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A continued fraction expansion to the immittances defining viscothermal wave propagation in a
cylindrical tube has been presented recently in this journal, intended as a starting point for time
domain numerical method design. Though the approximation has the great benefit of passivity, or
positive realness under truncation, its convergence is slow leading to approximations of high order
in practice. Other passive structures, when combined with optimisation methods, can lead to good
accuracy over a wide frequency range, and for relatively low order.

PACS numbers: 43.20.Mv, 43.20.Hq, 43.55.Ev, 43.75.Fg

I. INTRODUCTION

The authors of a recent article1 propose a novel ap-
proximation to viscothermal losses in a cylindrical tube
based on continued fraction expansions, in frequency, of
exact expressions for impedance and admittance. The
idea is to show that such an approximation is a suit-
able starting point for time domain numerical methods.
In particular, the method proposed serves to sidestep
difficulties encountered when high-frequency approxima-
tions are employed—while useful in the frequency do-
main, these lead to fractional derivatives in the resulting
time domain system, and must be further approximated
to lead to a recursive method.

The approach offers many advantages—and most im-
portantly structural passivity, due to the non-negativity
of element values in the resulting circuit representations,
which are ladder structures of Cauer type, resulting from
a continued fraction expansion. In this representation,
the immittances are positive real functions, and remain
so under truncation to any order. Not all such repre-
sentations have this property—see, e.g., the article by
Kergomard2. Such structures are thus excellent candi-
dates for the construction of time domain schemes3. The
authors provide some numerical results in the form of
fractional error in the real part of acoustic tube immit-
tances as a function of frequency, for various orders of
truncation of the approximation. As expected, such ap-
proximants perform very well in the low frequency range
(as the continued fraction expansion is about the DC fre-
quency), but converge slowly as the approximation order
is increased; this order must be chosen high if one is in-
terested in performing a simulation over a large range of
frequencies.

The aim of this short article is to show other passive
representations for viscothermal wave propagation which

a)Electronic address: sbilbao@staffmail.ed.ac.uk

are amenable to optimisation and operation over a wide
frequency range, even at low order. Here, the point of
view taken is broadly similar to that of Thompson: from
a given immittance function, derive a low order rational
and positive real approximant, which is suitable for use
in a time domain numerical method. Instead of making
use of a continued fraction expansion, however, a differ-
ent structure is proposed, namely that of Foster. The
element values defining such a structure could, in prin-
ciple, be derived through a partial fraction expansion of
the immittance. Here, however, the structure is used as
a starting point for optimization procedures, leading ul-
timately to structures which perform well over a large
range of frequencies even at low order, while sacrificing
some accuracy in the low frequency range.
Supplementary material is available at
http://www.ness-music.eu/working-papers

II. IMMITTANCES FOR A CYLINDRICAL TUBE

A standard model of wave propagation in a cylindrical
tube can be written in the frequency domain in terms
of a pair of equations relating the acoustic pressure P =
P (ω, x) and acoustic volume velocity U = U (ω, x):

∂xP + ZU = 0 ∂xU + Y P = 0 (1)

See. e.g., the article by Keefe4 and the references therein.
Here, x ∈ [0, L] is a spatial coordinate, for some tube
length L, and ω is a frequency variable, in radians/s.
Z = Z(jω) and Y = Y (jω) are the series impedance and
shunt admittance respectively for the tube. Expressions
for Z and Y are given as follows:

Z =
jωρ

πa2
1

1− Fv

Y =
jωπa2

ρc2
(1 + (γ − 1)Ft) (2)

where here, ρ is air density, in kg/m3, c is the wave speed
in m/s, γ is the ideal gas constant and a is the tube radius
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in m. The functions Fv and Ft are defined by

Fv = φ
(

√

−jrv

)

Ft = φ
(

√

−jrt

)

φ (ζ) =
2J1 (ζ)

ζJ0 (ζ)
(3)

where j =
√
−1, J0 and J1 are zeroth and first order

Bessel functions and rv and rt are defined as

rv = a
√

ρω/η rt = aν
√

ρω/η (4)

with viscosity coefficient η and Prandtl number ν2 =
Cpη/κ, written in terms of the specific heat at constant
pressure and κ is thermal conductivity.
The immittances Z and Y may be split as

Z = Zl + Zv Y = Yl + Yt (5)

where Zl = jωρ/πa2 and Yl = jωπa2/ρc2 are the immit-
tances corresponding to wave propagation in the absence
of viscous (respectively thermal) losses, and where

Zv =
jωρ

πa2
Fv

1− Fv

Yt =
jωπa2

ρc2
(γ − 1)Ft (6)

represent the additional contributions due to such effects.
When extended to the entire complex plane, through

the variable s, where Im(s) = ω, it is useful to examine
the pole/zero structure of Zv(s) and Yt(s). See Figure
1. Both Zv and Yt possess interlaced poles and zeros on
the negative real axis with a zero closest to the origin in
both cases. This arrangement suggests particular circuit
representations, as will be described shortly.

FIG. 1. Impedance magnitude |Z(s)| (top) and admittance
magnitude |Y (s)| (bottom), plotted in the complex plane, in
dB. Dark and light spots represent zeros and poles, respec-
tively.

III. CIRCUIT REPRESENTATIONS

The breakdown of the immittances Z and Y into loss-
less and viscothermal effects as per (5) may be repre-
sented simply through a circuit diagram, using the anal-
ogy between pressure with voltage, and volume velocity

Zv

Zl

P

U

Z YtYlP

U

Y

FIG. 2. Circuit representation of the breakdown of the
impedance Z = Zl + Zv and admittance Y = Yl + Yt.

with current, leading to a series combination for Z and
a parallel combination for Y . See Figure 2.

Given the observation that the immittances Zv and Yt

possess poles and zeros on the negative real axis, it is
natural to seek approximations which are of two-element
type5—RL in the case of Zv, and RC in the case of Yt.
Furthermore, the approximations should be positive real
and thus passive—a condition which is simply met if the
network components take on non-negative coefficient val-
ues. A continued fraction expansion of the immittances
about DC leads to ladder structures sometimes referred
to as Cauer’s second form5, as employed recently in the
article by Thompson et al1. See Figure 3.

R1

L1

R2

L2

RN

LNZ
(N)
v

C1

R1

C2

R2

CN

RNY
(N )
t

FIG. 3. Cauer structures corresponding to approximations

Z
(N)
v to Zv (top) and Y

(N)
t to Yt (bottom), employing N

branches, with element values Rj and Lj , j = 1, . . . , N for

the impedance Z
(N)
v , and Rj and Cj , j = 1, . . . , N for the

admittance Y
(N)
t .

In practice, the ladder is truncated after a finite num-

ber N of branches, leading to an approximation Z
(N)
v . As

expected, the approximation is excellent in the low fre-
quency range, and increases in accuracy with N . See
Figure 4, to be compared with Figures 4 and 5 from
Thompson et al.1. Here, and henceforth, the tube is
assumed to be of radius 7.5 mm, and the various con-
stants are set to values corresponding to a temperature
of 26.85◦C, using formulae given by Keefe4. Notice in
particular that the approximation converges slowly—for
this tube, a fourth order approximation produces results
of reasonable accuracy up to about 20 Hz. For the study
of wind instruments, approximation to at least order 16,
giving reliable results up to the mid kHz range, would be
necessary.
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FIG. 4. Top: Real part of the impedance Zv, and of continued

fraction approximations Z
(N)
v , to various orders N , as indi-

cated. Bottom: fractional error, as a function of frequency.

A. Optimisation and Numerical Results

Another approach, perhaps better suited to efficient
numerical implementation, is optimisation of an approx-
imation to the impedance6. The Cauer structure has
the great benefit of structural passivity, due to the non-
negativity of all the element values. But other structures
are also available—examples are the two element RL and
RC Foster networks, shown in Figure 5.

R0

L1

R1 RN

LN

Z
(N)
v

C1

R1

CN

RN

Y
(N )
t

FIG. 5. Foster structures corresponding to approximations

Z
(N)
v to Zv (top) and Y

(N)
t to Yt (bottom), employing N

branches, with element values Rj and Lj , j = 1, . . . , N for

the impedance Z
(N)
v , and Rj and Cj , j = 1, . . . , N for the

admittance Y
(N)
t . Note the additional resistance R0 in the

case of the Foster form for the impedance Zv, allowing for a
non-zero limiting low-frequency impedance.

The immittances Z
(N)
v and Y

(N)
t may be decomposed

as sums,

Z(N)
v (jω) = R0 +

N
∑

p=1

RpLpjω

Rp + Lpjω
(7a)

Y
(N)
t (jω) =

N
∑

p=1

Cpjω

1 +RpCpjω
(7b)

allowing for easy evaluation of derivatives with respect
to the free parameters R0 and Rq, Lq, q = 1, . . . , N in

the case of Z
(N)
v , or Rq, Cq, q = 1, . . . , N in the case of

Y
(N)
t . (R0 may be left free, or constrained to take on the

limiting value Zv(0) = 8η/πa4.) In what follows, only
the series impedance Zv will be discussed—the case of
the shunt admittance Yt is similar.
At this point, a wide variety of choices are available

to the designer regarding the range of frequencies over
which to optimise, the cost function and the method of
optimisation—these should clearly be chosen according
to the application at hand. In the interest of reducing
computational complexity in resulting time domain nu-
merical designs, it is perhaps useful to examine the be-
haviour of the approximation over a wide range of fre-
quencies, and employing a cost function E, dependent
on the circuit parameters:

E =

M
∑

m=1

|1− Z(N)
v (jωm)/Zv(jωm)|2 (8)

for a set of M exponentially spaced frequencies ωm, m =
1 . . . ,M . It is straightforward to include a weighting in
the above cost function, so as to provide better accuracy
over a desired frequency range.
Some results are shown in Figure 6, for a tube of radius

7.5 mm, and optimised over the range of frequencies from
0.1 Hz to 10 000 Hz. A gradient descent technique was
used, with M = 100 frequency values, and circuit values
constrained to be positive. For N = 4, for example, the
optimised structure gives a reduced error relative to the
continued fraction expansion from approximately 20 Hz
upwards. For N = 16, the optimised structure has an
error on the order of 0.01 per cent over the entire range
of frequencies. Outside the high-frequency limit of the
optimisation range, the fit naturally becomes poorer, but
remains superior to the continued fraction expansion.

IV. CONCLUDING REMARKS

The article by Thompson et al. is clearly geared to-
wards designing time domain methods to be used for the
simulation of viscothermal effects in tubes—and as such,
the passive Cauer structure arrived at through continued
fraction expansion is an extremely useful one, as it allows
for a stable numerical design. The main powerful insight
is that it is possible to begin from the exact expression
for the losses, rather than a derived form, often lead-
ing to fractional derivatives in the resulting time domain
approximation7. In short, it can be simpler to work with
the exact expression, which is clearly advantageous.
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FIG. 6. Fractional error in the real part of the impedance Zv

against frequency for Cauer structures and optimised Foster
structures, for approximations of order N = 4, 8 and 16.
The range of frequencies over which the Foster structure is
optimised is indicated by the shaded gray region.

Yet, if a time domain numerical method is the eventual
goal, then it must be borne in mind that the order of the
approximation to the loss terms will dominate calcula-
tion time and memory costs. The response of the Cauer
structure matches that of the model very well in the low
frequency range, and in some applications, this is clearly
desirable. But it converges relatively slowly to that of
the exact form, and thus the approximating order will be
large if wideband accuracy is desired. By retaining the
same idea of a passive representation, but enlarging the
scope to include optimised designs, it is possible to ob-
tain reasonable accuracy over a wide band of frequencies
with approximations of a relatively low order, leading to
much more efficient numerical methods. Accuracy in the
very low frequency range is obviously not as good as for
the continued fraction expansion, but can still be made
very small, as illustrated in Figure 6. One weakness with
the approach presented here is that, unlike the case of the
continued fraction expansion, there is no longer a closed
form expression for the element values, which must be re-
optimised under changes in the temperature, tube radius,
optimisation range or cost function—which is a trade-off
typical of optimisation procedures in general.

Acknowledgments

This work was supported by the European Research
Council, under grant number StG-2011-279068-NESS,
as well as Labex MEC (ANR-10-LABX-0092) and the
A*MIDEX project (ANR-11-IDEX-0001-02), funded by
the Investissements d’Avenir program of the French Na-
tional Research Agency (ANR).

1 S. Thompson, T. Gabrielson, and D. Warren, “Analog
model for thermoviscous propagation in a cylindrical tube”,
J. Acoust. Soc. Am. 135, 585–590 (2014).

2 J. Kergomard, “General equivalent electric circuits for
acoustic horns”, J. Audio Eng. Soc. 36, 948–955 (1988).

3 S. Bilbao and J. Chick, “Finite difference time domain sim-
ulation for the brass instrument bore”, J. Acoust. Soc. Am.
134, 3860–3871 (2013).

4 D. Keefe, “Acoustical wave propagation in cylindrical ducts:
Transmission line parameter approximations for isothermal
and nonisothermal boundary conditions”, Journal of the
Acoustical Society of America 75, 58–62 (1984).

5 L. Weinberg, Network Analysis and Synthesis, 312 (R. E.
Kreiger, New York, New York) (1975).

6 A. Ben Jazia, B. Lombard, and C. Bellis, “Wave propaga-
tion in a fractional viscoelastic Andrade medium: Diffusive
approximation and numerical modeling”, Wave Motion 51,
994–1010 (2014).
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