatility structure (see for instance [4], [6] for a log-normal
structure, and [13], [18] for a �2-type distribution).
The spot rate is the value of the zero-coupon rate when T = t :

r(t) = y(t; t)

In the H.J.M. framework, the forward spot rate is considered :

f(t; T ) =
@`(t; T )

@T

It is linked to the zero-coupon price and yield by the formulas :

z(t; T ) = exp

 
�
Z T

t

f(t; s) ds

!
(2)

y(t; T ) =
1

T � t

Z T

t

f(t; s) ds (3)

In this article, we only consider continuously compounded rates, namely,
those de�ned via the logarithm of zero-coupon prices. The usual rates, with
�nite compounding periods, are computed from those by simple formulas.
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The functions z ; ` ; y and f will be considered as various languages
to describe the same term structure. They will always be linked by the
formulas above.
We denote by �(t; T ) the savings account at date T initiated at time t :

�(t; T ) = exp

 Z T

t

r(s) ds

!
The value of �(t; T ) is only known at date T :

0.3.2 Risk-neutral Probability

In the sequel, for any random process Xt ; we denote by EP [XT j t] the
conditional expectation of XT knowing the past until date t under the
probability measure P : We shall simply write E [XT ] if there is no ambi-
guity about t and P :
An origin of time t0 = 0 is �xed once for all, as well as a maximum

maturity date of assets Tmax : For any Ito process Xt ; we set:

Xt = X0 +

Z t

0

dXu

In particular, we shall write indi¤erently:

dXt = �(t) dt+ �(t) dWt () Xt = X0 +

Z t

0

�(u) du+

Z t

0

�(u) dWu

whereWt is Brownian motion under P or another probability and �(t) ; �(t)
are predictable processes.
We let now P denote the real, or historical, probability. In the absence of

arbitrage opportunities, for any maturity T ; there exists a �risk-neutral�
probability QT equivalent to P, such that the discount factor z(t; T ) is the
expectation at date t of �(t; T )�1 :

z(t; T ) = EQT

�
�(t; T )�1j t

�
Under this probability, the price of any asset Xt depending only on discount
factors z(t0; T ); t < t0 < T; is such that �(t0; t)�1Xt is a QT -martingale for
any initial date t0 . We call such assets T -assets. If the market of T -assets is
complete, then QT is unique in the sense that two such probabilities would
coincide on the space of T -assets. In this case, QT is characterized by the
fact that �(t0; t)�1z(t; T ) is a martingale. The risk-neutral probability QT
should not be confused with the forward-neutral one, which we shall denote
Q0T and characterized by the fact that z(t; T )�1Xt is a martingale for any
T -asset Xt :
The Radon-Nicodym density of QT is given with respect to P by the

mean of the �market price of risk�, which a priori depends on the asset
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z(t; T ) ; thus on T : In fact, for any given �nite set of maturitiesT =(T1; : : : ; Tn)
there exists a probability QT under which all the t0-actualized discount
factors �(t0; t)�1z(t; Ti) are martingales. The existence, uniqueness and
absolute continuity of a risk-neutral probability for an in�nite set of matu-
rities, for instance a whole interval, is in general not ensured. This will be
the topic of sect. 0.3.3. When it exist, we call Q a (the) probability which
is risk-neutral with respect to every maturity T 2 [0; Tmax] :

0.3.3 Di¤usion of discount factors and forward rates

Discount factors and yields

For every �xed T ; the discount factor process (de�ned for t � T ) :

t 7�! z(t; T )

follows an Ito process :

dz(t; T )jT �xed = z(t; T )
�
�(t; T ) dt� �(t; T ) d ~WT

t

�
(4)

where ~WT
t is a standard Wiener process in t under the probability P ,

depending on the parameter T; �(t; T ) and �(t; T ) are predictable processes
for the drift and the volatility respectively (the �minus� sign is arti�cial
and has been put for technical reasons). The identity z(t; t) = 1 implies :

�(t; t) = 0

and, because:
z(t; t+ dt) = 1� r(t) dt+O(dt2)

one has:
�(t; t) = r(t)

Taking the logarithm of (4), we get from Ito formula:

d`(t; T )jT �xed =

�
��(t; T ) + 1

2
�(t; T )2

�
dt+ �(t; T ) d ~WT (5)

Assumption We make the following non-degeneracy assumption, which
is a strong version of the completeness of the market of T -assets:

t < T =) �(t; T ) > 0

Let the process WT be de�ned by:

WT
t = ~WT

t +

Z t

0

�(u; T ) du �(u; T ) =
r(u)� �(u; T )

�(u; T )
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This is a standard Brownian motion under probability QT and under Q if
it exists (see [14] or [41]). One has:

dz(t; T )jT �xed = z(t; T )
�
r(t) dt� �(t; T ) dWT

t

�
(6)

and:

d`(t; T )jT �xed =

�
�r(t) + 1

2
�(t; T )2

�
dt+ �(t; T ) dWT (7)

Which can be written, in terms of the quadratic variation process of `(t; T ) :

d`(t; T )jT �xed = �r(t) dt+
1

2
d h`(t; T )i+ �(t; T ) dWT (8)

For the zero-coupon rates y(t; T ) ; we get :

dy(t; T ) =

�
y(t; T )� r(t)

T � t +
T � t
2

�y(t; T )
2

�
dt+ �y(t; T ) dW

T (9)

where:
�y(t; T ) =

1

T � t �(t; T )

Forward rates

Assume now that, following Heath-Jarrow-Morton [26], forward spot rates
themselves follow an Ito process :

df(t; T )jT �xed = �f (t; T ) dt+ �f (t; T ) d ~W
T
f (10)

where ~WT
f are Brownian motions under P and �f (:; T ) ; �f (:; T ) are pre-

dictable processes depending on the maturity T such that, for any t0 �
t � T � Tmax :

E

 Z T

t

j�f (t; s)j ds
!
<1 E

0@ Z T

t

j�f (t; s)j ds
!21A <1 (11)

We also assume that the family ( ~WT
f )T has independent increments, that

is, for any T; T 0 the increment d ~WT 0

f (t) is independent of ~W
T
f (t) : The

instantaneous correlation function �(t; T; T 0) is de�ned by:

�(t; T; T 0) = CorrP

�
d ~WT

f (t); d ~W
T 0

f (t)
�

or, in terms of cross-variation process:

d
D
~WT
f (t);

~WT 0

f (t)
E
= �(t; T; T 0) dt

Obviously, �(t; T; T ) = 1; j�(t; T; T 0)j � 1 and �(t; T; T 0) = �(t; T 0; T ) for
any (t; T; T 0) : Moreover, for any sequence of maturities (T1; : : : ; Tn) ; the
matrix (�ij) where �ij = �(t; Ti; Tj) is symmetric and positive.
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Assumption We shall assume that, for any (t;T1; : : : ; Tn) such that t <
Ti 6= Tj for any i 6= j ; the matrix (�ij) is positive de�nite, and:

�f (t; Ti) > 0

that is, no �nite combination of forward spot rates has, at no time,
zero volatility.

In order to de�ne �risk-neutral�Brownian motions dWT
f ; we shall make

heuristic calculations that will be made rigorous below. We wish to write:

dWT
f = �f (t; T ) dt+ d ~W

T
f

Identifying the P-martingale component of `(t; T + �T )� `(t; T ) with that
of f(t; T )�T ; we get:

�(t; T + �T ) d ~WT+�T � �(t; T ) d ~WT = �f (t; T ) �T d ~W
T
f +O(�T

2)

Assuming that the risk-neutral probability Q exists, one must have, by
taking Q-expectation:

�(t; T )� �(t; T + �T ) = �f (t; T ) �T �f (t; T ) +O(�T
2)

which leads, when �T ! 0; to:

�f = �
1

�f

@�

@T

On the other hand, by taking the P-expectation in (5) and (10), we get:

�f (t; T ) �T = �(t; T )��(t; T + �T )+ 1
2
�(t; T + �T )2� 1

2
�(t; T )2+O(�T 2)

therefore, letting �T ! 0; one gets:

@�

@T
= ��f + �

@�

@T

and, �nally:

df(t; T )jT �xed =

�
�f +

@�

@T

�
dt+ �f dW

T
f = �

@�

@T
dt+ �f dW

T
f (12)

The link between volatilities � and �f is as follows. From:

`(t; T ) =

Z T

t

f(t; s) ds

we deduce:

d h`(t; T )i =
ZZ

(u;v)2[t;T ]2
d hf(t; u); f(t; v)i dudv
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that is:

�(t; T )2 =

ZZ
(u;v)2[t;T ]2

�f (t; u)�f (t; v)�(t; u; v) dudv

Again, this formula, which generalizes H.J.M., will be rigorously proved
later on, after having set the formalism of function valued random processes.
It provides another expression of the risk-neutral drift of forward spot rates:

�(t; T )
@�

@T
(t; T ) = �f (t; T )

Z T

t

�f (t; u)�(t; u; T ) du (13)

from which we deduce the following:

Proposition 1 One has:���� @�@T (t; T )
���� � (T � t)�f (t; T )

with equality in the case of a local one-factor Ho and Lee model, that is,
�f (t; u) doesn�t depend on u and �(t; u; v) = 1 for any (u; v) :

Proof Consider the scalar product on functions � : [t; T ]! R :

�: =

ZZ
(u;v)2[t;T ]2

�(u) (v)�(t; u; v) dudv

Schwarz inequality between functions �f and 1 implies: Z T

t

�f (t; u)�(t; u; T ) du

!2
� �(t; T )2

ZZ
(u;v)2[t;T ]2

�(t; u; v) dudv

� (T � t)2 �(t; T )2

Equality occurs only if �f (t; :) is constant and �(t; :; :) � 1: �

It is worthy of note that equations (12) and (13), which generalize results
obtained by Heath-Jarrow-Morton [26] and by Brace-Gatarek-Musiela [6],
only assume that Q is a risk-neutral probability, but do not require that
the whole yield curve evolution is driven by a �nite number of Brownian
motions.

0.3.4 Function Valued Random Processes

The yield curve at time t is de�ned as the function :

yt : x 7�! y(t; t+ x)
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It is de�ned on an interval I = [0;M ] which we shall suppose �xed,
for instance M = 30 years. The variable t therefore spans the interval
[0; Tmax �M ] : The yield curve yt belongs to some functional space Hy

over I : We shall de�ne Hy more precisely later on. For the moment, we
only assume it is a Banach space, equipped with a norm k:kHy and con-
tained in the space of continuous functions. This de�nes a random process
yt with values in Hy :
Similarly, we de�ne functions zt 2 Hz ; lt 2 H` ; ft 2 Hf : These func-

tions are linked to yt and between themselves by equations (1) and (2). The
spaces Hz; H` and Hf should also be linked in a similar way. For example,
if Hf = C0(I) then H` is the space of C1 functions vanishing at 0 , Hy is
the space of continuous functions on I ; of class C1 on (0;M ] and whose
derivative (with respect to x ) is O( 1x ) at 0 , and H

z = C1(I) ; or the a¢ ne
subspace of functions taking value 1 at 0 . Note that the correspondence
between yt ; lt and ft are linear, unlike that with zt :
In order to de�ne function valued processes yt ; zt ; lt and ft ; we shall

use the formalism of so-called cylindrical Brownian motions which appears
to be best suited for our purposes. A static portfolio made only of linear
assets � bonds, swaps, F.R.A., but not options � can be seen as a �nite
combination of Dirac masses on Hz; corresponding to payment dates and
amounts.
In fact, in [47], Yor proved that, in order to de�ne a cylindrical Brownian

motion in the in�nite dimensional space Hy (this will be our theoretical
setting), one needs to choose a Hilbert space, for instance L2(I; �) ; where
� is a measure on I ; or a Sobolev space with respect to a measure on I :

Remark 2 The choice of the space Hy or, equivalently, of its norm, that is,
of the Sobolev exponent and of the measure � is one of the most important
issues. Indeed, this norm measures the risk and should be in accordance
with the most probable moves of the yield curve. Generally speaking, we
shall see that the most appropriate choice for � is linked to the distribution
in maturities of the signi�cant quoted rates, while the Sobolev exponent,
which stands for the curve smoothness, results from market practice and
can be deduced in a rather reliable way from the statistics.

Although we have not yet de�ned processes in Hy ; we see that its drift
will depend on the di¤usion with �xed x = T � t ; that is, with slipping
maturity T : One has :

dy(t; t+ x)jx �xed = dy(t; t+ x)jt+x �xed +
@y

@T
(t; t+ x) dt

=

�
1

x
(f(t; t+ x)� r(t)) + x

2
�y(t; t+ x)

2

�
dt+ �y(t; t+ x) dW

T

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2014.91



xv

The same holds for z ; ` and f (provided the function f is di¤erentiable) :

df jx �xed = df jT �xed +
@f

@T
dt

d`jx �xed =
�
f(t; t+ x)� r(t) + 1

2
�(t; t+ x)2

�
dt+ �(t; t+ x) dWT

dzjx �xed = z(t; t+ x)
�
(r(t)� f(t; t+ x)) dt� �(t; t+ x) dWT

�

0.4 Market data on the term structure

Before setting an abstract framework for the term structure of interest
rates, we shall �rst make a short presentation of the market data that
provides it. This will either justify certain modeling and assumptions, or
show their limits. We mean by market data the prices of assets which are
interest rate dependent, or quoted rates which are linked to these prices
by a standard formula. Although they are well known, we shall list these
assets in order to examine the features of each one from the point of view
of their incidence on the yield curve smoothness. For a complete study
of market data on the term structure and on their interrelations, we refer
to Anderson-Breedon-Deacon-Derry-Murphy [1]. The reader who is familiar
with the �xed income market is advised to jump directly to the conclusions
of this section.

0.4.1 Bonds

A bond delivers a �coupon� C at dates T1 ; � � � ; Tn (where Tk = T0 +
k �T ; �T = 3; 6 or 12 months) and the principal N at Tn : The coupon rate
R is de�ned by the formula :

C = RN �T

Hence, its price at time t < T1 is, or should be :

Pbond(t) = N

 
z(t; Tn) +R�T

nX
k=1

z(t; Tk)

!

where z(t; T ) is the discount factor between dates t and T :

Remark 3 In practice, some bonds have prices trading above or below the
theoretically determined price, owing to taxation, institutional factors or
simply liquidity reasons.
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The market also quotes very liquid bond futures, which cannot be the-
oretically perfectly linked to discount factors for two reasons. First, there
is a system of margin calls, which make them (slightly) sensitive to the
covariance between the bond price and the short rate. Second, they quote
the value of the cheapest bond in a given pool, hence they involve an option
associated to the possible change in the �cheapest-to-deliver�(most of the
time, this option is far from being at the money).

0.4.2 Swaps

As it is well known, a swap is an exchange of a �xed interest rate loan with
a variable rate one, both of the same principal and the same maturity. The
variable leg can be replicated by a rolling loan of the principal over the
whole period. The following formula gives the price that should be paid at
the beginning by the side paying the �xed rate in order to enter an asset
swap6 with �xed rate R and settlement dates (T1; : : : ; Tn) ; Tk = T0+k �T :

Pswap(t) = N

 
z(t; T0)� z(t; Tn)�R�T

nX
k=1

z(t; Tk)

!

The swap rate is the value of R that cancels the price (for other �xed rates,
this is an asset swap) :

R(t; n�T ) =
z(t; T0)� z(t; Tn)

�T
nP
k=1

z(t; Tk)

Bond prices and swap rates provide an information on the value of a given
discount factor with respect to an average of others with a shorter maturity.
One usually uses a �boot strapping�method to compute discount factors,
indeed, errors are at each step multiplied by the coupon rate and do not
accumulate.

0.4.3 Cash and future short rates

A cash rate is the rate of a loan without coupon (a �zero-coupon�). All
cash rates from the �overnight� to one year7 are permanently quoted on
market screens.
Future contracts are forward rate agreements (FRA) on a 3 months loan

on prescribed periods8 , with a system of margin calls. Their quotation has

6As usual, settled in advance, paid in arrears; there are also swaps paid in advance.
7Precisely O/N, next day, 1 and 2 weeks, 1, 2, 3, 6, 9 and 12 month (all intermediaries

are immediately given by market makers on request).
8So-called IMM dates, around mid-March, June, September and December.
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been recently extended to a four-years forward period in Europe (France,
GB, Germany) and in Japan, and 10 years in the USA. The price of futures
is slightly di¤erent from that of the corresponding FRA (no more than a
few basis points) because of the convexity induced by the margin calls.
An FRA rate on the period [T; T 0] evaluated at date t < T is given by :

FRA(t; T; T 0) =
1

T 0 � T ((T
0 � t) y(t; T 0)� (T � t) y(t; T ))

If T and T 0 are close, the FRA gives an estimate of the forward spot
rate, that is, of the derivative9 of the yield curve with respect to maturity.
Practically speaking, if T is worth several years, then T 0 = T + 3months
can be considered as close.

0.4.4 STRIP, or the decomposition of bonds

In the USA, T-bonds can be �stripped�, that is, fragmented into the prin-
cipal and the coupons, which can be negotiated separately. The same holds
(since a more recent period) in other countries for government bonds. The
coupons are called Strips. Theoretically, this gives the level of every zero-
coupon rate. However, they are much less liquid than the rest of the mar-
ket and, in fact, market makers use that other information to price them.
Furthermore, their price is a little a¤ected by the fact that, in order to
reconstruct a full T-bond, one is not allowed to replace the principal by an
accumulation of coupons at the same date. Because of the �reconstruction�
opportunity that it provides, the principal is slightly more expensive than
its �theoretical�price. The stripping generates large amounts of data, but
it must be used with care.
The behavior of coupon prices is more surprising. For short maturi-

ties, they are below the theoretical price, but, at some point (between
10 and 20 years) they pass to the other side. To explain this fact, let
~zP (t; T0 ; Tn; �T;R) be the price at date t of the principal of a bond that
has coupons of size R at dates T0 ; T0 + �T ; : : : ; Tn = T0 + n�T ; and let
~zC(t; Tk) be the price of a strip of maturity Tk : Reconstructing the bond
provides a relation between these prices and the theoretical prices :

~zN (t; T0 ; Tn; �T;R)� z(t; Tn) = R�T
nX
k

(z(t; Tk)� ~zC(t; Tk))

This di¤erence should always be positive, but not too big. If one sees the
right hand side as a discrete approximation of an integral, we see that the
�liquidity spread�on the principal price is equal to the algebraic area10 be-
tween the theoretical zero-coupon price curve and the strip curve (counted

9 In the sense of the mathematical derivative of a function.
10That is, counted with signs.
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negatively if the strip curve goes above). When one tries to �t a constant
liquidity spread for the principal, then the accumulation e¤ect of the strips
must be compensated on the long term part. Of course, the behavior of
rates is symmetrical.

Remark 4 An important observation is that market makers on futures
and on strip markets have a tendency to smooth the curve with respect to
T ; as if some kind of elasticity tried to erase possible angles.

0.4.5 Conclusion

After these observations, we look at the yield curve as an object lying in
some functional space H that has either in�nite dimensions or at least a
large one. The discount factors and the yields are implicit variables, in
the sense that explicit data are not reliable (see comment on strips). We
must therefore take into account other linear and nonlinear functions of
the rates. Remark 4 tends to indicate that the space H should consist of
di¤erentiable functions.
We tend to see the term structure of interest rates as a �smooth skeleton�

given by averaging the available information, with some noise due partly
to rounding to the nearest basis point (or to the bid/ask spread), partly to
the particularities of each market. What will be described in a theoretical
framework is the evolution of the �smooth skeleton�, for the �noise�can be
considered as bounded and does not represent a risk that should be hedged
according to the usual Black-Scholes theory based on di¤usion processes.
In practice, cash and swap rates are extremely close to a smooth curve
(about 1-2 bp), while each government bond has its own spread (on the
positive side) over the cash-swap curve, and this series of spreads cannot
be modeled as a curve.
As we mentioned in the introduction, we shall see how assuming �rst

that H is in�nite-dimensional allows us to �nd very good approximation
subspaces of rather low dimension, through standard �nite element tech-
niques.

0.5 Brownian motions in a Hilbert space

De�ning a Brownian motion in an in�nite dimensional space is not a simple
task. Indeed, such a space is not locally compact and there is no Lebesgue
measure11 on it, thus no Gaussian density (although Gaussian probability
measures exist). To overcome this di¢ culty, we shall refer to the formalism
developed in 1973 by Gaveau [24] and well explained in Da Prato-Zapczyk
[15, p. 96] and in Yor [46].

11That is, a uniformly distributed measure, invariant by translation.
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Yor gives three di¤erent de�nitions of a Brownian motion in a Hilbert
space H and shows that these three frameworks are equivalent. In our
situation, the most natural one is the so-called cylindrical Brownian motion
: for any h 2 H ; a real valued centered Brownian motion Bt(h) of volatility
jjhjj2H is given12 .
Intuitively, if Bt 2 H ; then:

Bt(h) = h:Bt

In fact, it is not di¢ cult to see that, if H is in�nite dimensional, Bt cannot
belong to H for every t (see sect. 0.7) and that:

E
�
jjBtjj2H

�
=1

The process Bt will have to lie in a super-space13 of H in which H will be
dense.
In our situation, bond prices, swap rates, etc., and, generally speaking,

portfolios containing the assets described above, are of the type �(zt) ;
where � is a linear form on Hz : This corresponds to a stochastic integral
with respect to a Brownian motion Bt(�) :
Although they are Hilbert spaces, we shall from now on make a distinc-

tion between the space H = Hz of curves14 and its dual, the space H� of
portfolios, to which the linear forms � belong.
Of course, in order to de�ne a cylindrical Brownian motion, we need to

know h:Bt for every h 2 H (or equivalently every � 2 H� ). Here, only
some � are given, but we shall assume that they span a dense subspace,
so that an entire cylindrical Brownian motion can be uniquely de�ned by
extension.
We shall also assume that the price process of any static portfolio is an

Ito process, in particular, it has a �nite variance.

Remark 5 The linear forms of the above type (sect. 0.3.4) contain Dirac
masses. Hence they do not belong to the space L2 but to the Sobolev space
of distributions H�1 (or even to H� 1

2�"; " > 0)15 .

We shall now give a more formal de�nition to these two assumptions. We
�x s > 1

2 and we assume that H = Hs and hence, that H� = H�s: The
choice of the regularity parameter s will be discussed in sect. 0.9.

12 i.e., its variance at date t is t jjhjj2H :
13 i.e. a space containing H .
14We drop the superscript z to ease notations. If a process is de�ned in Hz ; we get

the corresponding processes in Hy and Hf by applying formulas (2) and (3).
15When s is a positive integer, Hs is the space of functions whose s-th derivative

belongs to L2 and H�s is the dual of Hs for the L2 dot product. For non integer s; this
space is de�ned by the mean of Fourier transform. If s > 1

2
then functions lying in Hs

are continuous, and Dirac masses belong to H�s.
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0.6 Assumptions

0.6.1 Almost Complete Market

ACM We assume that the set of traded assets is dense in H� for the weak
topology and that if the sequence �n of traded assets weakly tends
to � 2 H�; then the price processes of assets �n converge in L2.

For instance, if H = Hs ; s > 1
2 ; then the space of �nite combinations

of Dirac masses is dense in H� :

0.6.2 Finite Variance

FV : For every � 2 H�; we assume that �(zt) follows an Ito process driven
by a Brownian motion ~Bt(�) :

d�(zt) = � (a(t; z)) dt+ dBt(�) (14)

dBt(�) = ��(t; z) d ~Bt(�) a(t;y) : x 7�! a(t; t+ x; z)

In particular 1
dt Var�(dzt) <1 for any � 2 H� :

The relevance of these two hypotheses has been discussed at the end of
the introduction.

0.6.3 Gaussian Rates

We shall also add the (less natural but convenient) assumption that volatil-
ity does not depend on the level of rates.

Gauss : Var dBt(�) does not depends on the yield curve y :

This implies that for any � 2 H� ; the distribution of �(yt) is Gaussian16 .

0.7 Principal Component Analysis

0.7.1 The Volatility Operator

On the space H� of portfolios, there is a natural time dependent bilinear
form ~Qt induced by the cross-variation process of the stochastic part of two
portfolios :

~Qt(�; �) =
hdBt(�); dBt(�)i

dt

16�(yt) linearly depends on rates. If their distribution is Gaussian, then so is that of
�(yt) and it has a (very low) probability of becoming negative. But a bond the price of
which is given by �(zt) ; where � is a positive measure, will always have a positive price.
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According to the CV hypothesis, ~Q only depends on � and � : We shall
denote by Qt the quadratic form associated with ~Qt :

Qt(�) =
hdBt(�)i

dt

Obviously, the quadratic form Q is positive. If its rank is �nite, then we �nd
the usual Gaussian H.J.M. model with a �nite number of factors. On the
contrary, we shall assume that it is non degenerate (any portfolio moves,
even slightly, none is rigorously hedged). This assumption allows us to
consider Q as a new norm17 on H� : When completing the space H� with
respect to this norm (we do not change notations), we get a cylindrical
Brownian motion Bt(�) :
In such a situation, Yor [46, prop. I.4.2] shows that this motion can be

realized : one can �nd a super-space18 V of the dual H of H� and a process
Bt with values in V; almost surely continuous for the norm of V ; such that :

E[ jjBtjj2V ] <1

and
�:dBt = �(dyt � b(t;yt)dt)

for any t > 0 and any � 2 V � � H� :
It should be reminded that V is the space where lie the yield curves yt

and H� that of linear forms (or portfolios) � ; and that:

V � � H� H � V

We shall see in sect. 0.9 the variety of possible spaces V :
It is now possible, in a rigorous mathematical language, to say that the

random process yt is determined by the following stochastic di¤erential
equation, driven by the cylindrical Brownian motion Bt :

dyt = b(t;yt) dt+ dBt

Remark 6 There are di¤erent Hilbert spaces, with di¤erent dot products.
If � 2 V � is a linear form, thus a measure19 on the time interval [0; Tmax]

17 If Q is degenerate, then one may slightly modify it to get a new norm on H� :

jj�jj2 = "jj�1jj2L2+Q(�2) � = �1+�2 �1 2 kerQ h2 2 kerQ? " > 0

18Note that if V is a super space of H ; then its norm is dominated by that of H :

khkV � cst khkH
for any vector h 2 H should be able to be measured in V (the inclusion H ,! V is
continuous).
19Riesz representation theorem.
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that has a density �� (possibly generalized, that is, with Dirac masses), and
if Bt 2 V ; then one has :

(�:Bt)V ��V =

Z M

0

��(x)Bt(x) dx

However, H� (hence also H ) is a space which is speci�cally adapted to the
quadratic form Q ; for it has been completed with respect to it.

0.7.2 Principal Component Analysis

We shall now look at Qt as a quadratic form on V � : There exists a positive
symmetric operator At on V � such that for any � 2 V � :

Qt(�) = � :At� (dot product in V �)

Proposition 7 The operator At has a �nite trace. In particular, it is com-
pact.

Proof. Let (�n)n2N be an orthonormal basis of V � : Then:

Qt(�n) =
1

dt
E[ (�n : dBt)

2]

hence:

TrQt =
1X
n=0

Qt(�n)

=
1

dt
E[

1X
n=0

(�n : dBt)
2]

=
1

dt
E[ jjdBtjj2V ] < 1

Corollary 8 The operator At is diagonalizable in an orthonormal basis,
because its spectrum is discrete.

One can thus �nd an orthonormal basis (��n)n2N of V � and a sequence
of eigenvalues (�n)n2N such that, if � 2 V � and � =

P
an�n , then:

Qt(�) =
1X
n=0

�n a
2
n

Because At is positive with a �nite trace, one has:

8n 2 N ; �n > 0 and
1X
n=0

�n <1
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WE assume that the eigenvalues �n are decreasingly ordered : �n+1 � �n
(possibly repeated if they are multiple).
We go back to the space V of yield curves and denote by ( n)n2N the

dual basis20 of (�n)n2N : By de�nition :

dBt(x) =
1X
n=0

dvn(t) n(x)

where
dvn(t) = �n : dBt

Consequently :

d hBt(x) ; Bt(x0)i = dt
1X
n=0

�n  n(x) n(x
0)

De�nition 9 The functions

'n =
p
�n  n

will be called eigenmodes, or principal deformations of the yield curve yt :

0.7.3 In�nite Dimensional H.J.M. Representation

The covariance of two zero-coupon rates is given by the formula :

hdyt(x) ; dyt(x0)i = dt
1X
n=0

'n(x)'n(x
0)

When setting x = x0 ; we get:

�(t; t+ x)2 =

1X
n=0

'n(x)
2 (15)

Let:
wn(t) =

1p
�n

vn(t)

The wn are independent standard Brownian motions (i.e. with volatility 1)
and :

dyt(x) =
1

x

 
f(t; t+ x)� r(t) + 1

2

1X
n=0

'n(x)
2

!
+

1X
n=0

'n(x) dwn(t) (16)

Under this form, we clearly see the P.C.A. of the yield curve process.

20�n( p) = 1 if n = p ; 0 otherwise.
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Multiplying this equation by x then deriving it with respect to x yields
the Brace-Musiela equation on forward spot rates, generalized to an in�nite
summation. Let:

ft(x) = f(t; t+ x) = yt(x) + x
dyt
dx
(x) f 0t(x) =

dft
dx
(x) =

@f

@T
(t; t+ x)

�n(x) = x'n(x) 'fn(x) =
d�n
dx

(x) = 'n(x) + x
d'n
dx

(x)

Then we have (see Brace-Musiela [7]):

dft(x) =

 
f 0t(x) +

1X
n=0

�n(x)'
f
n(x)

!
dt+

1X
n=0

'fn(x) dwn(t) (17)

From these equations, we deduce the initial Brownian motions WT and
W fT :

dWT =
1

�(x)

1X
n=0

'n(x) dwn(t) dW fT =
1

�f (x)

1X
n=0

'fn(x) dwn(t)

with

�f (x)2 =
1X
n=0

'fn(x)
2 �(x)�f (x) Corr

�
dWT ; dW fT

�
=

1X
n=0

'n(x)'
f
n(x)

Remark 10 Notice the double orthogonality:

1. The eigenmodes 'n are orthogonal in V ;

2. The Brownian motions wn are independent.

Remark 11 The P.C.A. (the eigenmodes, etc.) depends on the space V ;
that is in fact on its norm, which, according to Da Prato-Zapczyk [15], can
be any norm such that Q has a �nite trace in V (see sect. 0.9).

0.8 Optimal representation with an N -factor model

We �x an integer N and we de�ne yNt 2 V by yN0 = y0 and by the
stochastic di¤erential equation:

dyNt (x) =
1

x

 
fNt (x)� yNt (0) +

1

2

N�1X
n=0

'n(x)
2

!
+
N�1X
n=0

'n(x) dwn(t)
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Theorem 12 The curve yNt (x) is the best approximation of yt(x) in the
sense of the norm of V the evolution of which is described by N Brownian
motions. More precisely, if ut is the solution of an SDE with values in V ;
driven by N real valued Brownian motions, then21 :

E[ jjdyt � dutjj2V ] � E[ jjdyt � dyNt jj2V ] = dt
1X
n=N

�n

and

max
jj�jjV �=1

Var [�:(dyt � dut)] � max
jj�jjV �=1

Var
�
�:(dyt � dyNt )

�
= �N dt

Proof. The �rst thing to do is to characterize the linear combinations of N
Brownian motions. A one-dimensional Brownian motion in V is a process:

(!; t) 2 
� R+ 7�! �t(!) = Xt(!) �

where 
 is the space of randomness,Xt(!) is a real valued Brownian motion
and � 2 V :
We �x a date t and consider a time interval �t > 0 that will later tend

to 0 . One can see that �� = �t+�t � �t as an element of a tensor product:

�� = �X 
 � 2 L2(
)
 V

Let
� = L2(
)
̂V

be the Hilbert-Schmidt completion of this tensor product. If (en)n2N is an
orthonormal basis of L2(
) and if (fn)n2N is one of V ; then L2(
) 
 V
is endowed with the norm for which (ep 
 fq)(p;q)2N2 is an orthonormal
basis (this norm does not depend on the chosen bases), and completed
with respect to this norm22 . Let � 2 � be a random curve, then:

jj�jj2� = E[ jj�jj2V ]

In particular, �B 2 � and one has:

jj�Bjj2� =
1X
n=0

Var [�wn] jj'njj2V = �t
1X
n=0

�n

21For a random process X(t) in R ; with a Meyer decomposition X = hXi+ ~X into a
process with �nite variation and a martingale, we set:

E[dX] = d hXi Var dX = d
D
~X2
E

dXsto ch . = d ~X

22For instance, when V = L2(I) ; then the elements of the tensor product L2(
)
 V
are functions de�ned on 
 � I and the Hilbert-Schmidt completion is nothing else but
L2(
� I) :
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Denote by �N � � the cone of N -tensors, that is the sum of N simple
tensors:

�N =

(
NX
i=1

Xi 
 �i j Xi 2 L2(
) ; �i 2 V ; i = 1; � � � ; N
)

In order to show the �rst inequality, it is enough to prove that, for any
su¢ ciently small �t > 0 ; the distance between �B and the set �N is reached
at �BN = BN (t+ �t)�BN (t) ; where BN is the Brownian motion de�ned
by:

BN (t) =
N�1X
n=0

'n(x)wn(t)

Indeed, by de�nition:

1

dt
E[ jjdyt � dutjj2V ] = lim

�t!0

1

�t
E[ jj�ystoch.t � �ustoch.t jj2V ]

1

dt
E[ jjdyt � dyNt jj2V ] = lim

�t!0

1

�t
E[ jj�ystoch.t � �yN stoch.

t jj2V ]

To show that �BN is the closest point of �N to �B ; we identify elements
of � with linear operators from L2(
) to V by setting:

(X 
 �) : Y = Cov [X;Y ] �

The Hilbert-Schmidt norm is then given by:

jjujj2� = Tr
�
tuu

�
( tu is the transposed of u), and �N is made of operators whose rank is less
than or equal to N :

Lemma 13 Assume that there exists �u 2 �N such that:

jj�B � �ujj� = dist(�B ; �N )

Then the image Im �u is stable under �B t�B :

Corollary 14 Im �u is spanned by eigenvectors of �B t�B (that is, the 'n
or linear combinations between 'n�s corresponding to the same eigenvalue
if it is multiple).

Proof of lemma. We know that �B � �u is orthogonal in �u to �N (with
respect to the dot product in �). For any endomorphism � of L2(
) , the
rank of �u+ �u� remains bounded by N ; thus:

Tr
�
t� t�u (�B � �u)

�
= 0
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and
t�u (�B � �u) = 0

Symmetrically, using endomorphisms of V ; we see that:

�u ( t�B � t�u) = 0

Combining these two identities, we get:

�B t�B �u = �u �B t�B = �u t�u �u

The lemma follows.
End of proof. Going back to the tensor product, if �u exists, it can be

written as:

�u =
NX
i=1

Xi 
 'ni

(if some eigenvalues are multiple, one might have to change the corre-
sponding 'n into another orthonormal basis of the eigenspace; this does
not a¤ects the decomposition of �B). Let:

J = fn1; � � � ; nNg

One has

�B � �u =
NX
i=1

(wni �Xi)
 'ni +
X
n=2J

wn 
 'n

and

jj�B � �ujj2� �
X
n=2J

�n �
1X
n=N

�n = jj�B � �BN jj2�

This would end the proof if we knew that �u exists. It is the case if � is
�nite dimensional. Let q be an integer which, later, will tend to in�nity.
We set:

Eq = Vect(w0; � � � ; wq) Vq = Vect('0; � � � ; 'q)

and let
�q : L2(
) �! Eq

�0q : V �! Vq

be the orthogonal projections. it is easy to check that:

�q 
 �0q : � �! �q = Eq 
 Vq

X 
 � 7�! �q(X)
 �0q(�)

is the orthogonal projection of � onto �q and that:
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�N;q = �q 
 �0q (�N ) =
(

NX
i=1

Xi 
 �i j Xi 2 Eq ; �i 2 Vq ; i = 1; � � � ; N
)

Therefore, if �uq 2 �N;q realizes the distance from �q
�0q (�B) to �N;q then:

dist(�B ; �N )
2 � jj�q 
 �0q (�B)� �uqjj2�q

�
qX

n=N

�n

(the �rst inequality comes from the fact that an orthogonal projection does
not increases distances). This lower bound is valid for every q ; hence:

dist(�B ; �N )
2 �

1X
n=N

�n = jj�B � �BN jj2�

Second inequality. We notice that the quantity to minimize is the
usual operator norm of the transpose of �B � �u ; as an operator from V to
L2(
) ; that is:

max
jj�jjV =1

jj( t�B � t�u) (�)jjL2(
)

As the rank of t�u is at most N , its kernel has a co-dimension greater than
or equal to N and:

ker t�u \Vect('0; � � � ; 'N ) 6= f0g

Let � be an element of this intersection such that jj�jjV = 1 : One has:

jj( t�B � t�u) : �jjL2(
) = jjt�B : �jjL2(
) � �N

When �u = �BN the equality is implied the orthogonality of the 'n :

0.9 Possible choice in the Hilbert space V

In the statement of the previous theorem, we mentioned: in the sense of
the norm of V : Indeed, Yor�s construction leaves out some latitude on the
choice of this space. According to Da Prato-Zapczyk [15], V � can be any
subspace of H� provided with a Hilbert norm with respect to which Q has
a �nite trace. Then V is the super-space of H which is the dual of V � :
In particular, if V �ts, any super-space of V �ts. Nevertheless, a smallest
acceptable space does not exist.

Remark 15 In all these kinds of considerations, de�ning such or such
space where such object lies is somewhat abstract, for, in the reality, these
objects are �nite dimensional and lie in any reasonable space. The very
�physical� meaning of this type of statement relies in the evaluation of
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the corresponding norms. It has a meaning to say that such norm has a
reasonable value or is extremely large, that such measurement of an error
is bounded, while we have no clue of another evaluation. We understand
the previous analysis in this context.

The linear forms � which intervene when di¤erentiating the prices of
bonds and swaps are all of the kind �integral over an interval + Dirac
mass�23 , thus their principal singularity is a Dirac mass. In other term, the
price of a zero-coupon is well de�ned. We deduce that V is always contained
inH

1
2 (since V � � H� 1

2 ; see sect. 0.5, rem. 5, note 15). In countries in which
a large number of futures is traded, like the United States (over a range
of 10 years), we know better: a future contract evaluates in fact a forward
short rate (3 months), that is an approximation of the derivative of the
zero-coupon rate. As these also follow an Ito process with �nite variance,
we conclude that V � H

3
2 : Yet one may choose any wider space.

The reality of markets is, on the contrary, oriented towards more smooth-
ness: an tight analysis on US future curve shows that the H

3
2 -norm of this

curve, that is the H
5
2 -norm of the yield curve, is almost always bounded

(with however a slight di¢ culty due to the tic discretization and to a reg-
ular shift on the value of December contracts). A similar observation can
be made on the French data series on OAT and BTAN bonds.

Remark 16 The choice of the V -norm should be made carefully, in par-
ticular according to the pro�le of one�s portfolio, indeed, as we already said,
the P.C.A. is optimal with respect to this norm, and eigenmodes depend on
its choice.

In practice, we shall minimize a least square criterion, possibly weighted,
on the prices of assets we are dealing. this criterion provides a quadratic
form on the space of yield curve, which is the most natural choice as a
norm for V : For instance, assume that we are dealing a series of bonds
B1; : : : ; Bn the price of which is, at the �rst order, approximated by the
measures �1; : : : ; �n and that the least square criterion weights the bond
Bi with a coe¢ cient �i (to take into account an unequal distribution of the
portfolio). The norm on V can be set to:

jjyjj2V =
nX
i=1

�i �i(y)
2

In fact, this can be only a semi-norm (it may vanish for y 6= 0 ). If the
number of bonds is su¢ cient, and if their duration is well distributed, such
a drawback will be avoided. Otherwise, one has to combine this sum with

23Here, we see that we are again more concerned with the general pro�le of � , rather
than with details like knowing wether the distribution of coupons is continuous or dis-
crete. This really makes a small di¤erence in their value.
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an L2-like norm, directly on zero-coupon rates:

jjyjj2V =
Z M

0

y(x)2m(x) dx

the weight m(x) > 0 being again adapted to the portfolio pro�le.
When dealing with futures, calendar spreads, etc., one should rather

choose a Sobolev norm, that is a norm (still of Hilbert type) involving the

derivative y0(x) =
dy

dx
(x) :

0.10 Option pricing

Jamshidian�s [29] and Brace-Musiela�s [7] formulae can easily be general-
ized to an in�nite number of factors. The results match those of Kennedy
[30]. We give in this section the expectation and the variance of any zero-
coupon, as well as the covariance of any pair of such. In our model, rates are
Gaussian and the zero-coupons have a log-normal distribution. Therefore,
these data are su¢ cient to evaluate the price of any plain vanilla option
(put or call) on any portfolio which is a linear combination of zero-coupons.
This includes caplets, �oorlets, options on bonds, swaps, and even on For-
ward Rate Agreements (options on �yield curve spreads�).
Our model being a limit of Gaussian H.J.M. models with a �nite number

of factors, expectations, variances and covariances provided the N -factor
H.J.M. model (see [7]) tend, when N tends to in�nity, to a limit which
corresponds to the model driven by the cylindrical Brownian motion Bt :
The option prices computed this way are of course arbitrage prices (pro-

vided the model �ts the reality), but there is a little di¢ culty. Assume that,
in the reality, interest rates satisfy the di¤usion equation (16). If we try to
hedge a cap against N modes of deformation using an approximation of
the reality by an N -factor model, we get a price CN and, as the hedge is
not perfect, also a variance vN : When N tends to in�nity, vN tends to 0
and the price CN has a limit C ; which is the price we propose. However,
although there is a theoretically in�nite number of hedging instruments
Pi ; i = 1; 2; : : : the N -factor model will use only N of them to cancel N
hedge ratios �Ni ; i = 1; : : : ; N :When N tends to in�nity, the hedge ratios
tend to a well de�ned limit �i ; i = 1; : : : but it may happen that :

1X
i=1

j�ijPi = +1

while, because of high correlations (due to the fact that the variance of Q
is �nite), the management cost (theoretical, that is transaction cost free)
of this �in�nite� portfolio remains �nite. In practice, �in�nite� means a
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prohibitive high value. Besides, the presence of transaction costs makes a
rigorous replication strategy impossible (but this remark is valid even for
an option on a single asset).
Equations (7), then (15) and (16) provide the di¤usion of logarithms of

�forward zero-coupon� zF (t; T; T 0) = z(t; T 0)=z(t; T ) when T and T 0 are
�xed :

d log zF (t; T; T 0) =
1

2

1X
n=0

�
(T � t)2'n(T � t)2 � (T 0 � t)2'n(T 0 � t)2

�
dt

+
1X
n=0

((T � t)'n(T � t)� (T 0 � t)'n(T 0 � t)) dwn

The �rst series converges absolutely, while the second one converges ab-
solutely as a function of t with values in L2(
) : If we set �T = T 0 � t and
�n(x) = x'n(x) ; we get:

E [z(T; T + �T ) j t] = z(t; T + �T )

z(t; T )
exp

 1X
n=0

Z T�t

0

�
�n(s) �n(s+ �T )� �n(s+ �T )2

�
ds

!
(18)

Var [log z(T; T + �T ) j t] =
1X
n=0

Z T�t

0

(�n(s)� �n(s+ �T ))2 ds (19)

Cov [log z(T; T + �T1); log z(T; T + �T2) j t] =
1X
n=0

Z T�t

0

(�n(s)� �n(s+ �T1)) (�n(s)� �n(s+ �T2)) ds (20)

By truncating these summations at rank N�1 ; we obtain the expectations,
variances and covariances of zero-coupons as if the yield curve were the
approximate one yNt :

0.11 Computation of eigenmodes

0.11.1 Reconstruction and smoothing of the yield curve

In order to perform the P.C.A. of the yield curve out of historical data
series, we �rst need to restrict ourselves to the �nite dimension through
a �nite element method. We shall thus approximate the yield curve by a
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function depending on a �nite number n of parameters: polynomial, spline,
piecewise linear, etc. The main point is that, because of the usually high
heteroskedasticity, one needs a �xed type of approximation, and not an
approximation that depends itself on historical data. This second kind of
simpli�cation will namely be provided by the P.C.A. we are going to un-
dertake.
Let (En)n2N be aGalerkin decomposition of V : Each En is an n-dimensional

subspace of V contained in the next one En+1 and the union of all the En is
dense in V : By the Schmidt orthonormalization procedure24 , one can �nd
an orthonormal basis (Ln)n2N of V adapted to this decomposition: for any
n ; (L1; : : : ; Ln) is a basis of En : The subspaces En are endowed with the
same norm as V :
From now on, the dimension n is �xed. In practice, if we consider the

bid/o¤er spread as a limit for precision, then most of the time, one can
�nd an acceptable 6 to 8 dimensional Galerkin subspace. Each yield curve
y will then be approximated by its orthogonal projection yn onto the sub-
space En : As the basis (L1; : : : ; Ln) is orthonormal, the approximate (or
smoothen, see remark 17 below) curve is given by the simple formula:

yn =

nX
i=1

(y:Li)V Li

This allows to identify the movement of the yield curve yt with an n-
dimensional random process:

~a(t) = ((yt:L1)V ; : : : ; (yt:Ln)V ) 2 Rn

An important issue is that the norm and dot product of the space V should
be easily computable out of explicit available data.

Remark 17 If elements of En are smooth yield curves for any n ; then the
approximation of a curve y by an element yn 2 En is by construction a
smoothing of the yield curve.

0.11.2 Eigenmode computation from the historical series

After this �rst dimension reduction we made, we shall only be able to
compute the �rst n eigenmodes. Moreover, the last ones will lack precision.
Nevertheless, this does not rise a big problem, because most of the time,
the quasi-totality of the variance of the motion (more than 99%) is borne
by the �rst three modes. Anyway, we shall have to leave out some variance

24 If (J1; : : :) is a basis adapted to the Galerkin decomposition, that is, (J1; : : : ; Jn)
spans En , but not necessarily orthonormal, the orthonormal (L1; : : :) basis is built by
�rst normalising J1 ; then moving J2 parallel to J1 to make it orthogonal, and normal-
ising, and so forth.
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because of the impossibility to perform a strict time continuous hedge. Our
aim will therefore to compute only the �rst three or four eigenmodes.
The previous section shows how to identify the yield curve with a vector

evolving in Rn :
~a(t) = (a1(t) ; � � � ; an(t)) 2 Rn

Remark 18 The identi�cation:

yn =
nX
i=1

ai Li 2 En 7�! ~a = (a1; � � � ; an) 2 Rn

is an isometry when En is provided with the norm jj jjV and Rn with its
usual Euclidean norm, for base functions Li are orthonormal with respect
to jj jjV : Therefore, eigenmodes in En and in Rn are identical.

We now �x �t > 0 : When t varies, the vectors:

~a0(t) =
1p
�t
(~a(t+ �t)� ~a(t))

form a cloud of points in Rn the principal axes of which are the �historical�
eigenmodes. Indeed, let �n be the orthogonal projection of V onto En : The
quadratic form Qn de�ned on the dual En� of En by:

Qn(�) =
1

�t
Var

�
�(ynt+�t) j t

�
is obtained from Q by the transpose of the projection �n :

Qn = Q � t�n
t�n : En� �! V �

It is a well known result that, in this situation, the eigenspaces of Qn (that
is its P.C.A.) tend, in the weak sense (that is index wise25), to those of Q :
In practice, taking n = 7 or 8 gives a very good approximation of the �rst
four modes.

De�nition 19 The matrix S of Qn in the basis (L1; � � � ; Ln) is called the
covariance matrix of the process ~a(t) (or yt ). It is de�ned by:

Sij =
1

�t
Cov

�
ynt+�t:Li ; y

n
t+�t:Lj j t

�
25Let (�1; : : :) be the eigenvalues of Q and

�
�n1 ; : : : ; �

n
n

�
be those of Qn : For �xed k ;

then �nk tends to �k as n tends to 1 and, if �k is not multiple, then the corresponding
eigenvector 'nk tends to 'k : When there is some multiplicity, then the whole eigenspace
corresponding to �nk tends to that corresponding to �k (they have the same dimension
if n is su¢ ciently large).
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Because we took an orthonormal basis, this matrix represents the quadratic
formQn and its diagonalization provides the eigenmodes: if ~u = (u1; : : : ; un)
is an eigenvector of S associated with the eigenvalue � then

P
uiLi is the

eigenmode (in the En approximation) associated with the same eigenvalue
� :

Remark 20 This is a purely historical evaluation of the covariance matrix
and of the eigenmodes. If one is concerned with Vega hedging, he should
rather try to perform an implicit evaluation of the factors out of the market
prices of options, or mix the two methods.

0.12 Reduction of the dimension

The previous analysis provides two opportunities to reduce the dimension
of the overall space of yield curves. The �rst one relies in the projection
onto the Galerkin subspace En : It corresponds, as we said in remark 17,
to smoothing the yield curve. This reduction should not depend on the
movement of the yield curve. Indeed, the hedges we are going to compute
do not take into account the errors made at this step, hence only a serious
statistical analysis can insure that these errors are bounded in any market
state, even catastrophic.
The second reduction is performed after the principal component analysis

of the move of the approximated curve ynt : Once principal deformations
have been determined, we just keep the �rst d of them, d = 2 or 3 : This
way, we get an H.J.M. model with d factors. The space to which the curve
belongs is still En but, in�nitesimally, there are only d types of possible
deformations. Nevertheless, as it is very unlikely that these deformations
form the basis of a Markovian model26 , the movement, even reduced to d
sources of randomness, may explore the whole space En . Consequently, its
complexity (for instance to price a swaption) is the dimension n and not
d (keeping only d factors still simpli�es computations, but not as much as
one could have hoped).

0.12.1 The drift term and the real option pricing

When projecting the whole yield curve movement on one of the Galerkin
subspaces En; another problem arises. The real statistical drift of the dif-
fusion could belong to this subspace, or be also projected onto it. But in
order to ful�ll the AAO hypothesis, the risk-neutral drift is imposed and
there is no reason why it should lie in En : A �rst solution would be to

26For this, they should show an exponential or polynomial shape with respect to the
maturity x (see [19]).

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2014.91



xxxv

choose special subspaces, such that if a yield curve yn 2 En then the cor-
responding drift b(t;yn) (see eqn. (14), sect. 0.5) also belongs to En : This
solution is that adopted by N. El Karoui in number of papers (see [11] and
[19] to [20]), and by other authors, beginning with Vasiµcek [45]. Although
we respect the relevance of this approach, which is well adapted to implicit
evaluation of the volatility structure, our own experience shows that one
would rather take spaces En that really �t well the data, whatever they
look like (we give in sect. 0.12.3 examples of Galerkin spaces that appeared
to be e¢ cient).
We now have two solutions. Either we consider that the space En is here

only to size the deformation factors, but we keep the entire risk-neutral
drift, and the formulae (18) to (20) compute options on zero-coupons and on
portfolios of such. This is the approach of Brace-Musiela [7] and Jamshid-
ian [29]. For instance, an option on a 10 years quarterly swap leads to a
40-dimensional integral, hard to compute. One solution would be Monte-
Carlo technique, or deterministic low discrepancy sequences (Sobol, etc.).
Another is again to diagonalize the 40-dimensional covariance matrix of the
zero-coupons involved in the swap, and to compute the integral only on the
three dimensional subspace spanned by the eigenvectors corresponding to
the three biggest eigenvalues, by a Gauss-Legendre interpolation.

Remark 21 The faster an option evaluation, the better it allows to com-
pute implicit deformation factors out of option market prices (see remark
20).

The second solution is to give up the strict AAO assumption. Indeed, the
theoretical arbitrages that one could achieve in such a setting are impossible
to realize in practice because of transaction costs. In other words, even if
the vector b(t;yn) does not belong to En ; it is so close to its projection
bn(t;yn) = �n(b(t;y

n)) that the di¤erence cannot be made into a real free
lunch. Therefore, it is possible to let the curve evolve with the �almost risk-
neutral�drift bn(t;yn) and compute as well vanilla options, as exotic ones
(barriers, etc.) by Monte-Carlo techniques or PDE discretization inside the
space En :

0.12.2 Practical Option Hedging

Practical option hedging is always an optimization between costs and resid-
ual risks. In practice, dynamic hedging will never be able to totally o¤set
risks, therefore some level of residual risk must be accepted. Moreover, in
an optimal hedging strategy, the various sources of risk are comparable.
There are mostly four sources of such residual risks:

� Discrete time dynamic hedging

� Uncertain volatility and correlations
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� Shocks and non-di¤usion processes

� Hedging only �nitely many risk factors

Comparing the size of residual risk stemming from these sources leads
to the optimal choice of number of risk factors to choose. In practice, one
�rst assess the minimum amount of residual risk one cannot avoid by any
dynamic hedging, then the level of acceptable residual risk with respect to
the corresponding transaction costs. Finally, equally splitting this accept-
able level of risk across the four sources above, implement the appropriate
dynamic hedging strategy in order to achieve the targeted level of risk.

0.12.3 Di¢ culties

Galerkin space

The �rst di¢ culty is to �nd good Galerkin subspaces En in order to optimize
the computation/accuracy ratio of the model. Let us mention the following
series, with their advantages and drawbacks:

� Polynomials of degree n � 1 : Arbitrage free, but not performing: it
cannot at the same time the variety of short term rates and the barely
changing behavior of long term rates.

� Decreasing exponential e��k x; �k � 0 : So-called generalized Vasiµcek
(see [19]). Arbitrage free and better than the previous one. Good
for implicit evaluation of factors, because of possibility of rather fast
evaluation of swaptions.

� Cubic splines (piecewise third degree polynomials we C2 �t at junc-
tion). Good for �tting the prices of assets with rather a small number
of parameters, but not arbitrage free. Dimension n equals 3+ number
of splines. Most common: three splines (see Turner [44]).

� Polynomials of degree n�1 with a change of variable on the maturity.
Also non arbitrage free. One of the most e¢ cient is the Log change
for it �ts the fast changing shape of the short term part and the very
regular one of the long term part. This idea was �rst suggested by
P. Gaye, and appears to have several theoretical justi�cations, one of
them being that the yield curve and the curve of forward spot rates
belong to the same space (the forward spot rate is the derivative of
the zero-coupon rate with respect to the Log of the maturity). It is
also better than cubic splines because it does not particularize any
maturity and thus gives a �nicer�smoothing.
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Instability of eigenmodes

In this �rst formulation, our model assumes that volatilities and correla-
tions are constant. This fact is obviously denied by most statistical analy-
sis. Studies we made on the French curve show that the plane spanned
by the �rst two modes almost follows a Brownian path in the manifold
of 2-dimensional planes of En for n = 6 (polynomials in Log ). Short term
options, or even European ones (options on futures, swaps, bonds, etc.)
can a¤ord a homoskedastic model, provided we don�t mix the maturity of
the various options, whereas caps and �oors really need a heteroskedastic
model (see Brace-Gatarek-Musiela [6]).
Similarly, it is of importance to detect �changes of regime�, that is situ-

ations where we need to take into account a larger number of factors of a
bigger Galerkin subspace to keep the �noise�under control.

Statistical evaluation of drift and volatility

Evaluating the di¤usion coe¢ cients (drifts, volatilities and correlations) of
a multidimensional process, especially when data are not always of good
quality, can easily become a challenge, see Genon-Catalot & Jacod [25].
One again needs to optimize the value of n in order to guaranty a correct
estimation of the coe¢ cients, as well as a good control on the noise.
ARCH and GARCH models should also be considered.
Note that the �tick�discretization introduces its own noise for large n ;

and without it, the move of prices inside the bid/o¤er spread is rather
erratic.

Mixing historical and implicit data

Historical data are useful to price illiquid vanilla options (options on bonds,
etc.), for we seldom have a Vega hedging and we need to forecast the be-
havior of volatility. For any other option (liquid, exotic when liquid vanilla
exist, etc.) one need an implicit evaluation of the factors out of the market
data on the prices of liquid options. The problem is that the number of pa-
rameters to estimate can be larger than the number of reliable data. This
means that we necessarily need to mix implicit data with historical ones,
through the optimization of some penalty function that weights both.
Incoherence between historical and implicit data, or even among implicit

data, can sometimes give rise to (quasi) arbitrage opportunities, provided
transaction costs allow to enter the setting up of such position.
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