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Abstract: Recently, electro-active composites have been considered by several researchers 

because they exhibit an interesting change in their viscoelastic properties under an applied 

electric field. However, their relative elastic modulus change ΔG’=G'(E)-G'(0) is still low and 

rarely exceed 100 kPa. In this article, we demonstrated that, by synthesizing mesoporous 

aggregates of titanium dioxide (TiO2) and by adsorbing acetylacetone dipolar molecule 

(Acac) onto the TiO2 surface, the TiO2-Acac/PDMS electrorheological elastomer achieved  a 

relative elastic modulus change ΔG’ higher than 500 kPa for an applied electric field of 2 kV 

mm-1. The dependence of the electrorheological response of TiO2-Acac/PDMS on the DC 

electric field strength, AC electric field frequency and shear strain magnitude was discussed 

regarding the conductivity ratio and permittivity ratio between doped TiO2 semiconducting 

particles and the PDMS matrix. The high electrorheological performance of TiO2-doped Acac 

as semiconducting particles filled in the elastomeric matrix makes this kind of material a 

promising candidate for application in the automotive industry, robotics, vibration isolators, 

building applications or electro-active actuators. 

Keywords: electrorheological elastomer, electromechanical properties, semiconductor-

insulator composites, TiO2 colloidal particles, PDMS cross-linked matrix 

1. Introduction 

Magnetorheological and electrorheological fluids are suspensions of micro- or sub-

microparticles dispersed in a liquid matrix whose viscosity can be changed by the application 

of a magnetic or an electric field, respectively. Their solid counterparts are 

magnetorheological elastomers (MREs) and electrorheological elastomers (EREs). 
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Magnetorheological elastomers can exhibit a change of their Young’s modulus of several 

hundred kPa under the application of a magnetic field of 0.2-0.5 Tesla and have numerous 

applications as actuators, vibration isolators or variable capacitors.1, 2  

Electrorheological elastomers (EREs) are made by suspending semiconducting particles 

in a cross-linkable insulating polymer. The semiconducting particles are aligned under an 

applied electric field to form columns in the insulating medium and then the structured 

dispersion is cross-linked to maintain the anisotropic structure in the polymeric network. In 

response to an applied electric field ERE composites manifest a rapid and reversible change 

of modulus. The main cause inducing the ER effect is the mismatch in dielectric constant and 

conductivity between semiconducting particles and insulating medium that generate dipolar 

interactions in the presence of an AC or DC electric field. Theoretical models based on linear 

electrostatics have been developed to understand the physical mechanisms involved in the ER 

effect, regarding the role of the permittivity and conductivity in the interaction forces between 

particles. These studies showed that the attraction force in ER fluids increases with the 

applied electric field according to a quadratic law 𝐹𝑒𝑙𝑒𝑐 ∝ 𝐸0
2.3-5 However, lower exponents 

(1≤n<2) in the dependence of Felec on E0 were observed experimentally at a high applied 

electric field.6,7 This deviation from the quadratic law was interpreted theoretically by 

considering, in addition to the solid particle conductivity, the dependence of the matrix 

conductivity on the electric field which gives rise to a saturation of the local electric field.8,-16 

The possibility to vary the electromechanical characteristics of EREs and their structural 

stability make them attractive for developing new smart materials with potential application in 

the automotive industry, robotics and prosthetic limbs, vibration isolators, building 

applications and electro-active actuators. 17-25 For this purpose, ERE composites containing 

different inclusions and dispersed in different matrices, PANI/PDMS,22 PbTiO3/AR7,26 

Starch/Silicone oil/Silicone rubber,27, 28 polythiophene/polyisoprene,29 

Pb(Zr0.5,Ti0.5)O3/Acrylic rubber,30 polydiphenylamine/poly(styrene-block-isoprene-block-



styrene,31 poly(p-phenylene)/Acrylic elastomer,32 or cellulose/BMIMCl gel,33   have been 

investigated. These systems exhibited an increase of their electromechanical properties, and, 

in particular, of their storage modulus sensitivity {(G'(E)-G'(0))/G’(0)}. However their 

relative modulus change {G'(E)-G'(0)} was still low and rarely exceeded 100 kPa (compared 

for instance to 1 MPa for the magnetorheological elastomers (MREs)). Furthermore the 

matrices used for these EREs were too soft (zero field modulus around 100 kPa: cf. table 2) 

for most of the applications. Other type of ER materials based on a particular morphology of 

semiconducting particles emerged and showed an interesting ER effect when used as 

electrorheological fluids (ERFs).34-37 It has been reported that the use of mesoporous Ce-

doped TiO2 enhanced the ER response of Ce-doped TiO2/silicone oil ER fluid and its yield 

stress was 20 times higher than that of pure dense TiO2/PDMS fluid.38, 39  Other workers 

reported that ERFs based on nano-sized particles showed a so called giant electrorheological 

effect (GER) when the nanoparticles were coated by molecules having high dipole 

moments.40, 41 

In this work, we investigated the response of an electrorheological elastomer (ERE) based 

on doped titanium dioxide. The specificity of this material lies in three main points:  (i) the 

modification of the intrinsic properties of pure TiO2 by adding an aluminium cation (Al3+) as 

substitution impurities of (Ti4+) in the TiO2 lattices during their growth, (ii) the synthesis of 

TiO2 aggregated nanoparticle with a high specific surface area and (iii) the adsorption of 

Acetylacetone dipolar molecules (Acac) as a doping agent on the TiO2 surface. The aim 

underlying these choices was the improvement of relative modulus change (ΔG’) developed 

by conventional electrorheological elastomers. Indeed, by proceeding so, it was expected that 

the dielectric properties of the semiconducting particles were improved, the attraction force 

between particles (when subjected to an external electric field) was amplified, and therefore 

the electro-rheological response was enhanced. In a previous study we have shown that by 

doping TiO2 nanoparticles with Acac we could obtain a good ER fluid with a large increase of 



shear modulus.42 The aim of this work was to obtain such a high field induced modulation, 

not in the fluid phase but in an elastomeric matrix having a zero field modulus high enough, 

like PDMS, to be used for active damping applications. This result is not at all granted 

because the cross-linking pre-polymers are about one hundred times more viscous than the 

silicone oil used for ER fluid and also because the chain like structure induced by the field can 

be partly destroyed by the cross-linking process. Here we investigated the electrorheological 

response of 20 v. % Acac-doped TiO2 semiconducting particles that were embedded and 

aligned in PDMS cross-linkable matrix as an ERE. In the first section we present the process 

used for synthesizing the TiO2 particles, their morphological characterization, then the 

preparation of the TiO2-Acac/PDMS ERE and the experimental conditions for measuring the 

shear moduli (elastic modulus G’ and loss modulus G”). In the second section we first study 

the kinetics of polymerization by following the viscoelastic properties of samples under an 

oscillatory shear with and without field during curing. Then we present the electrorheological 

response of the cross-linked material in terms of the shear modulus increase and of induced 

current versus electric field amplitude and frequency; here the obtained results were discussed 

qualitatively in relation to the non linear model of conductivity. Finally we demonstrate the 

variation in the viscoelastic properties of the TiO2-Acac/PDMS ERE versus the magnitude of 

the shear strain, for an AC and DC applied electric field. 

2. Experimental section 

2-a Particles synthesis 

Nano-sized TiO2 powder was synthesized via a sol–gel method,42 using titanium 

tetraisopropoxide (Sigma-Aldrich, 98 %, solution), 2-Propanol (Sigma-Aldrich, ACS reagent, 

≥99.5 %), aluminium isopropoxide (Aldrich, 99.99 %), ammonium hydroxide (Sigma-

Aldrich, 28 % NH3 in H2O), acetylacetone (Sigma-Aldrich, ReagentPlus®, ≥99 %), nitric acid 

(Sigma-Aldrich, ACS reagent, 70 %), acetic acid (Sigma-Aldrich, ACS reagent, ≥99.7 %)  

and ultrapure water (≥18 M.cm) as starting materials. In a typical procedure, titanium (IV) 



tetraisopropoxide (0.388 mol), was rapidly added to ultrapure water (640 ml) and then stirred 

for 30 min. A white precipitate formed immediately upon addition of the titanium (IV) 

isopropoxide. The resultant colloid was recovered by centrifugation (10000 g for 30 min). The 

centrifugation cake was added into a jacketed three-necked flask reactor equipped with a 

mechanical stirring containing 750 ml of an aqueous solution, of molar composition ; 0.36 M 

nitric acid, 1 M acetic acid and 0.05 M aluminium isopropoxide. Al3+ was used here in small 

quantity as impurity, in order to create ionic substitution defects in the TiO2 lattice during 

growth and to improve the dielectric properties (permittivity and conductivity) of the 

synthesized TiO2 (pure TiO2 had weak electrorheological response).38, 43 The pH of the 

colloidal solution after addition of the cake was measured to be between 1 and 2. Peptization 

occurred after heating the product at 80 °C for 1 h under medium stirring, whereupon the 

slurry became a stable sol. Then the sol was cooled down to room temperature and a 17 M 

ammonium hydroxide solution was added drop by drop into the TiO2 sol under low stirring in 

order to form a white gel. The pH of the resultant colloidal suspension was measured to be 

close to 7. The gel was then collected by centrifugation (10000 g for 30 min) and dried at 110 

°C overnight. The powder was crushed and ground into fine powder using a mortar and pestle 

and was further calcined in air at 500 °C for 4 h.  

2-b Particles characterization 

Morphological characterization of the obtained TiO2 was shown in Figure 1. TEM 

pictures performed on the obtained TiO2 particles in aqueous medium at pH≈ 7 (Figure 1 (a) 

and (a’)) showed spherical particles with a diameter between 12 and 20 nm that were 

aggregated between them  in a form of large clusters having a weak density. After heat 

treating TiO2 powder at 500 °C for 4h in air, the SEM picture (Figure 1 (b)) showed 

relatively dense aggregates formed from the TiO2 nanoparticles. The density of the calcined 

TiO2 was measured using a 5 cm3 standard flask pycnometer and was found to be about 3.84 g 

cm-3. The type of porosity and specific surface area of the calcined TiO2 powder were  



 

Figure 1: Morphological characterization of synthesized TiO2 particles: (a) TEM picture of the 
dilute TiO2 suspension as obtained at pH 7; inset (a’) TEM picture of the same TiO2 with a 
magnified scale, (b) SEM picture of TiO2 after heat-treatment at 500 °C, (c) and (d) are the N2 
adsorption/desorption isotherm and the BET plot of N2 adsorption performed on the 
calcined TiO2 powder, respectively, (e) and (f) the SANS spectra of  TiO2 powder (calcined at 
500°C/4h) dispersed in PDMS silicone oil (20 v. %) giving, respectively, the scattered intensity 
Iq (cm-1) versus wave vector q (A°-1) and the corresponding Porod representation q4Iq (cm-5) 
as a function of wave vector q (A°-1). 
 

 determined by a N2 adsorption/desorption technique. Figure 1 (c) shows a hysteresis in the 

N2 adsorption/desorption isotherm for relative pressures 0.55 < P/P0 < 0.95 which is a typical 

characteristic of mesoporous or nanoporous aggregates. The BET plot of N2 

adsorption/desorption (Figure 1 (d)) showed that the value of the specific surface area of 

TiO2 powder (Abet) was about 295 m2g-1. Small angle neutron scattering (SANS) was 

performed on calcined TiO2 particles that were dispersed in PDMS oil (20 v. % TiO2/PDMS). 

The SANS spectra giving the scattered intensity Iq (cm-1) versus wave vector q (A°-1) (Figure 

1 (e)) showed a relative maximum of the scattered intensity for a value of wave vector q about 

0.356 nm-1 giving an average diameter of TiO2 nanoparticles close to 18 nm which was in 

agreement with that estimated from TEM observations. The Porod plot of the scattered 

intensity q4Iq (cm-5) as a function of the scattering wave vector q (A°-1) (Figure 1 (f)) showed 

two Porod’s regimes: the first at low wave vector which characterizes the interface of the 



envelope of micrometric grains and the second at high q values which was due to the 

scattering inside the nanoparticles of 18 nm of diameter. This behaviour is characteristic of 

porous systems formed from nanoparticles assembling where two length scales were largely 

separated; nanoparticles on one hand and micrometric grains on the other.  

2-c Preparation of the TiO2 ERE 

 

Figure 2: The chemical structure of PDMS crosslinking pre-polymers. 
 

TiO2 particles were introduced into a cross-linkable liquid composition comprising two 

polysiloxane (PDMS) constituents:  as shown in Figure 2, one of them carrying Si-vinyl 

groups and the other carrying Si-H groups. Crosslinking by hydrosilylation reaction was 

initiated thermally and with a platinum-based catalyst. These cross-linking materials (cross-

linking agents and catalyst) were integrated into two separated containers, Rhodorsil RTV141 

A, viscosity 3.5 Pa.s, density 1.02 g cm-3 at 25 °C and Rhodorsil RTV141 B, viscosity 0.65 

Pa.s, density 1.02 g/cm3 at 25 °C, that were purchased from Bluestar Silicones. To 10 parts of 

Rhodorsil RTV141 A were added 1 part of Rhodorsil RTV141 B in order to obtain the 

crosslinking reactions with a molar stoichiometry of groups, Si-vinyl / Si-H close to 1. The 

amount of TiO2 particles was fixed at 50 wt. % (~20 v. %) in the whole mixture then a few 

drops of acetylacetone was added to the mixture (the Acac amount was less than 1.5 wt. % in 

order to obtain surface adsorption of Acac/TiO2 ≤ 1Acac molecule per nm2). The process 

consisted of introduction and vigorous mixing of TiO2 powder, Acac and Rhodorsil RTV141 



A in a mortar until obtaining a homogeneous dispersion, then the mixture was degassed under 

vacuum for 30 min using a vacuum pump for removing any air bubbles that may be traped in 

the mixture. At this stage no crosslinking reaction was started. The Rhodorsil RTV141 B 

component was then added to the mixture. After homogenizing the whole by mechanical 

stirring, the dispersion was degassed again for 5 min and then rapidly poured onto the 

rheometer plateau to monitor the crosslinking reaction (controlled by temperature and time) 

with or without an applied electric field under shear.  

2-d Electrorheological measurements 

The viscoelastic properties were measured by using an Anton Paar Physica MCR301 

rheometer which was equipped with an electrorheological temperature device (Anton Paar) 

consisting of a parallel plate geometry of 25 mm diameter (PP25/E) and a Peltier temperature 

device (P-PTD200/E) allowing rheological measurements under applied electric field with 

thermally controlled environment. A regulated DC power supply (XANTREX-Model HPD 

30-10SX) and AC voltage (Hameg function generator HM8030-5) combined with a high 

voltage amplifier (Trek Model 609E-5) were used to apply DC or AC electric field in the 

range of 0 to 4 kV/mm across a 1 mm gap between plate geometries. Multimeter (TENMA 

72-7735) was used to measure the DC or AC electric current passing through the gap during 

crosslinking under applied electric field and rheological monitoring. 

3. Results and discussion      

3-a Cross-linking kinetics with and without an applied electric field: 

The polymerization kinetics of the TiO2-Acac particles-filled PDMS (20 v. % TiO2-Acac 

filler in reacting PDMS) was monitored by measuring the storage and loss moduli during 

cross-linking reaction at constant strain magnitude γ=0.1 % and ω=100 rad/s. the crosslinking 

reaction is carried out at a constant temperature of 80 °C. The experiments were carried out 

under three different conditions. In one, pure PDMS pre-polymers were cross-linked without 



     

               

Figure 3: TiO2 ERE cross-linking kinetics, (a) G’ of pure PDMS and G’ of  20 v. % TiO2/PDMS 
without pre-alignement (E=0kV/mm) and with pre-alignement at E=1.5 kV/mm AC electric 
field strength (νac=10 Hz), (b) G” of pure PDMS and G” of  20 v. % TiO2/PDMS with and 
without pre-alignement, (c) ΔG’=G’E=1.5kV/mm- G’E=0 and ΔG”= G”E=1.5kV/mm- G”E=0 during cross-
linking of 20 v.% TiO2/PDMS, (d) variation of G’ and G” of the TiO2-Acac/PDMS ERE after the 
end of cross-linking (at E= 0 kV/mm) versus time as the sample was cooled down (linear 
ramp of temperature from 80 to 20°C) and maintained at constante T= 20°C. Shear moduli 
are measured at strain amplitude γ= 0.1 % and ω=100 rad/s and for fig. (a), (b) and (c) the 
temperature was fixed at T=80°C.  
 

particles and in the second one, TiO2-Acac particles were randomly distributed in PDMS pre-

polymers without pre-alignment during crosslinking. In the third one an AC electric field 

strength of 1.5 kV/mm with a frequency of 10 Hz was applied to pre-align the particles in 

PDMS precursors before starting polymerization and was maintained during the entire cross-

linking reaction time. The use of an AC electric field was deliberately chosen to prevent the 

electrophoretic transport towards electrodes (phase separation resulting from the accumulation 

1E+3

1E+4

1E+5

1E+6

1E+7

0E+0 2E+3 4E+3 6E+3 8E+3

G' (Pa)

t (s)

Pure PDMS (E=0)

20 v.% TiO2/PDMS
(E=0)
20 v.% TiO2/PDMS
(E=1.5kV/mm)

(a)

1E+3

1E+4

1E+5

1E+6

1E+7

0E+0 2E+3 4E+3 6E+3 8E+3

G" (Pa)

t (s)

Pure PDMS (E=0)

20 v.% TiO2/PDMS (E=0)

20 v.% TiO2/PDMS
(E=1.5kV/mm)

(b)

1E+3

1E+4

1E+5

1E+6

0E+0 4E+3 8E+3

D
G

' ,
 D

G
" 

(P
a)

t (s)

20 v.% TiO2-Acac/PDMS
(80°C)

G'(1.5kV/mm) - G'(0)

G"(1.5kV/mm) - G"(0)

(c)

0

20

40

60

80

100

1E+5

1E+6

1E+7

0E+0 1E+3 2E+3 3E+3

T (°C)
G' , G" 

(Pa)

t (s)

20 v.% TiO2-Acac/PDMS

G' G" T°

(d)



of the particles on the electrode surfaces) that may occurred by applying a DC electric field in 

the first step of crosslinking process (where the dispersion is still fluid). Figures 3 (a) and 3 

(b) show that both G’ and G” of pure PDMS increase from a few kPa to their equilibrium 

values (G’=0.90 MPa and G”= 87 kPa) for t= 1260 s. However in the presence of 20 v. % 

TiO2-Acac filler in reacting PDMS pre-polymer (without pre-alignment), the cross-linking 

rate was slowed significantly with G’ and G” (of 20 v. % TiO2-Acac/PDMS) reaching 

equilibrium after 3300s. We assumed that the addition of TiO2-Acac filler caused the 

reduction of the activity of platinum catalyst complex and then the reduction of the cross-

linking rate.  After reaching the equilibrium, we observed no significant difference in the 

storage moduli G’ of both pure PDMS and 20 v. % TiO2-Acac/PDMS, while additional 

energy dissipation was observed in TiO2-Acac/PDMS network (Figure 3 (b)) where its loss 

modulus G” was about 4.8 time higher than that of pure PDMS. Figure 3 (a) and 3 (b) show a 

comparison of the cross-linking kinetics between TiO2-Acac/PDMS without an applied 

electric field and pre-aligned TiO2-Acac/PDMS with an applied electric field.    With an 

applied AC electric field (E=1.5 kV/mm and ν=10 Hz) the nominal ER response of the TiO2-

Acac/PDMS in its fluid phase (before starting cross-linking at t=0 s) was about G’=0.50 MPa 

and G”=0.30 MPa; then both G’ and G” were increased during the crosslinking time until 

reaching their equilibrium values (G’ = 1.04 MPa and G” = 0.486 MPa) at t=3300 s. 

However, before reaching the equilibrium, the increase on G’ and G” under the applied 

electric field was less pronounced than that without pre-alignment or in other words we did 

not have the addition of the part of modulus induced by the electric field (at t = 0) and the one 

given by the polymerization of the PDMS network. This behaviour can be easily seen in 

Figure 3 (c) where the relative change during time, ΔG’=G’E=1.5kV/mm- G’E=0 and ΔG”= 

G”E=1.5kV/mm- G”E=0, was decreased exponentially until reaching the equilibrium values 

ΔG’=0.140 MPa and ΔG”=0.0660 MPa. This decrease of ΔG’ and ΔG” may be attributed to 

the moderate value of the applied AC electric field (Eac=1.5 kV/mm at10 Hz), which does not  



 

Figure 4: Evolution of the current during cross-linking at constant T=80 °C under rheological 
monitoring of the TiO2-Acac/PDMS ER with pre-alignment under an applied AC amplitude 
E=1.5 kV/mm and νac=10 Hz. 
 

prevent the particles from moving during the polymerization stage, thus reducing the 

electrostatic forces. As shown in Figure 4, the limited amplitude of the applied AC electric 

field was due to the high conduction of the sample at 80 °C in the first stages of crosslinking 

where the sample remained still fluid or partially cross-linked preventing the application of 

high electric field strength. The equilibrium values of ΔG’ and ΔG” were reached at the same 

time (t~3300 s) as the electric current of the sample tends to a lower limit of 7 µA. After the 

end of polymerisation, the sample was  cooled down from 80 °C to 20 °C, and we measured 

G’(0) and G”(0) at the constant temperature of 20 °C during several minutes to ensure that 

both G’(0) and G”(0) reached their stable values (Figure 3 (d)). We noticed that by cooling 

down the sample to 20 °C, G’(0) and G”(0) were increased from respectively 0.90 MPa and 

0.066 MPa to reach 1.50 MPa and 0.70 MPa. After reaching the stable values of G’(0) and 

G”(0) at 20 °C, the resulting elastomers were characterized by FT-IR spectroscopy to 

monitore the cross-linking reaction. the FT-IR spectra of both TiO2-Acac/PDMS and pure 

PDMS elastomers showed that the characteristic absorption peaks of the Si-H groups (that are 

present in the FT-IR spectra of cross-linking pre-polymer) disappear completely confirming 

the total consummation of the Si-H groups by hydrosilylation and hence, the relatively high 

density of the obtained elastomer network with G’(0) =1.5 MPa (more details about FT-IR 

characterization of samples are available in  electronic supplementary information).  
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Table 1: dielectric properties measured at 20 °C 

 PDMS matrix TiO2 Particles 

εr 2.7  * 120 

σ (S.m-1) 1 10-13  * 2.50 10-7  
* Data from provider. 

In subsequent experiments, the viscoelastic properties were measured at a fixed 

temperature of 20 °C, for different values of DC electric field strength, electric field 

frequency and oscillatory shear strain magnitude. The dielectric properties ( conductivity and 

relative permittivity) of both TiO2 particles and crosslinked matrix were given at the same 

temperature of 20 °C and are shown in Table 1. 

3-b The DC Electric field-dependency of electrorheological response of the TiO2-Acac 

/PDMS ERE: 

Shear moduli (G’ and G”) were measured under shear strain magnitude, γ=0.1 % and 

ω=100 rad/s, as a function of the applied DC electric field strength. The experiments 

consisted of applying suddenly a DC electric field and maintaining it during 270 s before 

turning off the field; the change of the moduli was recorded during this field pulse. The effect 

of the field on moduli under various DC electric field strengths was reported in Figure 5. We 

observed in parts (a) and (b) an instantaneous increase of G’ and G” when the DC electric 

field was applied. As shown in Figure 5 (c), where the dash-dotted curve corresponds to a 

linear behaviour, the relative change in elastic modulus [ΔG’=G'(E)-G'(0)] was nearly 

proportional to the applied DC electric field Edc and not to the quadratic law (Edc)
2 as it should 

be the case for linear electrostatics. J. N. Foulc et al. (1994) attributed this deviation from 

linear electrostatics to the fact that, under DC voltage, the conductivity of the matrix became 

field-dependent and was dramatically increased when a certain local field strength Em was 

exceeded; then the attraction force Felec between particles and the storage modulus 

enhancement G’elec at a small strain magnitude became proportional to Edc.
11,13,14  In our case, 

from the experimental results, we found that ΔG’∝ 𝐸𝑎
1.10 (Figure 5 (c)). A similar exponent  



  

    

Figure 5: the DC electric field dependence of the storage modulus and loss modulus by 
applying the switching electric fields of different values; (a) variation of G’ (b) variation of G” 
(c) the relative change in elastic modulus: diamond: experimental values, blue and red lines: 
calculated ΔG’ using eq. (4) for conductivity ratios Γσ =1.4 106 and Γσ = 109 respectively, dash-

dotted curve corresponds to ΔG’∝ Edc
1.1, (d) variation of the current as a function of the 

applied electric field; diamond: experimental values, red line: calculated current using 
equation (3) for Γσ =1.4 106 (inset the variation of the current as a function of application 
time of  a constant electric field for the different applied Edc). 

 

of attraction force dependence on the electric field was predicted by Gonon et al. (1999) at a 

high applied field where the saturation regime was reached and they found that Felec∝ 𝐸𝑑𝑐
1.12.11 

However Figure 5 (a) shows a difference in the measured ΔG’ between its value just after the 

application of the field at t=t0 (that we call ΔG’min) and after t=270 s of electric field induction 

(that we call ΔG’max); in particular when the DC applied electric field strength became strong. 

This evolution during the time of application of the field could not be attributed to the current 

variation because, as shown in the inset (d) of Figure 5, the current was practically 
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unchanged during this time even at high applied electric field strength. The more likely 

explanation is the existence of a slow rearrangement of the particles which get closer from 

each other, then increasing the moduli. Theoretical estimation of the variation of the current 

and the attraction force as a function of the applied electric field has been given in the 

literature using the conduction model. 14, 15 In this model the authors considered, for the case 

where the ratio of the conductivities Γσ=σP/σM >>1, that the electrical conduction in the 

interparticle gap can be separated into two zones for nearly touching particles (see Figure 6). 

The first one, dominated by the conductivity σP of the particles; had a radius δ. The second 

one was the outer zone (x> δ) where authors considered that the sphere surfaces are 

equipotential and that, at a high applied electric field, the conductivity of the matrix became 

field-dependent. The radius δ was determined by equating Cp=CM where Cp and CM are 

respectively the conductance associated with these two zones: x< δ and x> δ.  

 

Figure 6: Schematic view showing the electrical conduction zones and notations used in the 
conduction model. 

 

Figure 7: Experimental measurement of the conductivity; circle: σP= σpellet/ Φv (Φv=0.44), 
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triangle: suspension TiO2-Acac/ PDMS ERF Φv=0.20 and diamond: TiO2-Acac/PDMS ERE 
Φv=0.21. 

In this model the radius δ was practically proportional to 𝐸𝑑𝑐
0.5  but decreased with the 

conductivity ratio as 𝛿 ∝ (𝑙𝑛𝛤𝜎)
−1.  

The attraction force between two nearest particles was expressed as: 

𝐹𝑒𝑙𝑒𝑐 = 4𝜋𝑎2𝜀𝑀𝐸𝑑𝑐
2 (𝑎 𝛿⁄ )

2

 (1) 

In equation (1), the attraction force increases by decreasing δ and therefore by increasing 

Γσ.  

Using the conduction model, the dependence between the applied electric field Edc and 

the current IP passing through a single chain of aligned particles was derived in the case of 

near touching particles and was expressed as: 15,16 

𝐼𝑃 = 4𝜋𝑎𝜎𝑃(2𝑎𝐸𝑑𝑐)
2√

𝜀𝑀
𝐹𝑒𝑙𝑒𝑐
⁄   (2)    

The total current I passing through all the chains was expressed as: 

𝐼 = 𝑁𝐶ℎ𝑎𝑖𝑛𝑠𝐼𝑃 =
3

2
𝜙 (

𝑅

2𝑎
)
2

𝐼𝑃  (3)   

where ϕ is the particle volume fraction and R is the radius of the plate geometry used on the 

rheometer (R=12.5 10-3 m). 

Inserting (1) and (2) into equation (3) we found that 𝐼 ∝
𝐸𝑑𝑐
2

√𝐹𝑒𝑙𝑒𝑐
∝ 𝐸𝑑𝑐

1.5.15,16  Figure 5 (d) 

shows a comparison between the experimental and calculated results using equation (3) for 

the current passing through the sample. The best fit was obtained for a conductivity ratio Γσ= 

1.4 106 giving σP=1.4 10-7 S.m-1. The conductivity of TiO2/Acac was deduced from the 

measurement of the conductivity σeff of a pellet of TiO2 having a volume fraction Φv=0.44. 

We assumed that σP= σeff/ Φv. The frequency dependence of σP as well as the conductivity of 

the suspension before and after polymerization is represented in Figure 7. We noticed in 

particular that, as expected, the conductivity was strongly decreased in the elastomer but that 



the frequency dependency is quite similar in the liquid phase and in the elastomer. The 

experimental conductivity ratio at a low frequency was then equal to Γσ =2.5 106 which is not 

so far from the one 1.4 106 deduced from the fit of the model, taking into account the 

uncertainty due to the approximation σP= σeff/ Φv. The relative change in the storage modulus 

can be obtained as follow:13  

∆𝐺′ =
3

2
𝜙

1

𝜋𝑎2
𝐹𝑒𝑙𝑒𝑐

(1+𝛾2)
   (4) 

The shear strain  appearing in equation (4) can be neglected in our case. Experimental 

results of ΔG’ versus the DC applied electric field are compared with those calculated by 

inserting equation (1) into (4). Figure 5 (c) shows that both experimental and computed 

results had practically the same dependence on the electric field where ΔG’∝ 𝐸𝑑𝑐
1.1. However 

theoretical estimation of ΔG’ is lower by about two orders of magnitude compared to our 

experimental results even if the conductivity ratio Γσ was increased to 109 (Figure 5(c)).  This 

high value of ΔG’ observed on nanoparticles coated with molecules of high dipole moment 

could come from the variation of the force at very short separation. In the approach leading to 

Equation (4) the change of force with the separation distance dF/ds is not considered since 

only the projection of the constant force near contact on the shear direction is taken into 

account. The short range force should also include the Van der Waals interaction and likely 

interactions between dipoles adsorbed on the surface of the particles. This is beyond the scope 

of this paper but certainly worth being explored. 

As shown in Figure 5 (a) or 5 (c), the relative change in storage modulus (ΔG’=G'(E)-

G'(0)) of TiO2-Acac/PDMS ERE exhibited high values when compared with those of other 

ER Elastomers that have been investigated before (Table 2). For example, for a DC applied 

electric field of 2 kV/mm, oscillatory shear strain γ=0.1 % and ω=100 rad/s, TiO2-

Acac/PDMS ERE response reached the ΔG’ value up to 0.5 MPa. This high performance of 

TiO2-Acac/PDMS ERE was attributed to the particular morphology of the synthesized TiO2  



Table 2: Relevant recently published studies on the viscoelastic properties of the ERE under a 

DC applied electric field. 

ERE sample Edc ϒ(%); ω(rad/s) G’(0)(KPa) ΔG’ (kPa) Γσ Γε T°(K) Ref. 

TiO2-Acac/PDMS 50 wt.% 2 kV/mm 0.1; 100 ~1500 ~500 ~2.50 106 ~44 293 This work 

PANI/PDMS 30 wt.% 2 kV/mm 0.1; 100 ~30 ~110 - - - 22 

PbTiO3/AR71 21.30 wt. % 2 kV/mm 0.1; 100 ~45 75-85 ~4.39 105* ~3.80 103* 300 26 

Starch/Transformer oil/ silicone 
rubber (5/47.5/47.5 wt. %) 

0.6 kV/mm 0.05; 6.280 ~20 81.7 - - 293 27 

Starch/silicone oil/silicone 
rubber (10/45/45 wt. %) 

0.6 kV/mm 0.05; 6.280 ~37.21 90.8 - - 293 28 

Polythiophene/polyisoprene 20 
wt. % 

2 kV/mm 1; 1 ~19.45 ~21.40 ~3.67 - 300 29 

Pb(Zr0.5,Ti0.5)O3/acrylic rubber 2 kV/mm 0.1; 1 ~ 18.80 ~11.02 ~1.92 105*  ~1.65103* 300 30 

Polydiphenylamine/poly(styrene
-block-isoprene-block-styrene) 
20 v. % 

2 kV/mm 0.1; 1 ~ 88.77 ~123.32 ~2.26 1013 - 300 31 

Poly(p-phenylene)/ acrylic 
elastomer 30 v. % 

2 kV/mm 0.1; 1 110.99 ~107.80 ~2.25 106 - 300 32 

Cellulose/BMIMCl 13 wt. % gel 1 kV/mm 0.1; 1 172.22 248 - - 303 33 

* The conductivity and relative permittivity ratios are measured at 1 kHz. 

- Data are not provided by the authors. 

particles (mesoporous aggregates with a high specific area of 295 m2/g formed from 

nanosized particles) and to the good affinity between TiO2 surface and acetylacetone allowing 

the adsorption of 1 molecule per nm2 of Acac dipolar molecules on the TiO2 surface with 

practically no Acac remaining free in the insulating matrix.42 If we considered the relative 

change of modulus, defined as ΔG’/G’(0)(%)=100(G'(E)-G'(0))/G’(0), its value remained 

modest (33% as shown in Table 2 for 2 kV/mm, γ=0.1%) but it was just due to the high 

intrinsic modulus of the PDMS matrix obtained using the RTV141 reacting pre-polymers with 

a molar stoichiometry of groups, Si-H /Si-vinyl close to 1.  The intrinsic elasticity of the 

PDMS matrix can be easily decreased by adding an adequate molecular agent (trimethyl 

(vinyl) silane for instance) to neutralize some of the Si-H groups and to reduce Si-H/Si-Vinyl 

molar stoichiometry. In this case the elastic modulus of the matrix will decrease whereas the 

effect of the field will remain constant, so the storage modulus sensitivity (ΔG’/G’(0)) can be 

strongly modulated depending on the needs of the applications. In our experiment, the relative 

change ΔG’ of TiO2-Acac/PDMS at its fluid phase (before starting cross-linking) was about 

0.70 MPa by the application of electric field strength of 2 kV/mm and after the end of the 



cross-linking reaction this value was decreased to 0.5 MPa at the same applied electric field. 

If the matrix is softer, then we expect that ΔG’ of TiO2-Acac/PDMS in its elastomeric phase 

will increase to be closer to that of TiO2-Acac/PDMS in its fluidic phase.  

3-c Electric field frequency dependency of the electrorheological response of TiO2-

Acac/PDMS ERE: 

Experiments were carried out to measure G’ and G” of TiO2-Acac/PDMS ERE, under 

shear strain magnitude γ=0.1 % and ω=100 rad/s, depending on the electric field frequency. In 

Figure 8 we show the increase of modulus obtained by applying an electric field strength E=2 

kV/mm for 270 s with different frequencies  on the crosslinked TiO2-Acac/PDMS ERE. 

Figures 8 (a) and (b) show again a large increase of the storage and loss moduli when the AC 

field was turned on at a value of 2 kV/mm and different frequencies nevertheless it was less 

important than the value obtained in the DC field and it continuously decreased with 

frequency. The dependence of mechanical properties on electric field frequency can be 

determined by giving the variation of the attractive force as a function of frequency. In the 

case of nearly touching particles and Γσ=σP/σM > Γε=εP/εM, the attraction force can be 

expressed as:10,13 

𝐹𝑒𝑙𝑒𝑐 = 12𝜋𝑎2𝜀𝑀|𝛽
∗|2exp⁡(2|𝑅𝑒(𝛽∗)|32)𝐸0

2         (5)  

where     |𝛽∗|2  and |𝑅𝑒(𝛽∗)| depend on the dielectric properties of the particles and the 

matrix and vary with frequency as: 

|𝛽∗|2 =

(𝜎𝑝−𝜎𝑀)
2

𝜔2𝜀0
2 +(𝜀𝑟

𝑃−𝜀𝑟
𝑀)

2

(𝜎𝑝+2𝜎𝑀)
2

𝜔2𝜀0
2 +(𝜀𝑟

𝑃+2𝜀𝑟
𝑀)

2
⁡      (6) 

and  |𝑅𝑒(𝛽∗)| =
𝜔2𝜀0

2(𝜀𝑟
𝑃−𝜀𝑟

𝑀)(𝜀𝑟
𝑃+2𝜀𝑟

𝑀)+(𝜎𝑝−𝜎𝑀)(𝜎𝑝+2𝜎𝑀)

𝜔2𝜀0
2⁡(𝜀𝑟

𝑃+2𝜀𝑟
𝑀)

2
+(𝜎𝑝+2𝜎𝑀)

2    (7)   

Therefore, the relative change in storage modulus can be calculated by inserting the 

expression of Felec given in equation (5) into equation (4). Using these expressions, the authors  



  

   

Figure 8: the applied electric field frequency dependence of the storage modulus and loss 
modulus after switching on the electric field; (a) the time dependance of G’ for different 
electric field frequencies, (b) the time dependance of G” for different electric field 
frequencies, (c) the relative change in the elastic modulus versus the applied electric field 

frequency (triangles: experimental results; solid line: theory with s=2.5 106; dashed line: 
theoretical results multiplied by 102, (d) the corresponding electric field current versus 
electric field frequency; inset: the variation of the current during field application  for the 
different  electric field frequencies. 
 
found that the attractive force and then the elastic modulus had a higher value at DC and very 

low frequencies, but became frequency dependent and decreased when electric field 

frequency was increased beyond a critical value. They demonstrated that the parameters 

determining this critical frequency limit were the conductivity ratio Γσ and the dielectric 

permittivity ratio Γε. They also found that the calculated current was independent of the 

electric field frequency when the frequency was smaller than a critical value, but became a 

linear function of the frequency beyond the critical value. For Γσ= 106 >> Γε=5 the authors 

found that the critical value of the frequency was very low and was less than 6.7 10-4 Hz. In 
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our case Γσ~2.5 106 >> Γε~ 44, we observed the decay of G’ and ΔG’ (Figure 8 (a) and (c)) 

by increasing the frequency and a linear behaviour of the current I versus frequency (Figure 8 

(d)). We noticed that the decrease of ΔG’ versus frequency around 10 Hz was well 

reproduced by the model as shown in Figure 8 (c), but, as in the DC case, it underestimated ( 

in the tested  electric field frequency range) our experimental results by two orders of 

magnitude. Because of the limit of our instrument sensitivity at very low frequencies and 

because of the high conduction of the sample at high frequencies we were unable to produce 

much more experimental measurement points to investigate the transition regimes that were 

observed theoretically and therefore testing the validity of the model for simulating our 

experimental measurements over a wide range of frequencies.   

In summary we found that the electrorheological behaviour of TiO2-Acac/PDMS ERE 

was governed by the conductivity mismatch; with, for the TiO2-Acac/PDMS ERE, a higher 

ER response by applying a DC electric field than an AC one. 

3-d Strain dependency of the electrorheological response of the TiO2-Acac/PDMS ERE: 

The linear viscoelastic regime of  the TiO2-Acac/PDMS ERE was investigated by 

measuring ΔG’ and ΔG” as a function of oscillatory shear strain magnitude (γ) at constante 

shear frequency ωγ=100 rad/s. We carried out measurements without an electric field, with a  

2.5 kV/mm DC and 2 kV/mm AC electric field (nE=10 Hz). In Figure 9 we can see that with 

or without  an applied electric field, the TiO2-Acac /PDMS ERE  had a small linear regim for 

γ≤0.1 %, which was independent of  DC or AC modes but was dependent on the electric field 

strength. This small linear regime could be attributed  to the infinitesimal deformation of 

columns of aligned particles locked in the cross-linked matrix that influenced the viscoelastic 

properties.22 We noticed also (in Figure 9) that, increasing the electric field strength from 2 to 

2.5 kV/mm, the linear regime was disappeared. This evolution of nonlinearity by increasing 

the electric field strength is likely related to the increase of conductivity: the size of the zone 

r<δ (cf fig.(6)) extends with the electric field and makes the modulus sensitive to very small 



strain. 

 

Figure 9: Strain dependence of ΔG’: (closed diamond) Edc=2.5 kV/mm, (closed circle) Eac=2 

kV/mm (n=10 Hz), and ΔG”: (stars) Edc=2.5 kV/mm, (plus symbols) Eac=2 kV/mm (n=10 Hz). 
 
4. Conclusion 

ER elastomers have been prepared by suspending TiO2-doped Acac particles in cross-

linkable PDMS oligomers. The particles were aligned by an AC electric field and maintained 

in chain like structure by an in situ polymerization to form anisotropic network. The change 

of the shear modulus was monitored during the polymerization process and its decrease was 

less than 30% indicating that the field induced structure was only slightly disturbed by the 

polymerization process. Electrorheological properties of TiO2-Acac/PDMS ERE were 

investigated experimentally under a DC electric field, AC frequency and shear strain 

magnitude. The results showed that the relative change in elastic modulus (ΔG’) increases 

with the DC applied electric field according to a power law ≈E1.10. this deviation from the 

quadratic law is due to the non linearity in the conductivity of the matrix that affects the field 

distribution and the attraction force between particles. However TiO2-Acac/PDMS ERE 

showed a decrease of ΔG’ with the increasing AC electric field frequency. This viscoelastic 

behaviour, depending on the electric field frequency, was attributed to the high conductivity 

ratio Γσ=σP/σM compared to the permittivity ratio Γε=εP/εM, between TiO2 semiconducting 

particles and PDMS matrix. TiO2-Acac/PDMS ERE exhibited a high value of relative change 
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in the elastic modulus ΔG’ when compared with those of other ER Elastomers that have been 

investigated before; ΔG’ reached 500 kPa under 2 kV/mm of a DC applied electric field at a 

strain γ=0.1 %. Whereas the conductivity behavior can be quite well predicted by the field 

dependence on the conductivity this was not at all the case for the increase of the shear 

modulus where the theory predicted a value which was too small by 2 orders of magnitude; a 

better consideration of short range forces is needed to improve the model. The high ER 

performance of TiO2-doped Acac as an ERE makes it a promising candidate for applications 

by designing an elastomeric blend with controllable matrix hardness. 

Supporting information. Electronic supplementary information (ESI) available: The 

experimental setup for morphological characterization (SEM, TEM, N2 adsorption/desorption 

isotherm, SANS and FT-IR) and dielectric characterization by impedance spectroscopy. See 

DOI: 10.1039/c4tc02535k on www.rsc.org/MaterialsC website. 
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