
HAL Id: hal-01151155
https://hal.science/hal-01151155v2

Preprint submitted on 12 May 2015 (v2), last revised 20 Mar 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Magnetic Laplacian in sharp three dimensional cones
Virginie Bonnaillie-Noël, Monique Dauge, Nicolas Popoff, Nicolas Raymond

To cite this version:
Virginie Bonnaillie-Noël, Monique Dauge, Nicolas Popoff, Nicolas Raymond. Magnetic Laplacian in
sharp three dimensional cones. 2015. �hal-01151155v2�

https://hal.science/hal-01151155v2
https://hal.archives-ouvertes.fr


May 12, 2015

MAGNETIC LAPLACIAN IN SHARP THREE-DIMENSIONAL CONES

VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, NICOLAS POPOFF,

AND NICOLAS RAYMOND

ABSTRACT. The core result of this paper is an upper bound for the ground state energy

of the magnetic Laplacian with constant magnetic field on cones that are contained in a

half-space. This bound involves a weighted norm of the magnetic field related to moments

on a plane section of the cone. When the cone is sharp, i.e. when its section is small, this

upper bound tends to 0. A lower bound on the essential spectrum is proved for families

of sharp cones, implying that if the section is small enough the ground state energy is an

eigenvalue. This circumstance produces corner concentration in the semi-classical limit for

the magnetic Schrödinger operator when such sharp cones are involved.

1. INTRODUCTION

1.1. Motivation. The onset of supraconductivity in presence of an intense magnetic field

in a body occupying a domain Ω is related to the lowest eigenvalues of “semiclassical”

magnetic Laplacians in Ω with natural boundary condition (see for instance [15, 9, 10]),

and its localization is connected with the localization of the corresponding eigenfunctions.

The semiclassical expansion of the first eigenvalues of Neumann magnetic Laplacians

has been addressed in numerous papers, considering constant or variable magnetic field.

In order to introduce our present study, it is sufficient to discuss the case of a constant

magnetic field B and of a simply connected domain Ω.

For any chosen h > 0, let us denote by λh(B,Ω) the first eigenvalue of the magnetic

Laplacian (−ih∇ + A)2 with Neumann boundary conditions. Here A is any associated

potential (i.e., such that curlA = B). The following facts are proved in dimension 2.

i) The eigenmodes associated with λh(B,Ω) localize near the boundary as h → 0, see

[11].

ii) For a smooth boundary, these eigenmodes concentrate near the points of maximal

curvature, see [8].

iii) In presence of corners for a polygonal domain, these eigenmodes localize near acute

corners (i.e. of opening ≤ π
2
), see [2, 3].

Results i) and iii) rely on the investigation of the collection of the ground state energies

E(B,Πx) of the associated tangent problems, i.e., the magnetic Laplacians for h = 1
with the same magnetic field B, posed on the (dilation invariant) tangent domains Πx at

each point x of the closure of Ω. The tangent domain Πx is the full space R2 if x is an

interior point, the half-space R2
+ if x belongs to a smooth part of the boundary ∂Ω, and

a sector S if x is a corner of a polygonal domain. The reason for i) is the inequality

E(B,R2
+) < E(B,R2) and the reason for iii) is that the ground state energy associated
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with an acute sector S is less than that of the half-plane R
2
+. Beyond this result, there also

holds the small angle asymptotics (see [2, Theorem 1.1]), with Sα the sector of opening

angle α,

(1.1) E(B,Sα) = ‖B‖ α√
3
+O(α3).

Asymptotic formulas for the first eigenvalue λh(B,Ω) are established in various configu-

rations (mainly in situations ii) and iii)) and the first term is always given by

(1.2) lim
h→0

λh(B,Ω)

h
= inf

x∈Ω
E(B,Πx) .

As far as three-dimensional domains are concerned, in the recent contribution [4] for-

mula (1.2) is proved to be still valid in a general class of corner domains for which tangent

domains at the boundary are either half-planes, infinite wedges or genuine infinite 3D cones

with polygonal sections. Various convergence rates are proved. Thus the analysis of the

Schrödinger operator with constant magnetic field on general cones is crucial to exhibit the

main term of the expansion of the ground energy of the magnetic Laplacian in any corner

domain. As in 2D, the interior case Πx = R3 (x ∈ Ω) is explicit, and the half-space is

rather well known (see [16, 12]). The case of wedges has been more recently addressed in

[17, 18, 19].

When the infimum is reached at a corner, a better upper bound of λh(B,Ω) can be

proved as soon as the bottom of the spectrum of the corresponding tangent operator is

discrete [4, Theorem 9.1]. If, moreover, this infimum is attained at corners only, the corner

concentration holds for associated eigenvectors [4, Section 12.1]. So the main motivation

of the present paper is to investigate 3D cones in order to find sufficient conditions ensuring

positive answers to the following questions:

(Q1) A 3D cone Π being given, does the energy E(B,Π) correspond to a discrete eigen-

value for the associated magnetic Laplacian?

(Q2) A corner domain Ω ⊂ R3 being given, is the infimum in (1.2) reached at a corner, or

at corners only?

In [16], positive answers are given to these questions when Ω is a cuboid (so that the 3D

tangent cones are octants), under some geometrical hypotheses on the orientation of the

magnetic field. In [5]–[6], the case of right circular cones (that we denote here by C◦
α with

α its opening) is investigated: a full asymptotics is proved, starting as

(1.3) E(B, C◦
α) = ‖B‖

√
1 + sin2 β

3α

4
√
2
+O(α3),

where β is the angle between the magnetic field B and the axis of the cone. When combined

with a positive α-independent lower bound of the essential spectrum, such an asymptotics

guarantees that for α small enough, E(B, C◦
α) is an eigenvalue, providing positive answer

to Question (Q1).

The aim of this paper is to deal with more general cones, especially with polygonal sec-

tion. We are going to prove an upper bound that has similar characteristics as the asymp-

totical term in (1.3). We will also prove that there exist eigenvalues below the essential
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spectrum as soon as the cone is sharp enough, and therefore provide sufficient conditions

for a positive answer to Question (Q1).

One of the main new difficulties is that the essential spectrum strongly depends on the

dihedral angles of the cones, and that, if these angles get small, the essential spectrum may

go to 0 by virtue of the upper bound

(1.4) E(B,Wα) ≤ ‖B‖ α√
3
+O(α3),

where α is the opening of the wedge Wα. Here the magnetic field B is assumed either to

be contained in the bisector plane of the wedge (see [17, Proposition 7.6]), or to be tangent

to a face of the wedge (see [18, Section 5]). The outcome of the present study is that

eigenvalues will appear under the essential spectrum for sharp cones that do not have sharp

edges.

Obviously, (1.4) may also be an obstruction to a positive answer to Question (Q2). Com-

bining our upper bound for sharp cones with the positivity and the continuity of the ground

energy on wedges, we will deduce that a domain that has a sharp corner gives a positive

answer to (Q2), provided the opening of its edges remained bounded from below. We will

also exhibit such a domain by an explicit construction.

Finally, we can mention that that there exist in the literature various works dealing

with spectral problems involving conical domains: Let us quote among others the “δ-

interaction” Schrödinger operator, see [1], and the Robin Laplacian, see [14]. We find

out that the latter problem shares many common features with the magnetic Laplacian, and

will describe some of these analogies in the last section of our paper.

1.2. Main results. Let us provide now the framework and the main results of our paper.

We will consider cones defined through a plane section.

Definition 1.1. Let ω be a bounded and connected open subset of R2. We define the cone

Cω by

(1.5) Cω =

{
x = (x1, x2, x3) ∈ R

3 : x3 > 0 and

(
x1

x3
,
x2

x3

)
∈ ω

}
.

Let B = (B1,B2,B3)
T be a constant magnetic field and A be an associated linear mag-

netic potential, i.e., such that curlA = B. We consider the quadratic form

q[A, Cω](u) =
∫

Cω

|(−i∇+ A)u|2 dx,

defined on the form domain Dom(q[A, Cω]) = {u ∈ L2(Cω) : (−i∇ + A)u ∈ L2(Cω)}.

We denote by H(A, Cω) the Friedrichs extension of this quadratic form. If the domain ω
is regular enough (for example if ω is a bounded polygonal domain), H(A, Cω) coincides

with the Neumann realization of the magnetic Laplacian on Cω with the magnetic field B.

By gauge invariance the spectrum of H(A, Cω) depends only on the magnetic field B and

not on the magnetic potential A that is a priori assumed to be linear. For n ∈ N, we define
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En(B, Cω) as the n-th Rayleigh quotient of H(A, Cω):

En(B, Cω) = sup
u1,...,un−1∈Dom(q[A,Cω ])

inf
u∈[u1,...,un−1]⊥

u∈Dom(q[A,Cω ])

q[A, Cω](u)
‖u‖2L2(Cω)

.(1.6)

For n = 1, we shorten the notation by E(B, Cω) that is the ground state energy of the

magnetic Laplacian H(A, Cω).

1.2.1. Upper bound for the first Rayleigh quotients. Our first result states an upper bound

for En(B, Cω) valid for any section ω.

Theorem 1.2. Let ω be an open bounded subset of R2 and B be a constant magnetic field.

We define, for k = 0, 1, 2, the normalized moments (here |ω| denotes the measure of ω)

mk :=
1

|ω|

∫

ω

xk1x
2−k
2 dx1 dx2.

The n-th Rayleigh quotient satisfies the upper bound

(1.7) En(B, Cω) ≤ (4n− 1)e(B, ω),

where e(B, ω) is the positive constant defined by

(1.8) e(B, ω) =

(
B2
3

m0m2 −m2
1

m0 +m2
+ B2

2m2 + B2
1m0 − 2B1B2m1

)1/2

.

Lemma 1.3. There holds

i) The application B 7→ e(B, ω) is an ω-dependent norm on R3.

ii) The application (B, ω) 7→ e(B, ω) is homogeneous:

(1.9) e(B, ω) = |ω|1/2 ‖B‖ e(b, ̟), with b =
B

‖B‖ , ̟ =
ω

|ω| .

Remark 1.4. a) Although the quantity e(B, ω) is independent of the choice of the Cartesian

coordinates (x1, x2) in the plane x3 = 0, it strongly depends on the choice of the x3 “axis”

defining this plane. Indeed, if a cone C contained in a half-space is given, there are many

different choices possible for coordinates (x1, x2, x3) so that C can be represented as (1.5).

To each choice of the x3 axis corresponds a distinct definition of ω. For instance, let C be a

circular cone. If the x3 axis is chosen as the axis of the cone, then ω is a disc. Any different

choice of the axis x3 yields an ellipse for ω and the corresponding quantity e(B, ω) would

be larger.

b) When ω is the disc of center (0, 0) and radius tan α
2

, the cone Cω equals the circular

cone C◦
α of opening α considered in [5]–[6]. Then we find that e(B, ω) coincides with the

first term of the asymptotics (1.3) modulo O(α3), which proves that our upper bound is

sharp in this case (see Section 3.2.1 below).
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1.2.2. Convergence of the bottom of essential spectrum. By the min-max principle, the

quantity En(B, Cω), defined in (1.6), is either the n-th eigenvalue of H(A, Cω), or the bot-

tom of the essential spectrum denoted by Eess(B, Cω).
The second step of our investigation is then to determine the bottom of the essential

spectrum. We assume that ω is a bounded polygonal domain in R2. This means that the

boundary of ω is a finite union of smooth arcs (the sides) and that the tangents to two

neighboring sides at their common end (a vertex) are not colinear. Then the set Cω ∩ S2

called the section of the cone Cω is a polygonal domain of the sphere that has the same

properties. For any p ∈ Cω ∩ S2, we denote by Πp ⊂ R3 the tangent cone to Cω at p.

More details about the precise definition of a tangent cone can be found in Appendix A or

[4, Section 3]. Let us now describe the nature of Πp according to the location of p in the

section of Cω:

(a) If p belongs to Cω ∩ S2, i.e. is an interior point, then Πp = R3.

(b) If p belongs to the regular part of the boundary of Cω ∩ S2 (that is if p is in the interior

of a side of Cω ∩ S2), then Πp is a half-space.

(c) If p is a vertex of Cω ∩ S2 of opening θ, then Πp is a wedge of opening θ.

The cone Πp is called a tangent substructure of Cω. The ground state energy of the magnetic

Laplacian on Πp with magnetic field B is well defined and still denoted by E(B,Πp). Let

us introduce the infimum of the ground state energies on the tangent substructures of Cω:

(1.10) E
∗(B, Cω) := inf

p∈Cω∩S2
E(B,Πp).

Then [4, Theorem 6.6] yields that the bottom of the essential spectrum Eess(B, Cω) of the

operator H(A, Cω) is given by this quantity:

(1.11) Eess(B, Cω) = E
∗(B, Cω).

Now we take the view point of small angle asymptotics, like in (1.1), (1.3), and (1.4). But

for general 3D cones there is no obvious notion of small angle α. That is why we introduce

families of sharp cones for which the plane section ω is scaled by a small parameter ε > 0.

More precisely, ω ⊂ R2 being given, we define the dilated domain

(1.12) ωε := εω, ε > 0,

and consider the family of cones Cωε
parametrized by (1.12), as ε → 0. The homogeneity

(1.9) of the bound e(B, ω) implies immediately

(1.13) e(B, ωε) = e(B, ω) ε .

Thus the bound (1.7) implies that the Rayleigh quotients En(B, Cωε
) tend to 0 as ε→ 0.

To determine the asymptotic behavior of Eess(B, Cωε
) as ε → 0, we introduce ω̂ as the

cylinder ω × R and define the infimum of ground energies

E (B, ω̂) = inf
x′∈ω

E(B, Π̂(x′,1)),

where, for x in the closure of ω̂, Π̂x denotes the tangent cone to ω̂ at x. We note that, by

translation invariance along the third coordinate, E (B, ω̂) is also the infimum of ground

energies when x varies in the whole cylinder ω̂.
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Proposition 1.5. Let ω be a bounded polygonal domain of R2, and ωε defined by (1.12).

Then

lim
ε→0

Eess(B, Cωε
) = E (B, ω̂) > 0.

Taking (1.13) into account, as a direct consequence of Theorem 1.2 and Proposition 1.5,

we deduce:

Corollary 1.6. Let ω be a bounded polygonal domain of R2 and B be a constant magnetic

field. For all n ≥ 1, for all ε > 0, there holds

En(B, Cωε
) ≤ (4n− 1)e(B, ω)ε.

In particular, for ε small enough, there exists an eigenvalue below the essential spectrum.

Remark 1.7. It is far from being clear whether (4n− 1)e(B, ω)ε can be the first term of an

eigenvalue asymptotics, like this is the case for circular cones as proved in [5]–[6].

1.2.3. Corner concentration in the semiclassical framework. Let Ω ⊂ R3 be a bounded

simply connected corner domain in the sense of Definition A.2 (see [4, Section 3] for more

details). We denote by Hh(A,Ω) the Neumann realization of the Schrödinger operator

(−ih∇ + A)2 on Ω with magnetic potential A and semiclassical parameter h. Due to

gauge invariance, its eigenvalues depend on the magnetic field B = curlA, and not on

the potential A, whereas the eigenfunctions do depend on A. We are interested in the first

eigenvalue λh(B,Ω) of Hh(A,Ω) and in associated normalized eigenvector ψh(A,Ω).

Let us briefly recall some of the results of [4], restricting the discussion to the case

when the magnetic field B is constant (and A linear) for simplicity of exposition. To each

point x ∈ Ω is associated with a dilation invariant, tangent open set Πx, according to the

following cases:

(1) If x is an interior point, Πx = R3,

(2) If x belongs to a face f (i.e., a connected component of the smooth part of ∂Ω), Πx

is a half-space,

(3) If x belongs to an edge e, Πx is an infinite wedge,

(4) If x is a vertex v, Πx is an infinite cone.

The local energy E(B,Πx) at x is defined as the ground energy of the tangent operator

H(A,Πx) and the lowest local energy is written as

(1.14) E (B,Ω) := inf
x∈Ω

E(B,Πx).

Then [4, Theorem 5.1 & 9.1] provides the general asymptotical bounds

(1.15) |λh(B,Ω)− hE (B,Ω)| ≤ C h11/10 as h→ 0 .

Let Eess(B,Πx) be the bottom of the essential spectrum of H(A,Πx). If there exists a

vertex v of Ω such that

(1.16) E (B,Ω) = E(B,Πv) < Eess(B,Πv),
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then there holds the improved upper bound λh(B,Ω) ≤ hE (B,Ω) + C h3/2| logh|, see

[4, Theorem 9.1 (d)]. Finally, if the lowest local energy is attained at vertices only, in the

following strong sense (here V is the set of vertices of Ω)

(1.17) E (B,Ω) < inf
x∈Ω\V

E(B,Πx),

the first eigenvalue λh(B,Ω) has an asymptotic expansion as h→ 0 ensuring the improved

bounds

(1.18) |λh(B,Ω)− hE (B,Ω)| ≤ C h3/2 as h→ 0 ,

and, moreover, the corresponding eigenfunction concentrates near the vertices v such that

E (B,Ω) = E(B,Πv). This is an immediate adaptation of [3] to the 3D case, see [4, Section

12.1]. In this framework, our result is now

Proposition 1.8. Let ω be a bounded polygonal domain of R2, and ωε defined by (1.12).

a) Let
(
Ω(ε)

)
ε

be a family of 3D corner domains such that

i) One of the vertices v(ε) of Ω(ε) satisfies Πv(ε) = Cωε
,

ii) The edge openings αx of all domains Ω(ε) satisfy the uniform bounds

(1.19) β0 ≤ αx ≤ 2π − β0, ∀x edge point of Ω(ε), ∀ε > 0,

with a positive constant β0.
Then condition (1.17) is satisfied for ε small enough.

b) Families
(
Ω(ε)

)
ε

satisfying the above assumptions i) and ii) do exist.

1.2.4. Outline of the paper. The paper is organized as follows: Sections 2–3 are devoted to

the proof of Theorem 1.2: To get an upper bound of En(B, Cω), we introduce in Section 2 a

reduced operator on the half-line, depending on the chosen axis x3 > 0, and introduce test

functions for the reduced Rayleigh quotients. Then, in Section 3, we optimize the choice

of the magnetic potential A in order to minimize the reduced Rayleigh quotients. The

obtained upper bounds are explicitly computed in some examples like discs and rectangles.

In Section 4, we focus on the essential spectrum for a sharp cone Cωε
with polygonal section

and prove Proposition 4.1 that is a stronger form of Proposition 1.5. Section 5 is devoted

to the proof of Proposition 1.8 that provides cases of corner concentration for the first

eigenvectors of the semiclassical magnetic Laplacian. We conclude the paper in Section 6

by a comparison with Robin problem. Finally, for completeness, we recall in Appendix A

the recursive definition of corner domains.

2. UPPER BOUND FOR THE FIRST RAYLEIGH QUOTIENTS USING A 1D OPERATOR

The aim of the two following sections is to establish an upper bound of the n-th Rayleigh

quotient En(B, Cω), valid for any domain ω.

For any constant magnetic potential B, we introduce the subspace

A(B) = {A ∈ L(R3) : ∂x3A = 0 and ∇×A = B},
where L(R3) denotes the set of the endomorphisms of R3. The set A(B) is not empty and

we can consider A ∈ A(B). Let ω be a bounded polygonal domain. We evaluate now the
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quadratic form q[A, Cω](ϕ) for functions ϕ only depending on the x3 variable. This leads

to introduce a new quadratic form on some weighted Hilbert space.

Lemma 2.1. Let us introduce the weighted space L2
w(R+) := L2(R+, x

2 dx). For any

parameter λ > 0, we define the quadratic form p[λ] by

p[λ](u) =

∫

R+

(
|u′(x)|2 + λx2|u(x)|2

)
x2 dx,

on the domain Bw(R+) := {u ∈ L2
w(R+) : x

2u ∈ L2
w(R+), u

′ ∈ L2
w(R+)}.

Let A ∈ A(B) and ϕ ∈ Bw(R+). Then the function Cω ∋ x 7→ ϕ(x3), still denoted by ϕ,

belongs to Dom(q[A, Cω]). Moreover there holds

q[A, Cω](ϕ)
‖ϕ‖2L2(Cω)

=
p
[
λ
]
(ϕ)

‖ϕ‖2L2
w(R+)

with λ =
‖A‖2L2(ω)

|ω| .

Proof. Let A = (A1,A2,A3)
T ∈ A(B). Since ϕ is real valued and depends only on the x3

variable, we have

q[A, Cω](ϕ) =

∫

Cω

|A1|2|ϕ|2 + |A2|2|ϕ|2 + |(−i∂x3 + A3)ϕ|2 dx

=

∫

Cω

|A(x)|2|ϕ(x3)|2 + |∂x3ϕ(x3)|2 dx.

Let us perform the change of variables

(2.1) X = (X1,X2,X3) =

(
x1

x3
,
x2

x3
, x3

)
.

Since A is linear and does not depends on x3, we have

q[A, Cω](ϕ) =
∫

ω×R+

(
|A(X)|2X2

3|ϕ(X3)|2 + |ϕ′(X3)|2
)
X2
3 dX

= |ω|
∫

R+

|ϕ′(X3)|2X2
3 dX3 + ‖A‖2L2(ω)

∫

R+

|ϕ(X3)|2X4
3 dX3,

and, with the same change of variables (2.1)

‖ϕ‖2L2(Cω)
= |ω|

∫

R+

|ϕ(X3)|2X2
3 dX3.

Thus the Rayleigh quotient writes

q[A, Cω](ϕ)
‖ϕ‖2L2(Cω)

=

∫
R+ |ϕ′(X3)|2X2

3 dX3 +
‖A‖2

L2(ω)

|ω|

∫
R+ |ϕ(X3)|2X4

3 dX3∫
R+ |ϕ(X3)|2X2

3 dX3

,

and we deduce the lemma. �
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With Lemma 2.1 at hands, we are interested in the spectrum of the operator associated

with the quadratic form p[λ]. Thanks to the change of function u 7→ U := xu, the weight

is eliminated and we find by using an integration by parts that

p[λ](u) =

∫

R+

(
|U ′(x)|2 + λx2|U(x)|2

)
dx and ‖u‖2L2

w(R+) = ‖U‖2L2(R+).

So we are reduced to an harmonic oscillator on R+ with Dirichlet condition at 0. Its eigen-

vectors Un are the restrictions to R+ of the odd ones on R. Therefore, see also [5, Corollary

C.2], we find that the eigenvalues associated with the form p[λ] are simple and the n-th

eigenvalue equals λ1/2(4n − 1). Then, by combining the min-max principle with Lemma

2.1, we deduce that the n-th eigenvalue associated with the form q[A, Cω] is bounded from

above by (4n− 1)‖A‖L2(ω)/
√

|ω|. Since this upper bound is valid for any A ∈ A(B), we

have proved the following proposition.

Proposition 2.2. Let B be a constant magnetic field. Then for all n ∈ N∗, we have

(2.2) En(B, Cω) ≤
4n− 1√

|ω|
inf

A∈A(B)
‖A‖L2(ω),

with

A(B) = {A ∈ L(R3) : ∂x3A = 0 and ∇× A = B}.

3. OPTIMIZATION

The aim of this section is to give an explicit solution to the optimization problem

(3.1) Find A0 ∈ A(B) such that ‖A0‖L2(ω) = inf
A∈A(B)

‖A‖L2(ω),

for a constant magnetic field B = (B1,B2,B3)
T. We also provide explicit examples in the

case where the domain ω is a disc or a rectangle.

3.1. Resolution of the optimization problem and proof of Theorem 1.2. Let A =
(A1,A2,A3)

T ∈ A(B). Since A is independent of the x3-variable, we have

curlA =




∂x2A3

−∂x1A3

∂x1A2 − ∂x2A1


 =



B1

B2

B3


 .

By linearity of A, we have necessarily A3(x) = B1x2 − B2x1. Therefore considering

A′ = {A′ ∈ L(R2) : ∇x1,x2 ×A′ = 1},
the infimum in (3.1) rewrites

(3.2) inf
A∈A(B)

‖A‖L2(ω) =

(
B2
3 inf
A′∈A′

‖A′‖2L2(ω) +

∫

ω

(B1x2 − B2x1)
2 dx1 dx2

)1/2

,

and 3D optimization problem (3.1) can be reduced to a 2D one:

(3.3) Find A′
0 ∈ A′ such that ‖A′

0‖L2(ω) = inf
A′∈A′

‖A′‖L2(ω).

This problem can be solved explicitly:
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Proposition 3.1. For k = 0, 1, 2, we define the moments

Mk :=

∫

ω

xk1x
2−k
2 dx1 dx2.

Then, we have

inf
A′∈A′

‖A′‖2L2(ω) =
M0M2 −M2

1

M0 +M2
.

Moreover the minimizer of (3.3) exists, is unique, and given by

A′
0(x1, x2) =

1

M0 +M2

(
M1 −M0

M2 −M1

)(
x1
x2

)
.

Remark 3.2. The divergence of the optimal transverse potential A′
0 is 0, just as the full

associated potential A0.

Proof. Let us introduce the space of linear applications of the plane L(R2) endowed with

the scalar product

〈f, g〉L2(ω) =

∫

ω

f(x1, x2) · g(x1, x2) dx1 dx2, ∀f, g ∈ L(R2).

Then A′ is an affine hyperplane of L(R2) of dimension 3, and Problem (3.3) is equivalent

to find the distance from the origin 0 to this hyperplane. In particular there exists a unique

minimizer to (3.3), which is the orthogonal projection of 0 to A′. To make the solution

explicit, we look for a linear function A′
0 ∈ A′ of the form

A′
0(x1, x2) =

(
α β

1 + β γ

)(
x1
x2

)
,

where (α, β, γ) are to be found. Then we have

F (α, β, γ) := ‖A′
0‖2L2(ω) =

∫

ω

(αx1 + βx2)
2 + ((1 + β)x1 + γx2)

2 dx1 dx2

=M2(α
2 + (1 + β)2) + 2M1(αβ + (1 + β)γ) +M0(β

2 + γ2).

Solving ∇F = 0 gives a unique solution

(α, β, γ) =
1

M0 +M2
(M1,−M0,−M1),

and computations provide

‖A′
0‖2L2(ω) =

M0M2 −M2
1

M0 +M2
.

We deduce the proposition. �

Proof of Theorem 1.2. Now, combining Proposition 2.2, (3.2) and Proposition 3.1, we get

the upper bound

En(B, Cω) ≤ (4n− 1)e(B, Cω),
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with

e(B, ω) =
1√
|ω|

(
B2
3

M0M2 −M2
1

M0 +M2

+

∫

ω

(x1B2 − B2x1)
2 dx1 dx2

)1/2

=
1√
|ω|

(
B2
3

M0M2 −M2
1

M0 +M2
+ B2

2M2 + B2
1M0 − 2B1B2M1

)1/2

=

(
B2
3

m0m2 −m2
1

m0 +m2
+ B2

2m2 + B2
1m0 − 2B1B2m1

)1/2

,

with mk =Mk/|ω|, and we deduce Theorem 1.2. �

Proof of Lemma 1.3. Let us discuss the quantities appearing in e(B, ω):

• The coefficient m0m2 −m2
1 corresponds to a Gram determinant, and is positive by

Cauchy-Schwarz inequality.

• The coefficient m0+m2 =
1
|ω|

∫
ω
(x21+ x22) dx1 dx2 is the isotropic moment of order

2 in ω.

• When (B1,B2) 6= 0, we denote by ∆ ⊂ R2 the line borne by the projection of the

magnetic field in the plane {x3 = 0}. Then the quantity
∫

ω

(B2x1 − B1x2)
2 dx1 dx2

is the square of the L2 norm (in ω) of the distance to ∆.

Consequently, the function B 7→ e(B, ω) is a norm on R
3. Furthermore, although the

normalized moments depend on the choice of Cartesian coordinates in R2, the above three

points show that this is not the case for the three quantities m0 + m2, m2m0 − m2
1 and

b22m2+b
2
1m0−2b1b2m1. We deduce that the constant e(B, ω) depends only on the magnetic

field and the domain and not on the choice of Cartesian coordinates. Lemma 1.3 is proved.

�

3.2. Examples. In this section we apply Proposition 3.1 to particular geometries, namely

discs and rectangles.

3.2.1. Circular cone. The case of a right circular cone is already considered in [5]–[6],

and we compare our upper bound given in Theorem 1.2 with the existing results.

For any disc ω centered at the origin, the normalized moments equal

m0 = m2 =
|ω|
4π

and m1 = 0,

so that Theorem 1.2 gives

(3.4) En(B, Cω) ≤ (4n− 1)e(B, ω) =
4n− 1

2

√
|ω|
π

(
B2
3

2
+ B2

1 + B2
2

)1/2

.
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In [5]–[6], the right circular cone C◦
α with opening α is considered: Here ω is the disc

centered at the origin with radius tan α
2

. In this case, a complete asymptotic expansion is

established as α→ 0 and the first term is given by

(3.5) lim
α→0

En(B, C◦
α)

α
=

4n− 1

25/2

√
1 + sin2 β,

where β is the angle between the magnetic field B and the axis of the cone. Let us compare

with our upper bound (3.4), applied with B = (0, sin β, cosβ)T and |ω| = π tan2 α
2

. This

provides:

∀α ∈ (0, π), En(B, C◦
α) ≤

4n− 1

23/2
tan

α

2

√
1 + sin2 β.

In view of (3.5), this upper bound is optimal asymptotically, as α → 0. Let us notice

that the solution of the minimization problem (3.3) is in that case the so called symmetric

potential A′
0 =

1
2
(−x2, x1)

T
(see Proposition 3.1).

3.2.2. Rectangular cone. Let us assume that ω is the rectangle [ℓa, ℓb]× [La, Lb].
The moments of order 2 can be computed explicitly:

m0 =
(ℓb − ℓa)(L

3
b − L3

a)

3|ω| =
1

3
(L2

b + LbLa + L2
a),

m1 =
(ℓ2b − ℓ2a)(L

2
b − L2

a)

4|ω| =
1

4
(ℓb + ℓa)(Lb + La),

m2 =
(ℓ3b − ℓ3a)(Lb − La)

3|ω| =
1

3
(ℓ2b + ℓbℓa + ℓ2a).

Let us apply Theorem 1.2 in several configurations. Note that if ℓa = −ℓb or La = −Lb

(which means that we have a symmetry), then m1 = 0 and

En(B, Cω) ≤ (4n− 1)

(
B2
3

m0m2

m0 +m2
+ B2

1m0 + B2
2m2

)1/2

.

Assuming, both ℓa = −ℓb and La = −Lb, we obtain the following upper bound for the

ground state energy for the rectangle [−ℓ, ℓ]× [−L, L] (for shortness, ℓ = ℓb and L = Lb):

(3.6) En(B, Cω) ≤
4n− 1√

3

(
B2
3

ℓ2L2

ℓ2 + L2
+ B2

1L
2 + B2

2ℓ
2

)1/2

.

In the case of a symmetric rectangle of proportions ℓ < L = 1, the last formula becomes

En(B, Cω) ≤
4n− 1√

3

(
B2
3

ℓ2

ℓ2 + 1
+ B2

1 + B2
2ℓ

2

)1/2

.

We observe that this upper bound does not converge to 0 when B1 6= 0 and ℓ tends to 0. In

contrast when B1 = 0 there holds

En(B, Cω) ≤
4n− 1√

3
ℓ

(
B2
3

ℓ2 + 1
+ B2

2

)1/2

,

which tends to 0 as ℓ → 0. This configuration (B1 = 0 and ℓ → 0) means that B is almost

tangent to the cone Cω in the direction where it is not sharp. This can be compared with the



MAGNETIC LAPLACIAN IN SHARP THREE-DIMENSIONAL CONES 13

result (1.4) on wedges. This shows the anisotropy of the quantities appearing in our upper

bounds.

For the square [−ℓ, ℓ]2, we deduce the upper bound of the first eigenvalue

(3.7) En(B, Cω) ≤
4n− 1√

3
ℓ

(
B2
3

2
+ B2

1 + B2
2

)1/2

=
4n− 1

2

√
|ω|√
3

(
B2
3

2
+ B2

1 + B2
2

)1/2

.

Remark 3.3. Assuming that |ω| is set, our upper bounds in the case when ω is a square or

a disc can be compared, see (3.4) and (3.7). The distinct factors are

1√
π
≃ 0.5642 and

1√
3
≃ 0.5774.

4. ESSENTIAL SPECTRUM FOR CONES OF SMALL APERTURES WITH POLYGONAL

SECTION

Here we consider the case of a family of cones parametrized by a model plane polygonal

domain ω ⊂ R2 and the scaling factor ε > 0. We characterize the limit of the bottom of the

essential spectrum Eess(B, Cωε
) as ε → 0, where Cωε

is defined in (1.12). The main result

of this section is Proposition 4.1, which is a stronger version of Proposition 1.5.

In such a situation, relations (1.10)–(1.11) take the form

Eess(B, Cωε
) = E

∗(B, Cωε
) = inf

p∈Cωε∩S
2
E(B,Πp).

We define the bijective transformation P : ω × R+ → Cω by

(4.1) P(x′, t) = t
(x′, 1)

‖(x′, 1)‖ , ∀(x′, t) ∈ ω × R+.

Notice that x′ 7→ P(x′, 1) defines a bijection from R2 onto the upper half sphere S2
+ :=

{p ∈ S2, p3 > 0}, and that for all ε > 0, P(εω, 1) is an open set of S2
+ and coincides with

Cωε
∩ S2.

If p is a vertex of Cωε
∩ S2, then x′ = P(·, 1)−1(p) is still a vertex of ωε, but its opening

angle is not the same as for p, in particular the tangent cones Πp and Π̂x′ are both wedges,

but they cannot be deduced each one from another by a rotation, and in general the ground

state energies on these two domains are different.

The following proposition estimates the difference between the ground state energies as

ε → 0:

Proposition 4.1. There exist positive constants ε0 and C(ω) depending only on ω such that

(4.2) ∀ε ∈ (0, ε0), |E ∗(B, Cωε
)− E (B, ω̂)| ≤ C(ω) ε1/3.

In particular, limε→0 E
∗(B, Cωε

) = E (B, ω̂).

Proof. Recall that the transformation P is defined in (4.1). Denote by 0 the origin in the

plane R2. The differential d(0,1)P of P at the point (0, 1) is the identity I. So there exist

positive constants C and ε0 such that for all ε ∈ (0, ε0),

(4.3) ∀x′ ∈ ωε, ‖ d(x′,1)P− I ‖ ≤ Cε.



14 V. BONNAILLIE-NOËL, M. DAUGE, N. POPOFF, AND N. RAYMOND

Define Nε the scaling of ratio ε around the plane t = 1:

(4.4) Nε : (x1, x2, t) 7−→ (εx1, εx2, 1 + ε(t− 1)).

The scaling Nε transforms a neighborhood of ω × {1} into a neighborhood of εω × {1}.

Then the composed application P◦Nε is a diffeomorphism from a neighborhood of ω×{1}
onto a neighborhood of Cωε

∩ S2.

Let us pick a point x′ in the closure of the polygonal domain ω. By definition of polyg-

onal domains, there exists a local diffeomorphism J that sends a neighborhood of x′ in ω
onto a neighborhood of 0 of the tangent plane sector (in broad sense) Πx′ . The differen-

tial dx′J equals I by construction. Then Ĵ := J ⊗ I3 realizes a local diffeomorphism that

sends a neighborhood of x := (x′, 1) in ω̂ onto a neighborhood of 0 of the tangent cone

Π̂x := Πx′ × R.

We set pε := P ◦ Nε(x). For any ε ∈ (0, ε0), the composed application

Ĵ ◦ (P ◦ Nε)
−1

is a local diffeomorphism that sends a neighborhood of the point pε in Cεω onto a neigh-

borhood of 0 of the cone Π̂x. Let Dε be the differential at 0 of the inverse of the map

Ĵ ◦ (P ◦ Nε)
−1. Then, by construction, the modified map

Dε ◦ Ĵ ◦ (P ◦ Nε)
−1

is such that its differential at the point pε is the identity I. Therefore this modified map is a

local diffeomorphism that sends a neighborhood of the point pε in Cωε
onto a neighborhood

of 0 in the tangent cone Πp
ε
.

We deduce that Dε is a linear isomorphism between the two cones of interest

Dε : Π̂x 7−→ Πp
ε
.

We calculate:

Dε = d0(P ◦ Nε ◦ Ĵ−1) = dp
ε
P ◦ dxNε ◦ d0Ĵ

−1 .

But d0Ĵ
−1 = I and dxNε = ε I. So we have obtained that ε dp

ε
P is an isomorphism

between the two cones of interest. By homogeneity dp
ε
P is also an isomorphism between

the same sets. Thanks to (4.3) we have obtained that

Lemma 4.2. Let x′ ∈ ω, x = (x′, 1) and pε = P◦Nε(x). Then the linear map Lx,ε := dp
ε
P

is an isomorphism between Π̂x and Πp
ε
, that satisfies

(4.5) ‖Lx,ε − I ‖ ≤ Cε,

where C depends neither on x′ nor on ε and with P,Nε defined in (4.1), (4.4).

Therefore

(4.6) E(B, Π̂x)−E(B,Πp
ε
) = E(B, Π̂x)− E(B,Lx,ε(Π̂x)).

Relying on (4.5), we are going to estimate the right hand side of (4.6) depending on the

position of x′ ∈ ω:
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(a) x′ is inside ω. Then Π̂x is the full space R3, just like Lx,ε(Π̂x). So E(B, Π̂x) coincides

with E(B,Lx,ε(Π̂x)) in this case.

(b) x′ belongs to a side of ω. Then Π̂x and Lx,ε(Π̂x) are half-spaces. The lowest energy

E(B,Π) when Π is a half-space is determined by the C 1 function σ acting on the unsigned

angle θ ∈ [0, π
2
] between B and ∂Π. If θx , θx,ε denote the angle between B and ∂Π̂x ,

∂Lx,ε(Π̂x,ε), respectively, then for a constant C depending on ω:

(4.7) |θx − θx,ε| ≤ Cε and |σ(θx)− σ(θx,ε)| ≤ Cε.

(c) x′ is a corner of ω. Then Π̂x and Lx,ε(Π̂x) are wedges of opening αx and αx,ε with

|αx−αx,ε| ≤ Cε. Moreover there exist rotations Rx and Rx,ε that transform Π̂x and Lx,ε(Π̂x)
into the canonical wedges Wαx

and Wαx,ε
and there holds ‖Rx,ε − Rx‖ ≤ Cε. Since

E(B, Π̂x) = E(R−1
x B,Wαx

) and E(B,Lx,ε(Π̂x)) = E(R−1
x,εB,Wαx,ε

),

we deduce from [19, Section 4.4]

|E(B, Π̂x)− E(B,Lx,ε(Π̂x))| ≤ Cε1/3.

Taking the infimum over x ∈ ω×{1}, we deduce the (4.2). As stated in [4, Corollary 8.5],

there holds E (B, ω̂) > 0. Therefore we deduce Proposition 4.1. �

5. APPLICATION TO CORNER CONCENTRATION

In this section, we discuss the link between (1.16) and (1.17), and we then prove Propo-

sition 1.8.

We first prove that condition (1.17) implies condition (1.16). If (1.17) holds, there exists

a vertex v such that E (B,Ω) = E(B,Πv). By [4, Theorem 6.6], the essential spectrum of

H(A,Πv) is given by

E
∗(B,Πv) := inf

p∈Πv∩S2
E(B,Πp).

But for each p ∈ Πv∩S2, the cone Πv is the limit of tangent cones Πx with points x ∈ Ω\V
converging to v. The continuity of the ground energy then implies that

E(B,Πp) ≥ inf
x∈Ω\V

E(B,Πx).

We deduce

E
∗(B,Πv) ≥ inf

x∈Ω\V
E(B,Πx).

Hence condition (1.16) holds.

Proof of point a) of Proposition 1.8. By condition i), and as a consequence of (1.7) and

(1.13), there holds

(5.1) E(B,Πv(ε)) ≤ 3ε e(B, ω).

Let us bound infx∈Ω\VE(B,Πx) from below. Let x ∈ Ω \V.

(1) If x is an interior point, then E(B,Πx) = E(B,R3) = ‖B‖.

(2) If x belongs to a face, Πx is a half-space and E(B,Πx) ≥ Θ0‖B‖ > 1
2
‖B‖.
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(3) Since x is not a vertex, it remains the case when x belongs to an edge of Ω, and then

Πx is a wedge. Let αx denote its opening. Then E(B,Πx) = E(Bx,Wαx
) where

Bx is deduced from B by a suitable rotation. At this point we use the continuity

result of [19, Theorem 4.5] for (B, α) 7→ E(B, α) with respect to α ∈ (0, 2π) and

B ∈ S2, which yields

(5.2) min
β0≤α≤2π−β0, ‖B‖=1

E(B,Wα) =: c(β0) > 0,

where the diamagnetic inequality has been used to get the positivity. We deduce by

homogeneity E(B,Πx) ≥ c(β0)‖B‖.

Finally

inf
x∈Ω\V

E(B,Πx) ≥ min{c(β0), 12}‖B‖.

Combined with the previous upper bound (5.1) at the vertex v(ε), this estimate yields that

condition (1.17) is satisfied for ε small enough, hence point a) of Proposition 1.8.

Proof of point b) of Proposition 1.8. Let us define

Ω(ε) = Cωε
∩ {x3 < 1}.

By construction, we only have to check (1.19). The edges of Ω(ε) can be classified in two

sets:

(1) The edges contained in those of Cωε
. We have proved in Section 4 that their opening

converge to the opening angles of ω as ε→ 0.

(2) The edges contained in the plane {x3 = 1}. Their openings tend to π
2

as ε → 0.

Hence (1.19).

6. ANALOGIES WITH THE ROBIN LAPLACIAN

We describe here some similarities of the Neumann magnetic Laplacian with the Robin

Laplacian on corner domains. For a real parameter γ, this last operator acts as the Laplacian

on functions satisfying the mixed boundary condition ∂nu−γu = 0 where ∂n is the outward

normal and γ is a real parameter. The associated quadratic form is

u 7→
∫

Ω

|∇u(x)|2 dx− γ

∫

∂Ω

|u(s)|2 ds, u ∈ H1(Ω).

Since the study initiated in [13], many works have been done in order to understand the

asymptotics of the eigenpairs of this operator in the limit γ → +∞. It occurs that in

this regime, the fist eigenvalue λRobγ (Ω) of this Robin Laplacian shares numerous com-

mon features with those of the magnetic Laplacian in the semi-classical limit. Levitin and

Parnovski prove that for a corner domain Ω satisfying a uniform interior cone condition,

there holds (see [14, Theorem 3.2])

(6.1) λRobγ (Ω) ∼
γ→+∞

γ2 inf
x∈∂Ω

ERob(Πx),

where, as before, ERob(Πx) is the ground state energy of the model operator (γ = 1) on the

tangent cone Πx at x. In fact, ERob(Πx) < 0 for any boundary point x. This result leads to
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the same problematics as ours: compare the ground state energies of model operators on

various tangent cones. When Πx is either a half-space or a wedge, ERob(Πx) is explicit:

(6.2) ERob(R3
+) = −1 and ERob(Wα) =

{
− sin−2(α

2
) if α ∈ (0, π]

− 1 if α ∈ [π, 2π).

This shows, in some sense, that the Robin Laplacian is simpler for these cones. We notice

that ERob(Wα) → −∞ as α → 0. This fact should be compared to (1.4). The general idea

behind this is an analogy between the degeneracy of the ground state energies, as follows:

Whereas the ground energy (always positive) is going to 0 for the magnetic Laplacian on

sharp cones, the ground energy (always finite) of the Robin Laplacian goes to −∞, as we

shall explain below.

However, for cones of higher dimensions, no explicit expression like (6.2) is known for

ERob(Πx). In [14, Section 5], a two-sided estimate is given for convex cones of dimension

≥ 3. The idea for this estimate is quite similar to our strategy: Given a suitable reference

axis {x3 > 0} intersecting Π ∩ S2 at a point denoted by θ, one defines the plane P tangent

to S2 at θ, so that the intersection P ∩Π defines a section ω for which the cone Π coincides

with Cω given by (1.5). Using polar coordinates (ρ, φ) ∈ R
+ × S

1 in the plane P centered

at θ, one parametrizes the boundary of ω by a function b through the relation ρ = b(φ).
Then1, [14, Theorem 5.1] provides the upper bound

(6.3)

ERob(Π) ≤ −
(∫

S1
σ(φ) b(φ)2 dφ∫
S1
b(φ)2 dφ

)2

with σ(φ) =
√

1 + b(φ)−2 + b′(φ)2b(φ)−4.

Note that this estimate depends on the choice of the reference coordinate x3, exactly as in

our case, see Remark 1.4, and can be optimized by taking the infimum on θ.

Estimate (6.3) shows in particular that for our sharp cones Cωε
, the energy ERob(Cωε

)
goes to −∞ like ε−2 as ε → 0. This property is the analog of our upper bounds (1.7)-

(1.13). We expect that an analog of our formula (1.11) is valid, implying that there exists a

finite limit for the bottom of the essential spectrum of the model Robin Laplacians defined

on Cωε
, as ε → 0. This would provide similar conclusions for Robin problem and for the

magnetic Laplacian.

APPENDIX A. TANGENT CONES AND CORNER DOMAINS

Following [7, Section 2] (see also [4, Section 1]), we recall the definition of corner

domains. We call a cone any open subset Π of Rn satisfying

∀ρ > 0 and x ∈ Π, ρx ∈ Π,

and the section of the cone Π is its subset Π ∩ Sn−1. Note that S0 = {−1, 1}.

Definition A.1 (TANGENT CONE). Let Ω be an open subset of M = R
n or Sn. Let x0 ∈ Ω.

The cone Πx0 is said to be tangent to Ω at x0 if there exists a local C ∞ diffeomorphism Ux0

1In [14, Theorem 5.1], the quantity −E
Rob(Π) is estimated, so that the upper bound presented here,

corresponds to the lower bound of the paper loc. cit.
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which maps a neighborhood Ux0 of x0 in M onto a neighborhood Vx0 of 0 in R
n and such

that

Ux0(x0) = 0, Ux0(Ux0 ∩ Ω) = Vx0 ∩ Πx0 and Ux0(Ux0 ∩ ∂Ω) = Vx0 ∩ ∂Πx0 .

Definition A.2 (CLASS OF CORNER DOMAINS). ForM = Rn or Sn, the classes of corner

domains D(M) and tangent cones Pn are defined as follow:

INITIALIZATION: P0 has one element, {0}. D(S0) is formed by all subsets of S0.

RECURRENCE: For n ≥ 1,

(1) Π ∈ Pn if and only if the section of Π belongs to D(Sn−1),
(2) Ω ∈ D(M) if and only if for any x0 ∈ Ω, there exists a tangent cone Πx0 ∈ Pn to

Ω at x0.
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