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Abstract

The mechanical behavior in cross biaxial tensios imaestigated for two metallic sheets, an
aluminium alloy and a dual phase steel. The hetaregus strain field in the central gauge area
of a cruciform specimen was analyzed by digitalgema&orrelation. Minor and major strains
were output along several paths, for a given leaelljust before necking, showing a wide
range of strain states, from uniaxial tension taxlal state. The applied loads along the two
loading directions were also recorded, the gap éetwthe two signals being all the most
important that the material anisotropy was sigatfic Moreover, the strain path ratio, defined
as the ratio of the minor strain over the majoaristr exhibited a sensible non-monotonic
evolution along the transverse direction, compaoeithe rolling direction. Finally, a material
parameter identification process with only biaxaisile test for Bron and Besson anisotropic
yield model was proposed, based on the minimizaifaxperimental and numerical principal

strains along a specified path in the gauge ar¢laeotruciform specimen.
1. Introduction

Sheet metals usually exhibit an orthotropic behakatated to the rolling process. Such an
anisotropy influences the final geometry of deepadr parts, stress level prediction in finite
element simulations as well as the strain at r@ptifithin a phenomenological description of
the mechanical behavior of sheet metals, this phenon is classically represented with

anisotropic yield functions, considering that tihé@ial anisotropy, as determined just at the



elasto-plastic transition, does not evolve withsptastrain. A very large number of anisotropic
yield criteria have already been proposed, e.@]]5Bnd the models tend to become more and
more complex involving more and more material paatems, which leads to a great flexibility
to describe the anisotropic behavior at differdréss and strain states. In this study, a yield
function based on two transformation tensors amndling 16 material parameters was chosen
[5]. However, such yield function with numerous gaeters requires an extensive

experimental database and therefore a complexifidatibn strategy.

A first approach for material parameter identifioat is to consider several
guasi-homogeneous mechanical tests in the expaamgatabase. The frequently used tests
are: uniaxial tension, simple shear, planar tensio biaxial tension obtained by hydraulic
bulging, which are in the following called convemtal tests [6]. They are either considered
homogeneous, leading to an analytical post-treatroEraw data, e.g. uniaxial tension and
simple shear, or at least the post-treatment isddrio a reduced area like in hydraulic bulging.
The identification method is usually based on ajgs either in a direct way or by an inverse
procedure, the yield model parameters for sevegalats obtained from conventional tests;
very often, initial yield stresses and anisotramefficients are considered in the experimental
database [2, 7-11]. However, it was pointed out thae to the dispersion on initial yield
stresses as well as the evolution of anisotroply gfitain, considering only initial values does
not give an accurate description of the mecharbealavior [12]. Moreover, the anisotropic
model should be able to address all the experirhesgalts: initial data and also subsequent
data at least over a given strain range. Some workstigated the identification of material
parameters considering not only the initial valbes also values recorded at higher strains.
Bron and Besson [5] and Zang et al. [13] identifs¥dn and Besson yield model parameters,
for plane stress states, by considering plastisatrapy coefficients as well as the full
strain-stress curves for several conventional .t&sise studies proposed non-constant material

parameters, that depended on the plastic straifi$l.2However, with this method, more



material parameters were introduced. Moreover, eaokientional test corresponds usually to
a unique strain state, i.e. monotonic loading, Hredefore a multi-parameter identification

process requires several conventional tests.

An interesting alternative can consist in perforgidentification process with data from a
heterogeneous test, so that different strain statede obtained with only one specimen. As
the techniques to measure displacement and stialds fhave developed, parameter
identification of mechanical models with the whdieterogeneous strain field has been
performed [16]. Among the different possibilities perform parameter identification from
full-field measurements, one possibility is to dsete element model updating method or
FEMU [17]. It consists of decreasing the gap betwkeite element simulation output and
experiments, by optimizing the material parametéos.example, Guner et al. [18] propose to
use heterogeneous tensile tests to identify treotmopy of an AA6016-T4 sheet described with
the Y1d2000-2D model. The method includes the @btoceasurement of strains on three flat
specimens with varying cross-section and an invpasameter identification scheme, which
minimizes the differences between the numericali&tion strain fields and the experimental
ones. The specimen allows different strain statdg/doen uniaxial tension and plane strain
tension. The equi-biaxial stress state is obtain@h a layer compression test, which is also
included in the experimental databaSeveral parameters of a constitutive model can be
identified at the same time with only one test whian experimental field information is rich
enough [19]. For example, Pottier et al. [20] preguban inverse identification procedure with
out-of-plane displacement and deformation field sne@ament. The sample was designed to
exhibit tension, shear and expansion strain st&asameters (4) of Hill 1948 yield model
written for a plane stress state, together witlapesters of a hardening law (2), were identified
by comparing the experimental and numerical digptaents along three directions as well as
the tool reaction force. However, extracting retgviaformation from inhomogeneous strain

fields is a vast task that necessitates dedicatadegies. Lubineau [21] highlighted that



material parameters may affect differently the namital response depending on the material
point and therefore proposed an automated treafmamtfiltering, of the information.
However, it led to high computational times eveouigh only 2 material parameters were used.
Indeed, the development of such strategies issalifia research work, and their applications
were restricted to a small number of material patans and to virtual materials [22]. The focus
of this work is to consider a large number of matgrarameters identified from experimental

data.

Biaxial tensile test with a cruciform specimen sedmbe also promising to reach different
strain states. Indeed, this test seems particulatdyesting since different strain paths can be
obtained simultaneously with a unique specimenaigamposing different loads or velocity
on two arms [23]. Prates [24] proposed an inversayais methodology to determine the
parameters of Hill 1948 yield criterion with a cifocm specimen. Principal strains along
rolling and transverse directions (RD and TD refipely) from the specimen center were
measured and output. During the identification pes¢ the parameters were adjusted by
minimizing the difference between experimental awdnerical equivalent strain and strain
path ratio, defined as the ratio of the minor straver the major strain. Teaca [25] also
proposed a parameter identification procedure tihdesigned cruciform specimens, which
offered high sensitivity of strain field along tle@ms. To identify the parameters of an
anisotropic yield function [26], strain field alonglling and diagonal directions were
determined experimentally and numerically. During identification process, two parameters
of the yield model were adjusted by minimizing tthéerence between experimental and
numerical strain field along rolling direction. Thremaining parameters were determined from

uniaxial tensile test data. Several mechanicas teste still required.

By itself, biaxial tension of cruciform specimerst@esented a continuous interest among the

mechanical community. Several mechanical desigre wested to reach the biaxial strain or



stress state, e.g. using two tensile loading sys{@T|, or a dedicated set-up installed on a
tensile machine with jointed arms [28], or a tramngfation of the vertical displacement of the
machine into horizontal ones [29]. Specific devioese also designed using servo-hydraulic
actuators [30, 31]. Signals recorded during thiestiessthe loads in the two orthogonal directions
and the strains, either with an extensometer [32[igital image correlation [33]. The
mechanical design of the cruciform specimen is riteen difficulty and clearly the main
limitation for an extensive use of cruciform biaxnsion. A lot of different shapes have been
proposed, leading to a difficult comparison of tasults; they can be classified into three main
categories [34], i.e. cut type, reduced sectiom tgpd slot type specimen. The main aim is to
reduce the strain in the arms and to increasettam sn the central area, and in some case to
promote rupture in the central area, e.g. [35pfeurvey of the different proposed geometries.
It should also be emphasized that the choice ofjfenetry depends on the application, like
measure of elasto-plastic yield stresses undeerdiit strain states [9, 10, 36-39] within a

limited strain range or characterization of formlimgit curves up to very high strains [40].

According to the literature survey presented abokrass biaxial tension combined with strain
field measure is a new technique applied to thetifieation of material parameters for metallic
sheets materials, though already used for otherstyd materials. Indeed, a similar test and
sample geometry were previously used for compofites42] and elastomers [43]. It can be
emphasized that in these studies, a maximum of rdnpeters were identified from the
information of the biaxial test. Up to now and teetauthors’ knowledge, there was no
published work that dealt with the parameter ideatiion of a complex yield model involving

a large number of parameters (i.e. above 10) wi#tingle heterogeneous test.

In the present article, a cross biaxial tensilé wess used to identify the parameters of Bron
and Besson anisotropic yield model for AA5086 arRPB0 sheets. Experimental results on

load and strain fields showed that these two natexhibit an anisotropy that is more



significant for the aluminium alloy than for theest. The strain fields in the central area of the
cruciform specimen for both materials showed addrgterogeneity, both in magnitude and
strain path ratio. Principal strains were outpuseveral directions, i.e. diagonal, longitudinal
and transverse, and it was shown a specific ewolutif the strain path ratio along the
longitudinal direction, all the more important thia¢ material anisotropy is significant. Finally,
Bron and Besson yield model parameter were idendtibased on an inverse optimization
method that involves a numerical simulation of iexial test and a minimization of the gap
between experimental and numerical values of theipal strains in the central area. Out of
comparison’s sake, and in order to highlight thesgeity of the numerical strain field to the
anisotropy model, numerical simulations using HBI48 yield model were also performed.
Hence, the reliability of the proposed identifioatimethod with only a cross-biaxial tensile test

was established.
2. Experiments

21 Material

Two different materials were used in this study,aduminium alloy AA5086 provided in
sheets of thickness 2 mm and dual phase steel DB9&€ts of thickness 1.75 mm. Both
materials were characterized in previous works maxial tension [35, 44], and their
mechanical properties are given in Table 1. Itloarseen that the aluminium alloy exhibits a

significant normal anisotropy, as evidenced by amrage plastic anisotropy coefficient,
r=(r, +2r,+r1,)/ 4, well below unity whereas DP980 exhibits a valleser to the isotropic
value. Both materials show a weak in-plane aniggtro as evidenced by
|Ar|=(r, = 2r,5+1)/2 , where r, , 1, and r, are the three plastic anisotropic

coefficients defined by the ratio of width plasticain rate to normal plastic strain rate. Finally,

the ultimate tensile strengtR,, of DP980 is 3.6 times higher than the one for AB&GO



Table 1 Mechanical propertiesof AA5086 and DP980

Ry 0.2% (MPa)
r R (MPa)

A1
0°  45°  90°

r.0 r.45 r.90

AA5086 0.39 047 04 0.4370.015 146 131 130 270

DP980 0.63 0.95 0.84 0.8150.05 701 690 694 973

2.2 Biaxial tensile machine

The biaxial device, available in the Laboratoryefil and Mechanical Engineering (LGCGM)
of National Institute of Applied Sciences (INSA)Re&nnes, is displayed in Fig. The apparatus
is equipped with four hydraulic cylinders and acalators, which allow static and dynamic tests
for cruciform specimen, though in this study onlyagi-static tests were performed. The
maximum load capacity for each arm is 50 kN andctfiender speed can be cumulated up to 2
m/s. To impose different strain paths to the biabgasile specimen, different velocities along the

two arms can be applied.

The specimen is settled in the center of the macHinis connected to the load cell via a
bi-articulated link (Fig. 2), leading to a pivothd@refore, there is no transverse load appliedeo th

sample, only loads along the direction of the arms.

The displacement sensors are located at the faareitites of the machine and therefore the real
displacements at the sample arms are not knowrraetyr A high-speed digital camera and a
lighting system are installed above the speciméake synchronized pictures of the specimen and
to record the material point displacements througjtiee biaxial tensile process. In order to have a

high accuracy, only the central square area ottheiform specimen was considered.
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Fig. 1 Schematic representation of the biaxial tensile machine
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Fig. 2 Grip system to clamp the specimen

2.3 Cruciform specimen

Concerning the cruciform specimen shape, ther® isaimalized geometry and many different
shapes have been proposed in the literature [4@]nTain drawback of the cruciform specimen shape

is the localization of the deformation between &adpacent arms leading to small levels of strain in



the central area at rupture. The existing shapedbealassified into two main types: (i) the cyiay
with radius or notches between two adjacent arfis3f, 37] and possibly with slots in the arms to
reduce the strain localization at the corner oftihe arms without reduction of the thickness. This
type of cruciform specimen shape is the easiesttonmanufacture and is usually chosen to
characterize elastic properties or initial yieldhtmurs where low strain levels are required; (g t
second type is the reduced section type wherehtbleness sheet is reduced in the central parteof th
specimen in order to ensure a localization of #femnation in this zone. Slots in the arms or netch
can be also added to this type. With these specgaemetries, larger strain levels can be reached in
the central zone before rupture occurs and harddsehavior or forming limits curves [40] can be
characterized.

In this work, since large plastic strains are remtassarily required to capture initial yield comgu
a simple specimen shape, a cut type one, withiagad 5 mm between two arms has been chosen
(Fig. 3). This specimen has no thickness redudtiats central area, so it can be used whatever the

sheet thickness.

Détail B

Fig. 3 Geometry of the cruciform specimen. Dimensions are given in mm



24 Experimental parameters

Experiments on the servo-hydraulic device have Ipegformed with a constant velocity ratio
v, /v, =1imposed on the four arms of the cruciform specimeith v, =v =1 mm/s the

velocities imposed on the two arms, cf. Fig. 4 tfa frame definition. x and y are along the rglin

and transverse directions respectively.

Fig. 4 shows the image of the cruciform specimeefere (initial state) and after the biaxial
tensile tests for both materials: AA5086 and DP9I84o tests were performed for each material,
in order to assess the reproducibility, specimand.2 are aluminium samples whereas specimen

3 and 4 refer to DP980 samples. Rupture of the Esngecurred at time = 6.048 < for AA5086
(specimen 1) and=3.240 < for DP980 (specimen 3). The rupture took placeglthe rolling

direction for both materials, at the smallest sgcalong one of the arm. For DP980, a second
rupture was also obtained along y direction, safter the rupture along x, the displacements were

still imposed up to a fixed value.

L Initial state

Specimen 1 . ]
(AA5086)

Fig. 4 Cruciform specimens before and after biaxial tensiletest. Dimensions of the
samplesaregiven in Fig. 3

Fig. 5 and Fig. 6 show the evolution of the loadhwime during the testsf, andF, , for

AA5086 and DP980 respectively. It can be seendhatto the material anisotropy, the force along

rolling direction is about 5% higher than the otang transverse direction for AA5086, while for

10



DP980, the force along the transverse directidngker, by about 4.5%, than the force along the
rolling direction, before the necking. These reswte consistent with the stress-strain data

obtained in uniaxial tension in rolling and transedirections for these materials [33, 44].

Moreover, due to the material and the thicknessagimum load of 12 kN was reached for
AA5086 compared to 45 kN for DP980. Also there ex&slight time shift between the loadings
of the arms along two directions, in particular AA5086 (Fig. 5). For DP980, the force along
rolling direction exhibits a final decrease, beftire rupture takes place, corresponding to necking
(Fig. 6). While for the transverse direction, tii# Bicreasing force indicates that the necking di

not occur along this arm.
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Fig. 5 Evolution of load with time along two arms for AA5086 specimens
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Fig. 6 Evolution of load with time along two arms for DP980 specimens

Strain fidld measur ement

31 Central area

Images of the central area of the cruciform speninvere recorded with a high resolution
camera. A frequency of 250 images/s is chosen. i@emsg the adopted image size and the
dimensions of the filmed zone, a resolution of 9.44m/pixel is obtained. The DIC software
CORRELA 2D was used to compute the in-plane sttamsor. Fig. 7 shows the different
parameters of the calculation strain model usedirment work. L and H define the subset size, D
and E denote the distance between two sequenlbiaétiin the X and Y direction. By setting the
interval value N, in-plane strains are calculatetha center of selected subsets, in grey color in
Fig.7, from displacements of subsets. In this studgnd H were both set to 32 pixels and in order
to obtain more strain points with DIC method, D &dere both set to 16 pixels. To smooth the
strain values, the interval value was set to 4hWhis configuration, the correlation results can

provide the in-plane initial and current positi@ml the strains for each subset at different times.

12



Strain caﬁlculation point
/

Correlation
subset .

Fig. 7 Subset dimensions and calculation strain model used in DIC technique

Fig. 8 shows an image of a specimen in the irstatle. The central square area 1 (highlighted in
blue) of approximately 25x25 nfrvas selected for two specimens, leading to a tataiber of

about 1600 calculation points. Major strain, minor straine, and the strain path ratio, defined
by the ratioe, /¢, , were output at these points and analyzed jusreéetipture took place, at time

t = 6.0 < for AA5086 andt = 3.240 < for DP980.

Area 1

Area 2

Fig. 8 Analysisareasin the central part of the cruciform specimen and
visualization of specified paths. 1, 2, 3, 4 arethe diagonal profiles, x_1, x_2the
longitudinal onesandy_1,y 2thetransverseones. Theinner blue square hasaside
of 25 mm
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The strain field in the central area is presentedFig. 9 for both specimens. Similar
distributions for the two specimens have been ofeserHowever, the maximum strain level of
DP980 is much lower than AA5086. Fig. 9(a) andgbdws the major strain distribution. The
strain increases from the center to the edge withwast value in the center around 0.024 for
AA5086 and 0.01 for DP980, up to the largest valugbout 0.11 and 0.036 respectively. Fig. 9(c)
and (d) gives the minor strain distribution. It teases from about 0.024 for AA5086 and 0.0098
for DP980 at the center down to around -0.019 @D~ at the edge, respectively. Fig. 9(e) and
(f) presents the strain path ratio distributionefiéhis nearly an equi-biaxial strain state (abc2® 0
and 0.95 respectively) for both specimens in th@raéarea. It then changes gradually along the
diagonal direction to nearly uniaxial tensile gtratate (about -0.17 for both specimens) near the
corner. The designed cruciform specimen preseatefibre different levels of strain in the central
gauge area, which is an interesting feature tcskd in the material parameter identification. it ca
be emphasized that a rather low maximum strain washed for the biaxial stress state
corresponding to the fact that a constant thickmessused. Indeed, higher strains (up to rupture)

were only obtained by reducing locally the thiclksesthe central area [35].
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Fig. 9 Major and minor strainsand strain path ratiosin the central area for
AA5086 [(a), (c), (e)] and DP980 [(b), (d), (f)]

The strain field datag( ,e, ande, /¢, ) was then output along the selected directionsrgin

Fig. 8, in order to have a quantitative view onekelution.

3.2 Principal strains along diagonal profiles

Fig. 10 presents the major and minor strains. Ekaponal direction being at 45° to both RD
and TD, the lengths of these four directions dregual. When comparing the four profiles (1 to 4)

15



for each specimen and whatever the material, htsligcrepancy is recorded near the free edge of
the sample, the maximum relative gap being abo#i ftd the major strain and 5% for the minor
strain. The values are about 0.026 and 0.024 f@08A6 at the center for major and minor strains
respectively, but only 0.01 for both major and mistvains for DP980. About 10% of difference
between the major and minor strains is recordelddrcenter for AA5086 whereas no difference is
noted for DP980, which reflects the stronger anggnt of the aluminium alloy compared to DP

steel.

The major strain then increases with the distarara the center to the edge for both materials.
It reaches up to about 0.11 for AA5086 and 0.034DB980. On the contrary, the minor strain
decreases continuously along the axis. The avewrdge at the corner is about -0.015 for AA5086,
-0.006 for DP980. It can be noted that, for DP380ugh the measured strain level is low, the

dispersion is rather low over the 4 diagonal pesfil

An average value, both for minor and major straivess then calculated over the four profiles.
The evolution of the strain path ratio was figumad with the averaged principal strains and is
presented in Fig. 11. The evolution is quite simitat both materials, with a continuous decrease
of the strain path ratio from the center to the feelge, though some slight differences exist: the
maximum value reached in the center is higher f®O80D than for AA5086, with a sharper
decrease in-between 4 and 16 mm for AA5086 thafisteel. The two curves then converge
toward a same one. It can be clearly seen thatthim state varies from nearly equi-biaxial temsil
strain state (about 0.87 for AA5086 and 0.92 fo®B® in the specimen center to a state (about

-0.15 and -0.17 respectively) between uniaxialiten&0.3) and plane strain tension (0).

16
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Fig. 11 Strain path ratio along diagonal path
3.3 Principal strains along longitudinal and transverse directions

A second square area (area 2, highlighted in purpkg. 8) of approximately 32x32 nfm
(leading to 2500 calculation points) was also gebtbdo output the principal strains along
longitudinal and transverse directions. Rupturéfolace on the arm corresponding to profile x_2

for all specimens.

Fig. 12 presents the major and minor strains ardstrain path ratio along longitudinal and
transverse profiles for AA5086 (Fig. 12(a)) and BB9Fig. 12(b)). Concerning AA5086, the

evolution of the major strain, along the four paths is rather similar up to a@agise of 14 mm

from the center. Between the profiles along rollengd transverse directions, a slight gap is
recorded: the values along rolling direction aréttee higher than the ones along transverse
direction from 4 mm to 12 mm. Values are closedcheother for two profiles corresponding to the
same direction. After 14 mm from the center, tHéetence between each profile becomes more
and more significant since necking has taken pladbe arm along profile x_2 just before the

rupture. The evolution of the minor straip along direction y is slightly higher than the @eng

direction x. It can be seen that a maximum valoe@ktransverse direction is recorded, around 4

mm from the specimen center. Generally speaking, rtinor strain along both directions
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decreases from 0.021 in the center down to arouatdle beginning of the arm.

The obtained values for DP980 are much lower tharmhes for AA5086, ranging from 0.01 in
the center up to a maximum of 0.06. The valuek®ftajor strain along the four profiles are close
to each other in the specimen center and below b2 iHowever, above 12 mm, the difference
between longitudinal and transverse directions im&so more and more significant, due to
necking. Necking is evidenced along the longitubdugction, especially profile x_2 with a high
increase of the strain, whereas a stable increéaskaer rate can be noticed for the other prsfile
Dispersions can be noticed for the minor stramgeithe very low value can be influenced by the
strain measure dispersion. However there is nafgigntly difference between the four profiles.
The minor strain decreases from 0.009 in the cettemn to around 0.003 at the beginning of the

arm.

The strain path ratio for the four profiles is afsesented in Fig. 12. It can be seen that, for
AA5086, the values are close for the two profédesng the same direction. However, there is a
significant gap between rolling and transversedtioas, with an increase of the ratioup to 1 at a
distance of 4 mm from the specimen center, aloagrdnsverse direction. The strain state along
these profiles varies from nearly equi-biaxial tenstrain state to a state of plane strain. It is
unfortunate that the strain path correspondingiiexial tensile strain state could not be captured
in this experiment. In future works, tests shoutdoerformed with a larger camera view both for
the central area and the specimen arms, to enflaeg@easurement area. However, a larger view
will also decrease the accuracy of the strain nreasuthe central gauge area, which can be a

significant drawback due to the low strains measdure

On the contrary, for DP980, it can be seen thasttan path ratio along the two directions are
rather close to each other. And the sensitive aszealong transverse direction recorded for
AA5086 is not noticed for DP980. However, thereaisertain discrepancy, especially for a

distance in-between 4 and 8 mm from the specimateceln this area, the variation range can
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reach 25%. However, the strain state variation eaagimilar to the one of AA5086. Indeed, it
varies from nearly equi-biaxial tensile strain stad a nearly plane strain state. The minimum

value is about 0.07, which remains positive.

34 Principal strains along diagonal paths for DP98O0 far from necking

Strain evolution along longitudinal and tra@se directions was influenced significantly by
necking, in particular for DP steel. Thereforegheck this influence, an analysis at a smaller time
step, far away from necking, was conducted. Thedrsfield in the central gauge areatat2 <
was then analyzed, but only for DP980. The maxinamth minimum principal strains &t 2 s
along four diagonal profiles are presented in E§).Comparing with the strain just before rupture
(Fig. 10(b)), a lower strain level and a more digant discrepancy were recorded. Near the free
edge of the sample, the maximum relative gap is1ab8% for the major strain and 50% for the
minor strain for the four profiles. The differensetween major and minor strains at the center is

about 12%, which is higher than the oné at3.232 < Near the free edge, an average value about

0.02 is obtained for the major strain, while -0.@®4btained for the minor strain.
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35 Discussion

Two main advantages of the biaxial tensile testeha@en evidenced so far: the strain field
exhibits a certain sensitivity to the material atigpy and also a wide range of strain paths can be
investigated. Indeed, considering the evolutiorthaf strain path ratio along longitudinal and
transverse directions, it was shown that a non-ommous evolution occurred in the transverse
direction for AA5086. From the center up to a dis@of 4 mm, the major strain tends to slightly
decrease after the initial value whereas the nstrain increases, leading to a significant increase
of the strain path ratio from 0.8 to 0.95. This@feity was not observed for DP980 and it may
come from the material anisotropy. The origin affsan evolution will be checked later with the

help of numerical simulation.

Secondly, Fig. 14 exhibits the evolution of the onatrain as a function of the minor strain for
several material points along the diagonal directibhis reflects the temporal evolution of the
strain path ratio and it can be seen that a rdthear evolution is imposed during the biaxial
tensile test for points labeled 1, 2, 4 and 5. Bhiggests that the information given by a stralfi
at a fixed time is rich enough and adding otheesrteads to mainly an increase of the strain level
but does not bring other strain path. For pointh& strain path is no longer linear, with a begagni
close to biaxial tension and then an intermedi&i@rs state between biaxial and plane strain
tension. Concerning point 5, located near the édge, the strain state seems more dependent on
the boundary conditions then on the material aropyt as is the case for a uniaxial tension,

because a rather similar slope is noticed forwerhaterials.

Due to the sensitivity to material anisotropy ahd t/ast range of strain paths, a material
parameter identification was developed, considetireyaverage values over the four profiles
along the diagonal direction, which were less semsio the necking occurring before rupture and

exhibit less dispersion.
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4.

Numerical strain field predictions

Bron and Besson anisotropic yield function, asdediato isotropic hardening, was
implemented as a user subroutine in the finite elgmode. Out of comparison’s sake, Hill 1948

yield criterion was also used. The equations o$e¢hgeld criteria are recalled below using the
frame (1,?2%), where the directions correspond to the rollingction (RD), transverse direction

(TD) and normal direction (ND) respectively.

4.1 Material models
4.4.1. Bron and Besson yield model

Bron and Besson proposed a yield function involBgparameters under the form [5]:

o3 T 0

o, k=1,2, are positive coefficients, the sum of which is@do 1.0, are the components of

|

Cauchy stress tensor. Plastic yielding occurs wherts = Y,, wherec is the equivalent stress
and Y, a reference yield stress characteristics of theeriad It should be emphasized thgf is

not equal to the uniaxial yield stress in the ngjldirection.c* are expressed in the form:

bl))%l

SNV
j) 2)

a, b, b, anda' (a* =1 -a') are four isotropic parameters which define thapshof the

by

RRICES

au{g@—i +[st-si
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2P 42

yield surface.

S¢ are the principal values of the transformed stthes&atorssjk defined by:
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wherect are 12 parameters which are related to the anjsptf the material. In plane stress
condition, the anisotropic parameter number redte@&swith cf = ¢ = 1. So there are a total of

13 parameters to be identified. Bron and Bessdd yedel will be called B&B yield model in the

following.

4.4.2. Hill 1948 yield model

Hill 1948 orthotropic yield function is written ithe following form [1]:

Yy :\/F(Gzz'c 33)2+G(G 330 11)2+H(G 170 2) *+2Lo 225"2MG 21'3"2NG 21: (4)

wherey,, denotes the yield function. Plastic yielding oscwheny, =5 =Y,. F,G,H,L,M
and N are material parameters. When the condit®r H = 1is imposed,Y, is the uniaxial
yield stress along the rolling direction. Then,hwitlane stress conditionsf =c,;, =06 ,,=0),
three independent anisotropic parameter& and N have to be identified. In this work, they

were calculated from the anisotropic coefficients.

4.4.3. Strain hardening law

Hardening of the material is modeled with isotropézdening identified from a tensile test in

the rolling direction. From the tensile test datahe rolling direction, and assuming isotropy, the
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equivalent plastic strain was calculated and Cauwsttess versus equivalent plastic strain curve

was fitted. For aluminium alloy AA5086, a Voce etioa given bys, =o + Q(l-exp( -pr)),

with o, =146 MPe¢, Q=217.6 MPi and B =10.€ is adopted. These parameters were
determined from tensile data and were kept congtantughout the study. From the relation

G =Y,, it comes that the hardening law introduced infthiée element code is written as:

5 :w{@,a,q b aﬂc@(o;@(l—exp( ")) (5)

Op

where the first term in the right-hand side pareqf (5) depends only on the stress tensor for
uniaxial tension in RD (only one non-zero compohantmalized by the yield stress in RD and on

the parameter set for the anisotropic yield ciateri

For the steel DP980, the hardening law is descrilyed combined equation based on Swift and

Voce formulations as presented in eq. (6).

G,= a[K(E"ﬂ:O)n +H§p}+(1-a)(cs+Q 1-exp( -Ep)) with ef(%ji (6)

Parameters values are=0.5; K=1600; 5,= 449.2MP¢; H=150MPg; n=0.0¢, Q=500MP¢; B=12C.

4.2 Finite element model of the biaxial tensile test

Finite element (FE) simulations of the biaxial tegtre carried out with the commercial
software ABAQUS, with the implicit solver. The aoisopic behavior of the material was

modeled by Bron and Besson yield function impleradrthrough a user subroutine [13, 33].

The boundary conditions of numerical simulatiorhef biaxial test are shown in Fig. 15. Due

to the symmetry of the problem, only a quarteef $specimen was modeled. The load valges

and F, derived from the experiments were used as inpth@éamumerical simulation and due to
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the symmetryF, /2 andF, /2 were imposed on the two arms. Four node shell eésnwere

used for the mesh. A minimum element size of theshmeas fixed at 1 mm, insuring the
calculation accuracy and also a minimum simulatiome. Influence of the mesh size was
investigated, in particular its influence on thejonand minor strain distributions, and stable
predictions were obtained with the selected mesle. Jomputational time is about ten minutes

(processor i7-640M, 2.8 GHz with 4Go RAM) with teesonditions.

I\?‘:ﬂ

Fig. 15 Numerical model with imposed force

4.3 Methodol ogy of identification process

In inverse approaches, different experimental dtiesthave been successfully used like
displacements [48], strains [49], velocities orcks. Rigid body motions (RBM) strongly affect
the experimental measured displacements. Withitheab tensile test, the cruciform specimen is
loaded by four independent actuators and it is déficult to guarantee a perfect synchronization
between the different axes. The rigid body motmmfuices a slight displacement of the center and
an in-plane rotation of the specimen. Due to thalkdisplacements measured in the center of the
specimen during the test, the part of rigid bodypliicements is not insignificant. This problem is
well known by the community and for instance, tke aof relative displacements is the best way to
compensate the RBM. In our case, it is very difficto calculate precisely the relative

displacements since a slight out of synchronizat@m lead to a small time lag between the two
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axes and the start of loading is not exactly teestor all the material points. Another approach
[50] consists in prescribing the measured boundanglitions to the finite element model and use
relative displacement to formulate the cost-functod thus cancel the influence of RBM. In this
work, displacement fields are sufficiently unnoigedallow a proper strain calculation and thus
define a stable cost-function. Cost function isitfrmulated from strain fields obtained through
the space-derivative of the displacement fieldgialnmesh size of strain calculation points by
DIC technique is about 0.7mm and as explained gleogébal size of 1mm has been chosen for

the FE model mesh.

A cost function was defined to calculate the défere between the experimental and numerical

principal strains:

P ) N2 p . 2
exp_i__ num_i exp_i . num_
2 (ermer ) Y e

(b bch) =TS @)

where p corresponds to the number of calculationtpaised along the diagonal patfi?™- and

num_i

e (i=1,p are the experimental values for the major and nstrains respectively;"™ and

32“"‘—‘ (i:1,p) are the numerical principal strains output frone thumerical simulation and

interpolated with Piecewise Cubic Hermite Interpiolg Polynomial [45], to calculate their value
at the same location as the experimental valudeelh, as shown in Fig. 16, for a given distance

from the center coming from the experimed?$-, the corresponding numerical principal strains

num i

g™ ande)™ are interpolated from the principal values at mogand j + 1, which are along

diagonal direction.
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Experimental point i

Diagonal path
Node j+1

Fig. 16 Interpolation of the numerical strain field to calculate values at the same
point asthe experiments

The identification process with biaxial test dataasw realized with the software
modeFRONTIER® [46]. It was coupled with softwarealjos and Matlab (for the interpolation

and the calculation of the cost function) for thimization.

The optimization process is presented as a flowdhalFig. 17. The major task lied in the
optimization of the material parameters with theorgse to a finite element simulation to

minimize the cost function.

Firstly, the variation range of parameters wasrdeteed. The central values and their variation

range for each parameter are given in Table 2tHeoreference yield stres§,, the variation range

was set to be frond.8, to 1.25,,.

Table 2 Central valuesand variation ranges (in brackets) for each parameter

1

o, a b, b, C ;

G

0.5(0.1~0.9) 6(0~12)  10(0~20) 10 (0~20) 0.5(-1.2~2.2) 0.5(-1.2~2.2)

2

1 2
c Cy c C;

2

c 2

o

0.5(-1.2~2.2) 0.5(-1.2~2.2) 0.5(-1.2~2.2) 0.5(-1.2~2.2) 0.5(-1.2~2.2) 0.5(-1.2~2.2)
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The optimization algorithm Simplex [47] was pre&atrin the identification process. Like hill
climbing algorithms, the Simplex method may notwange to the global minimum and can stop at
local optima. To be sure that the global minimuns feaund, several optimizations were launched
with various initial sets of parameters. The Simpieethod presents the advantage of using n+1
vectors (with n the number of parameters) and taeilitates the search of the global minimum in
the n-dimensional space. The use of a first-orgeinozation algorithm with only one initial
vector requires more tests than Simplex with déifelinitial sets to cover the n-dimensional space.
Nevertheless, the convergence is less efficiertt Bitmplex method than for many algorithms
when the number of parameters is high. A best ambroould consist in applying a hybrid method
by using for example an evolutionary algorithmdodlize approximately the global minimum of

the cost function and then converge efficientlyhvatfirst-order optimization algorithm.

Parameter variation range

Initial parameter set determination

num_j

i FE simulation: £ and ¢} :

mum i num i

Matlab interpolation: &~ and &,

Cost function &

- SIMPLEX
Adjust parameter set

Optimized parameter set

Fig. 17 Flowchart of the identification process with biaxial test
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Within the determined parameter variation range,jritdal parameter sets were generated.
They were used in the finite element simulationhasinput data of a user subroutine. Then, the
output principal strain values were interpolatedhwMatlab program, to compare with the
experimental values via the cost function defingdBg. (6). A new parameter set was then

generated by Simplex algorithm as long as thefoostion continued to decrease.

4.4 Applications
4.4.1. AA5086

Table 3 gives the optimized Bron and Besson pammsét for AA5086, the initial
corresponding yield contour is presented Fig. 2148)mentioned above, several optimizations

were carried out with different initial parametets Only one optimized parameter set was found.

Table 3 Bron and Besson parameter set for AA5086

Y,(MPa) o, a b, b, o c

125.9 0.72 0.16 13.00 8.41 1.06 1.10

The r-values calculated with Bron and Besson pat@mmegiven Table 3 are respectively

r, =0.39, r,, =0.46 andr,, =0.37. The calculated 0.2% proof stresses for the 0°,aftsl 90°
from the rolling direction are respectively, =146MPg, o,, =145MPa and g,, =141MPa.

Those values must be compared to the experimemésl given in Table 1. As one can see, a good
agreement is observed for the anisotropic coefftsievhereas differences of 10% and 8.5% are

approximately obtained respectively fay, and g,,.

Fig. 18(a), (b) and (c) compare the experimentaicgal strains and strain path ratio along

diagonal direction with predictions by Hill 1948 aB&B yield models respectively. For the
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major strain, Hill 1948 yield model leads to an @atimation of about 60% in the center and 25%
at the diagonal corner. The predicted values wiBField model are close to the experiments.
However, there is still a difference between thenth an overestimation of about 10% in the
center. For minor strain, B&B predictions are bettan Hill 1948 ones, which overestimate by
about 60% the experimental data in the center th@istrain path ratio, the two models give a
slight underestimation close to the specimen ceWtbove 4 mm from the center, only B&B

predictions vary accordingly to the experimentaiveu

It can then be concluded that the parameter sédram and Besson yield criterion identified
from the biaxial data lead to a very good desaiptf the strain field along the diagonal direction
To go further and as a validation step, experimi@@ta output in the longitudinal and transverse

directions are then compared to the numerical ptiedis obtained with the two models.

016
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w008 A
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O T T T T
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(@) : major strain
.04
0.02 1
L\)N 0 T T T s
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—PB&B
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-0.06

Distance from centre (mm)
(b) : minor strain
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-0.4

Distance from centre {mmy}

(c) : strain path ratio

Fig. 18 Comparison between experimental and predicted principal strainsand
strain path ratio along the diagonal direction for AA5086

Fig. 19(a) compares the experimental major strimngalongitudinal and transverse directions
with predictions by Hill 1948 and B&B yield modelsspectively. For Hill 1948 yield model,
predicted values along the two directions are giifferent. Both of them overestimate the first
part of the paths and underestimate the rest af.thi@e overestimation in the center area is nearly
up to 73%. B&B predictions give an overestimationdmly 12% and 24% respectively for a
distance below 4 mm. And in this area, the preaingtialong rolling direction are slightly higher
than the one along transverse direction, as obddrvéhe experiments. Above a distance of
10 mm from the center, there is an underestimaifdhe major strain, as with Hill 1948 model.
This underestimation seems to come from the faattttie experimental strain was measured just
before the rupture. Necking in the cruciform spesnarm may have started in the experiments

but may not be well predicted numerically.

Fig. 19(b) compares the minor strains. The preaiictvith Hill 1948 yield model leads to an
overestimation along the whole path and for thedwections. The overestimation in the center is
about 69%. On the contrary, B&B model gives a gdeskription, though a slight overestimation

of 7% can be noticed in the center, and it remalasg the whole path.
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Fig. 19(c) compares the strain path ratios. Hit8 9redictions do not stick to the experimental
values at all, except for a distance below 4 mmmftbe center. However, the numerical result
shows a bump along the transverse direction, aadrshown and discussed in the experiments,
but it occurs further along the direction than éx@eriments (6 mm instead of 4 mm). For B&B
yield model, a perfect match for both direction®igained up to 10 mm. the bump along the
transverse direction which is failed to be desatibg Hill 1948 yield model is precisely predicted

by B&B yield model.
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Fig. 19 Experimental and predicted strainsand strain path ratios along the
longitudinal and transver se directions for AA5086

Through the above strain analysis in the centralggaarea of the cruciform specimen, a
sensitivity of the strain field to different yietditeria has been shown. It can also be seen tilat H
1948 strain field predictions are far away from #gerimental values, while B&B model
describes it well. It can be concluded that theopsed parameter identification method with only
a biaxial tensile test is really promising. Thegomsed method will now be applied to DP980 in the

following part.

4.4.2. DP980

The identification for DP980 was carried out witle taverage values along diagonal direction
att=2.0< This instant is far away from the rupture, inartb avoid the influence of necking.
Table 4 gives the optimized Bron and Besson patenset for DP980, the initial corresponding

yield contour is presented Fig. 21(b).

The r-values calculated with Bron and Besson patarsiepresented Table 4, are respectively

r,=0.61, r,, =0.35andr,, =1.03. The calculated 0.2% proof stresses for the 0°,attsl 90°

from the rolling direction are respectivety, = 701MPa, g,, =829MPg and g, = 784MPe.
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Table 4 Bron and Besson parameter set for DP980

Y,(MPa) o, a b, b, o C

135.9 0.34 9.78 6.77 2.84 0.77 0.92

Fig. 20(a) shows the predicted and experimentabmejd minor strain evolution along the
diagonal path. It can be shown that there is a gexyd agreement between experiments and
numerical simulation. However, an overestimatioalodut 10% is noticed for the major strain in
the specimen center. The strain path ratio aloaegliagonal direction was also compared with the
experimental value in Fig. 20(b). Bron and Bessaueh gives a slight underestimation at the
beginning of the curve, in the central area ofdh&iform specimen. However, farther from the

center, the prediction is rather close to the arpants.
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(a): Experimental and predicted principal strains
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Fig. 20 Predictions along diagonal direction by Bron and Besson parameter set for
DP980: (a) principal strains; (b) strain path ratio
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Fig. 21 Bron & Besson and Misesinitial yield contours

() AA5086 - (b) DP980

5. Conclusion

In this work, biaxial tensile tests were carried fmr an aluminum alloy AA5086 and a dual
phase steel DP980, using a specifically designadiform specimen. The strain field in the
central gauge area of each specimen was analyzew)dibe test, using digital image correlation,
and major and minor strains, as well as the rdttb@minor strain over the major strain (or strain

path ratio), were in particular investigated al@mpgcific paths, i.e. longitudinal, transverse and
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diagonal. The overall strain level reached befapure depends on the material, and is larger for
AA5086 than for DP980. Moreover, a rather largaatam of the strain path ratio was evidenced,
as well as quasi-linear strain paths up to ruptéwred the strain field seems sensitive to the
anisotropy of the material. Consequently, a paramdentification process for Bron and Besson
anisotropic yield model was proposed, involvingiténelement simulation of the test and
minimization of the gap between experimental ancherical principal strains along the diagonal
direction. A very good description of the straialdi was thus obtained. Moreover, longitudinal
and transverse directions were used out of vatidgiurposes, in the case of the aluminium alloy,
showing again that, for strain level far enoughfrime onset of necking, a close description of the
experimental major and minor strains was obtairfdte biaxial tensile test can be therefore

considered as an interesting tool for material ppa@tar identification.
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