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Abstract

This paper studies the problem of Byzantine consensus in a synchronous message-passing
system of n processes. The first deterministic algorithm, and also the simplest in its principles,
was the Exponential Information Gathering protocol (EIG) proposed by Pease, Shostak and
Lamport in [19]. The algorithm requires processes to send exponentially long messages. Many
follow-up works reduced the cost of the algorithm. However, they had to either lower the
maximum number of faulty processes t from the optimal range t < n/3 to some smaller range
of t [4, 11, 18], or increase the maximum worst-case number of rounds needed for termination
(the lower bound being t+ 1) [3, 9, 20].

Garay and Moses [13] were the first and only who solved the problem by using a polynomial
number of communication bits, for the whole optimal range t < n/3 of the number of Byzantine
processes and within the optimal number (t + 1) of communication rounds. Their solution,
though very complex and sophisticated, requires processes to send O(n9) bits in total.

In this work, we present much simpler solution that also holds for the whole optimal range
t < n/3 and the optimal number t + 1 of communication rounds, and at the same time lowers
the number of exchanged communication bits to O(n3 log n). For achieving such an improve-
ment, processes no more exchange relayed proposed values, but information on suspicions ”who
suspects who”, the size of which is quadratic in n in the worst case.

Keywords: Agreement problem, Byzantine process, Consensus, Synchronous distributed system,
Message-passing model, Round-based protocol, EIG.

1 Introduction

The Consensus problem is considered as a fundamental problem in fault-tolerant distributed sys-
tems. In case processes can exhibit a malicious behavior, the obtained variant of consensus is often
called Byzantine Agreement. In order to assure perfect reliability, deterministic solutions are of
utmost importance for this problem, and this is also the focus of this paper; for recent advances
and references to the area of randomized solutions we refer the reader to the work by King and
Saia [15] and by Aspnes [1].

The first and the simplest designed deterministic algorithm for the synchronous distributed
computing model is the exponential information gathering protocol (from now on called EIG pro-
tocol) based on a tree construction proposed by Bar-Noy, Dolev, Dwork and Strong [3] as a simple
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reformulation of the original protocol proposed by Pease, Shostak and Lamport in 1980 [19]. The
algorithm requires processes to send exponentially long messages and performs exponentially many
local computation steps, in terms of the number n of processes. Many researchers have since tried
to reduce the cost of the solution, However most of them either lowered the maximal range of the
tolerated number of faulty processes t from t < n/3 (the upper bound) to some smaller values
[11, 18, 4] or increased the maximum number of rounds needed in the worst case to terminate (the
lower bound being t + 1) [3, 9, 20]. For such a purpose, they developed a series of techniques to
exploit the redundancy encountered in the tree structure of the EIG protocol, sacrificing the opti-
mum fault-tolerance or the minimum number of communication rounds. [3, 7] propose a trade-off
between the number of rounds and the bit complexity for any constant d they increase the number
of rounds to t+ t/d while decreasing the bit complexity to O(nd). Similarly, [4] proposes a trade-off
between the resilence of the protocol and the bit complexity for any constant ε the ration of faulty
processes is increased to (3 + ε)t while the bit complexity is lowered to poly(n) ·O(21/ε).

Garay and Moses [13] were the first and only who solved the problem with polynomial number of
communication bits and polynomial local computation cost, still meeting both the bound of t < n/3
on the number of Byzantine processes and the number of t+1 communication rounds. Their solution
is very complex, and both polynomials are actually large — according to our estimates they are
both O(n9) — thus leaving a huge space for improvement. The only known lower bound Ω(nt) on
the number of communication bits was proved by Dolev and Reischuk [10]; this bound becomes
Ω(n2) for linear number of Byzantine processes. The bound t < n/3 on the number of Byzantine
processes necessary for reaching consensus was given by Lamport, Shostak and Pease [16]. Fisher
and Lynch [12] proved the lower bound (t + 1) on the number of communication rounds, which
holds even for milder process failures such as crashes. The interested reader can find in [14] the
history of the improvements introduced from the initial protocol in 1980 [19] to the polynomial one
in 1998 [14] (the full version of [13]). We are not aware of any improvements since then.

The table below taken from [13] gives an overview of the most important improvment over time
concerning the consensus problem. Other improvments occured but they consider randomization;
King and Saia [15] reduced the bit complexity to sub-quadratic.

Protocol n rounds comm. bits

PSL 1980 [19] 3t+ 1 t+ 1 exp(n)
DFFLS,TPS 1982 [9, 20] 3t+ 1 > 2t poly(n)
C 1985 [7] 4t+ 1 t+ t/d O(nd)
BD,DRS 1986 [2, 11] Ω(t2) t+ 1 poly(n)
BDDS 1987 [3] 3t+ 1 t+ t/d O(nd)
MW 1988 [18] 6t+ 1 t+ 1 poly(n)
BGP 1989 [5] 4t+ 1 t+ 1 poly(n)

BG 1991 [4] (3 + ε)t t+ 1 poly(n)O(21/ε)
GM 1993 [13] 3t+ 1 t+ 1 O(n9)
This paper 3t+ 1 t+ 1 O(n3 log n)

Our result In this work, we present a solution that is simpler yet more efficient in terms of
communication complexity than the best known deterministic solution by Garay and Moses [14].
In particular, it matches the two bounds: t < n/3 on the number of tolerated Byzantine processes,
and t + 1 on the number of communication rounds, while the total number of communication
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bits O(n3 log n) sent by non-Byzantine processes is close by factor O(n log n) to the lower bound
Ω(n2) on the total number of communication bits. In order to achieve this, the processes do not
exchange the values they received in the previous rounds, but instead, they exchange a ”digest” on
the information they received. Based on these digests, they locally maintain information of ”who
suspects who” during each round. Thanks to this technique, the size of the exchanged information
much reduced compared to former works, and the crucial part of the analysis shows that this very
limited information is still sufficient to “mimic” the evaluation procedure done by the original EIG
protocol “in spirit”. It needs to be said that the evaluation made by our algorithms, based on very
limited information exchange, might be slightly different than the evaluation made by the original
EIG algorithm executed against the same adversarial schedule, but similar mechanisms guarantee
agreement and validity of the final evaluation throughout correct nodes.

EIG protocol vs. our approach The EIG protocol works in two phases. During the first
phase, processes exchange messages during t+1 communication rounds. At each round each process
forwards all the information it received in the previous round to all processes. This protocol can
be seen as the fully informed protocol, and hence it results in super-exponential communication
complexity (understood as the number of exchanged bits). The collected information is stored
in tree-like data structures, to which we refer as evaluation trees. At the end of round t + 1,
the second phase (local computation on the local trees) is started. It consists of a bottom-up
computation on each of the collected trees (one per process), where a resolved value is associated to
each node of the tree structure by applying a resolution function to the children of this node. The
decision value of the process is the resolved value associated with the set of roots of the trees. The
polynomial protocol by Garay and Moses [13] uses the same tree structures, though parts of the
trees are cut using sophisticated techniques. One of the introduced techniques consists in detecting
cheating processes (Byzantine processes) in a given round in order to prevent them from cheating
in subsequent rounds.

Our protocol is similar to the EIG protocol in its way of proceeding, as processes exchange
information during (t + 1) rounds and store the information they receive in local data structures.
The fundamental difference is in the nature of the stored data. Instead of storing proposed values
and then arrays of received values, arrays of arrays of received values, etc., the processes exchange
only a relatively small digest of received information. More precisely, each process manages an
array of process ids of size n, where it stores the ids of processes it itself suspects to be Byzantine.
At the end of each round this information is updated and the new array is sent to all processes in
the next round. Moreover, in order to detect cheating processes, a classical confirmation mechanism
is used. All information broadcast by a process during a round is echoed by each receiving process
to all other processes (the same mechanism is used for the consistent broadcast of Bracha and
Toueg [6]). A message sent at a round r is confirmed at some process pi at the end of round r + 1
and its sender in consequently not suspected if the same copy is relayed to pi by at least (n − t)
processes during round r + 1. Conversely, if the message of some process is not confirmed in the
next round, the sender is suspected. The fact that processes exchange suspicion arrays prevents
the size of the exchanged information from exponential growth. To ease the presentation of our
algorithm, we assume that the suspicion information is stored in a data structure similar to the
EIG tree, although the size of the information sent by each correct process during each round is
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only quadratic in the number n of processes.1

12 13 14

123 124 125

4241343231242321

2 3 41

143142135134132

126

1234 1235 1236 1243 1245

λ

145

... ...

...
... ...

.........
...

...

level 0

level 1

level 2

level 3

level 4

Figure 1: An EIG tree

In the remainder, we proceed as follows. In Section 2 we introduce the model and the consensus
problem in more details. Section 3 presents the EIG tree structure used by the EIG original
protocol and almost all other protocols that meet the t < n/3 bound. Section 4 describes the main
algorithm. The analysis of the algorithm is split into two sections: the correctness proof of the
protocol is given in Section 5, and the complexity measures are given in Section 6.

2 Byzantine Agreement and Computation Model

In this paper, we consider the classical Byzantine distributed synchronous message-passing model.
The system is composed of a set Π of n synchronous processes, with ids in {1, . . . , n}, which
communicate through a reliable synchronous point to point channels (there is an a priori known
bound on both message transfer delays and local computation of processes). Moreover, up to t
processes can exhibit a Byzantine behavior, which means that such a process can behave in an
arbitrary manner. This is the most severe process failure model: a Byzantine process can crash,
fail to send or receive messages, send arbitrary messages, start in an arbitrary state, send different
values to different processes, perform arbitrary state transitions, etc. A process that exhibits a
Byzantine behavior during an execution is called faulty. Otherwise, it is called correct.

In the Byzantine Agreement problem, also called Consensus, each process pi proposes an initial
value vi (this can be any value). Contrarily to many previous works including the only polynomial
solution of Garay and Moses [14] that restrict the set of proposable values to {0, 1} (called binary
consensus, only two different values are proposable), we consider multivalued consensus.

1This suggests that the bit complexity of the algorithm is O(n4), as each of the n processes sends up to n2 bits
during each of the t < n/3 rounds of the algorithm; however we will show later in Section 6 that this amount of
information can be reduced to O(n3 logn).
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The goal for each (correct) process is to decide on a value. A Byzantine agreement protocol has
to satisfy the following three properties:

In this paper we consider deterministic synchronous round-based algorithms. Moreover, we do
not use authentication (public key asymmetric cryptography to sign messages). During a round,
each correct process may send to all processes, including itself, a unique message whose content is
specified by the executed algorithm, and all messages are received within the same round. Then each
process performs some local computation before starting a new round, or it decides and terminates.

The efficiency of algorithms is measured by the number of communication rounds (optimally
t + 1), and the number of bits sent in messages by correct processes (for which the known lower
bound is Ω(n2)). Fault tolerance of algorithms is measured by the number of Byzantine processes
that can be tolerated — ideally any number t < n/3.

3 The EIG Tree Structure

The exponential information gathering tree (EIG tree) is a data structure used to recording the
information received by a given process along the successive rounds of an n-process round-based
distributed computation. This structure is costly to maintain, as its number of nodes is exponential
in the number n of processes. The trees we consider have (at the end of the t + 1 rounds of the
execution) exactly t+ 2 levels (from 0 to t+ 1).2 A node of level ` has exactly n− ` children and
has a label that consists of an ` element string of process ids (a process id appears at most once
in a given label). The root of this tree is labeled with an empty string λ. The set of labels of the
EIG tree is the set of all possible strings of size at most t+ 1, hence the size of the tree. Figure 1
presents an example of an EIG tree associated with some process pi. We consider in this example
a number of processes n greater than 5 but we cannot represent the whole tree. One can see that
starting from level 1, and for the sake of clarity, many nodes are not represented and are replaced
by (· · · ).

During the execution of the original EIG protocol, each node x of the tree is used to store two
values: val(x) and newval(x). The value of val(x) of a node x on level ` is assigned during round
`. It is the `-th hand report of some initial value (i.e., received through the chain of processes
represented by the ids constituting the label of node x). The value newval(x) of a node x is
assigned during the decision procedure after the t+ 1 rounds.

4 The Main Algorithm

The proposed protocol proceeds in t+1 synchronous rounds, similarly to the EIG protocol. During
a round r, each process sends a same message to all other processes (sending phase), next it waits for
the messages sent to it (reception phase), and then it does local computation on both received and
locally stored data. The fundamental difference between our solution and the EIG algorithm, as
mentioned earlier, is in the nature of the stored and sent data. In other words, we use the same EIG
tree structure that is decorated in a different way. Instead of storing the proposed values and then

2Sometimes an EIG tree was presented as a collection of n trees, each of t + 1 levels ranging from 1 to t + 1;
these trees correspond to the n subtrees of our single EIG tree, each rooted in a distinct node at level 1. Both these
approaches are equivalent.
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the arrays of received values, the arrays of arrays of received values, etc., kept in the exponential
size EIG tree structure, the processes maintain and exchange only a digest of received information.
More precisely, during the first two rounds, processes exchange proposed values (similarly to the
EIG protocol). Then, starting from the third round, each process informs the other processes which
processes it is sure are Byzantine.

To ease the presentation of our algorithm, we say that a correct process pc received a default
value ⊥, which cannot be proposed to the consensus, from a Byzantine process pb, when process pc
received no value, or it received a non well-formed message, or if it has itself suspected pb as being
Byzantine in a previous round.

The two basic ideas that underlie and distinguish the proposed approach from previous works
are: the exchange of suspicion information (except for the first two rounds) instead of the proposed
values or the whole history of messages, and the use of the echo mechanism (here, called a confir-
mation mechanism) introduced by Bracha and Toueg [6] for asynchronous systems. A message can
be safely delivered (we say here that it is confirmed) if it has been echoed by at least (n−t) different
processes. Bracha and Toueg proved that this mechanism ensures that if a correct process confirms
a value from a given process at some round, no other correct process can confirm a different value
from the same process at the same round (either it confirms the same value or no value at all).
Moreover, values broadcast by correct processes are always confirmed (safely delivered) by at least
all correct processes. They proved that in order to implement this mechanism, it is necessary to
have t < n/3.

During a round r, r ≥ 3, each process broadcasts a message that contains two parts. The first
part is the data that the process wants to disseminate, called main information or main part of a
message, and the second part consists of the main information the process has received from each
process in the previous round. This second part is called the proof by Bracha and Toueg [6]; we
call it the echo, due to its nature, and it will serve to confirm the main information of the previous
round. A main information received from a given process pj at round r is confirmed to a process
pi at round r + 1 if it has been echoed to pi (i.e., forwarded in the echo part of messages at round
r + 1) by at least (n− t) different processes.

In the algorithm description below, we only specify the behavior of correct processes, as Byzan-
tine processes, due to their malicious nature, are not bounded by the rules of the algorithm.

4.1 Principles of the Algorithm

Each process maintains two data structures: an EIG tree to store received values, and a set byz
(initialized to ∅) to store the ids of the processes it suspects to be Byzantine (it suspects by itself,
not as reported by some other process). Similarly to the original EIG protocol, each node of the EIG
tree with label x can store values (noted val(x) and newval(x) in the original EIG protocol). In the
present paper, each node stores three: values val(x) and cval(x), representing respectively the main
part and the echo part of messages, and newval(x) assigned to node x in the decision procedure
at the end of round t+ 1. newval(x) can be seen as a correction of val(x). The values val(x) and
cval(x) are collected during the different rounds, and newval(x) is set during the extraction of the
decision value after the t + 1 rounds. In the presentation of the algorithm, when we say that we
decorate node x, we mean that the variables val(x) and cval(x) associated with the node labeled x
are set to some values (except of nodes x on level 1, for which cval(x) is not defined).
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The following algorithm describes the execution of the protocol from the point of view of a
correct process pi and shows how this process manages its two data structures: the EIG tree and
the set byzi.

Round 1. Each process sends its initial value to all other processes; this is the main part of the
message and there are no echoes in this round. The values received by process pi are used
to decorate the nodes of level 1 of the EIG tree maintained by pi. As explained above, if pi
has not received a message, or received a non well-formed message from a given process px,
it decorates the node labeled x with the value ⊥, i.e., val(x)← ⊥. If it received a proposable
value v, it sets val(x) to v. The variable cval(x) is not used for nodes x on level 1.

Round 2. Each process pi sends an empty main part and echoes the messages (i.e., initial values)
it received in the first round. Thus, each message is a sequence of up to n initial values. The
values received by pi (up to n(n− 1) values) are used to decorate the nodes of level 2 of the
EIG tree maintained by pi. Node x = jk is decorated by the value v, i.e., cval(x)← v, if pk
reports that it received v from pj at level 1; cval(x) is set to ⊥ if no valid value is reported.
The variable val(x) will be set during the next round. Moreover, during the computation
phase of round 2 (after the confirmation checking of the messages sent during the first round),
a correct process pi adds to its set byzi of suspected Byzantine processes any process pb whose
initial value (the one it received directly from pb at round 1) is not confirmed at round 2.

Round 3. Each process pi attaches its local set byzi of Byzantine processes as the main part of
its message (the “digest”), and echoes the arrays of initial values it received during round 2
(i.e., up to n arrays of n values each).

Here we can see a difference from the original EIG protocol. During a round r, 3 ≤ r ≤ t+ 1,
a correct process not only decorates the nodes of level r but also possibly the nodes from
level r − 1 to level t + 1. Indeed, the confirmation mechanism needs two rounds to detect
Byzantine behaviors and once we uncovered a Byzantine process, of course we never rely on
what she says. For example, if pj behaved in a Byzantine way (e.g., sending different values
to different correct processes) during round 1, it will be suspected by at least one correct
process pk at the latest at the end of round 2 (using the confirmation mechanism). Then, pk
sends the information “pk suspects pj” to the other processes at round 3. We will see below
how the variables val(x) and cval(x) associated with the different nodes x are set. Finally,
pi enriches its list of Byzantine processes using the confirmation mechanism applied to the
messages received in the previous round and echoed in this round.

Round r, 4 ≤ r ≤ t+ 1. Starting from round 4, rounds are the same as for round 3, except that
the messages sent by the different processes include the list of Byzantine processes as the
main part of the message, and echo the lists received during the previous round in the echo
part (the proposed values are no more sent). We will define below how the variables val(x)
and cval(x) associated with the different nodes x are set in these rounds.

Once the t+1 rounds are terminated, the EIG tree is decorated as follow. Recall that we already
showed how to define val(v) for any node x on level 1 of the tree, and also the values cval(x) for
nodes on level 2. In the following, we decorate the EIG tree with two values > and ⊥. The value >
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means “do not suspect” whereas the value ⊥ means “suspect”. For example, when val(x) of some
node x = yjk is set to >, this means that pk reported that it suspects pj , and when cval(x) of
some node x = yjk` is set to >, this means that p` reported that pk does not suspect pj (this is a
second-hand information — an echo).

• For each node x from a level greater than 1 and at most t, x = yk` where y is a string
(possibly empty) of ids and k, ` are ids of two other processes not listed in y: pi sets val(x)
to > if p` never reported to pi by round t that it suspects pk; otherwise, val(x) is set to ⊥.

• For each node x from a level greater than 2, x = yjk` where y is a string (possibly empty)
of ids and j, k are ids of two other processes not listed in y: pi sets cval(x) to > if p` never
reported by round t + 1 to pi that pk reported that it suspects pj (this value is reported in
the second-hand information included in the echo part of the message received by pi from p`);
otherwise, cval(x) is set to ⊥.

• One can note that for the nodes of level t + 1 (i.e., the leaves of the EIG tree), the variable
val(x) is set to no value, so for each leaf node x, x = yk` where y is a string (possibly empty)
of ids and k, ` are ids of two other processes not listed in y: pi sets val(x) to > if p` did not
report to pi that it suspects pk; otherwise, val(x) is set to ⊥.

Remark 1: Note that, except for the third round, the echoes are not themselves echoed. This
however does not influence the later evaluation and decision making, since similarly to the EIG
protocol, there is high redundancy in the received information and some of it can be skipped, as
pointed out in many previous works including [13]. Moreover, from round to round, the number of
nodes in subsequent levels of the constructed EIG tree grows, whereas the new available information
(main part of received messages) remains quadratic. This means that all the collected information
can be stored in arrays instead of the EIG tree structure. The tree is however used to ease the
presentation of the decision making and its analysis.

4.2 Extracting the final decision value

As for the EIG protocol, the decision making consists in assigning new values to the nodes of the
EIG tree of each correct process, starting from the leaves (bottom-up evaluation). Let x be a node
of the tree and val(x) and cval(x) be the values with which node x is decorated. The evaluation
mechanism of the nodes consists in assigning a new value newval(x) to each node x, the new value
of the root being the decision value. Let us consider the EIG tree of a correct process pi.

• When x is a leaf, newval(x)← val(x). This will be one of > or ⊥.

• When x is an internal node on level l ranging from t down to 1, newval(x) is set to a value v
(this is a value equal to > or ⊥ for levels greater or equal than 2, and for level 1 it is either
a proposed value or ⊥ if no valid value is received) if there are (n − t − l) children of x the
new values of which are set to > and among them there is a strict majority with the variable
cval set to v. More formally:
(i) Let T = {y | y child of x ∧ newval(y) = >}.
(ii) newval(x) ← v if a strict majority of the cval of the children of x that belong to T are
set to a same value v.
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• When x = λ, newval(x) ← v if a strict majority of the new values of its children (these are
either proposed values or the default value ⊥ if no valid value has been computed) are set to
a same non-⊥ value v; otherwise it is set to a default value v0.

The intuition that is behind the values val(x), cval(x) and newval(x) of a node x of a given
level l is the following. For the nodes of level 1 and level 2, val(x) is a proposed value as in the
original EIG protocol. For the other levels l, 1 < l ≤ t, let us consider that x = yjk. val(x) is set
to > if pk reported that it does not suspect pj . cval(x) is the echo received from pk of the value
val(yj) (if both pj and k are correct cval(x) = val(yj)).

The values newval are a correction of val during the execution of the decision making procedure
according to what the child nodes of x reported as an echo of val(x). newval(x) is the information
whether pi considers that pk suspects pj or not. val(x) is the suspicion information reported by pk
and newval(x) is the information ”computed” by pi (using the echoes and the suspicion information
of the lower levels) on whether pk suspects pj or not. Then the values newval of this level are used
as a mask to re-apply the confirmation mechanism. Only the echoes cval(xjk) of the processes pk
that do not suspect process py (newval(xjk) evaluated to >) are considered for the confirmation
mechanism of the value val(xj) of node xj (xj is the parent node of node xjk). For a node x of
level 1, newval(x) does not contain an information about suspicions as there is only one process id
in the label x; it is indeed the corrected value of the original value received by pi from pj .

Let us note that whereas in the original EIG protocol only the values associated to the leaves of
the tree are used to compute the decision value, i.e., newval(x) for each non-leaf node is a function
of the new values assigned to its child nodes, in our protocol the value newval(x) depends on both
newval and cval values associated with its child nodes.

5 Correctness Proof

The correctness proof is tailored along the analysis of the (original) EIG protocol as proposed by
Bar-Noy et al. [3] and described in the book by Lynch [17]. Although the steps of both analysis are
similar, due to the use of the concept of EIG trees, the proofs often rely on different arguments —
more subtle in case of our protocol, as it uses only a small amount of exchanged information. The
proof of termination is obvious, therefore in the remainder we focus on validity and agreement.

Lemma 1 Each message sent by a correct process at round r is confirmed by at least all correct
processes at round r + 1. Said otherwise, a correct process pi never suspects a correct process pj
and thus always relays correctly the messages of pj.

Proof of Lemma 1: The confirmation mechanism says that an information sent by a process
pj in the main part of a message is confirmed if it is echoed by at least (n− t) different processes;
otherwise, the sender is necessarily Byzantine (assuming t < n/3). If a correct process pi sends a
message at some round r, it will send the very same message m to all processes and at least all
correct processes (n − t processes) will echo the main part of m to all processes at round r + 1.
Consequently at the end of round r+ 1 all correct processes will receive at least n− t echos related
to message m broadcast at round r by pi. �
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Notation: As each process maintains its own EIG tree structure, there are n nodes labeled x, one
for each process of the system. Thus, val(x)i is used to refer to the value that is associated with
the node labeled x of the EIG tree maintained by process pi.

Lemma 2 After t + 1 rounds of the proposed protocol, the following holds. If pi, pj and pk are
correct processes, with i 6= j, then val(x)i = val(x)j for every label x ending in k. Similarly,
cval(x)i = cval(x)j if x belongs to a level greater than 1 (otherwise, it is not set).

Proof of Lemma 2: The proof of this lemma follows directly from the fact that a correct process
sends the same messages to all processes including itself, and that val(x)i and cval(x)i are either
proposed values or suspicion information reported to pi by pk. �

Lemma 3 extends the previous one to new values.

Lemma 3 After t+1 rounds of the proposed protocol, the following holds. Suppose that x is a label
ending with the index of a correct process. Then there is a value v such that val(x)i = newval(x)i =
v for all correct processes pi.

Proof of Lemma 3: The proof is by induction on the length of the tree labels from t+ 1 down
to 1.

Base case: the leaves x of the tree (of length t + 1). From Lemma 2, val(x)i is the same (call
this value v) for all correct processes pi. And by definition of new values, newval(x)i = val(x)i for
all correct processes pi.

Induction: Let us consider a label x of length `, 1 ≤ ` ≤ t ending with the index of a correct
process pj (x = yj). By Lemma 2 all correct processes pi have the same val(x)i (call it v). By
the proposed algorithm, for any node labeled xk (k being the id of a correct process), cval(xk)i =
val(x)i = v as cval(xk)i is the echo of val(x)i sent by process pk.

Moreover, by Lemma 1, no correct process suspects a correct process. Consequently, for any
node labeled xk (k being the id of a correct process), val(xk)i = >. By the induction hypothesis,
newval(xk)i = >. Let us now show that a strict majority of the children of node x are correct
processes. Indeed, x has n − ` children. As there are at most t Byzantine processes, we are sure
that at least (n − t − l) child nodes xk of x end with the id k of a correct process. As ` ≤ t we
have (n − t − l) ≥ (n − 2t) > t because n > 3t. To sum up, for all child nodes xk of x (pk being
a correct process), we have newval(xk)i = > and cval(xk)i = val(x)i and these child processes
are a strict majority. Consequently, by the decision making procedure of the proposed algorithm,
newval(x)i is set to val(x)i proving the lemma. (Although for ` = 1 or 2, the values of val and
cval are proposed values, the same reasoning holds.) �

Theorem 1 (Validity) If all correct processes begin with the same initial value v, then the only
possible decision value for correct processes is v.

Proof of Theorem 1: If all correct processes propose the same value v, then val(j)i = v for
any pair pi, pj of correct processes. By Lemma 3 newval(j)i = v for any pair pi, pj of correct
processes. The majority rule used by the decision procedure implies that newval(λ)i = v for all
correct processes pi. �
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In order to prove the agreement property of the protocol, we reuse the definition of path covering
set similarly to the EIG protocol. A subset C of the nodes of an EIG tree is a path covering if every
path from the root to a leaf of the tree contains at least one node in C. Moreover a node x is said
to be common for a given execution of the protocol (recall that each process has its own version of
the tree) if newval(x)i is the same for all correct processes pi. A given path covering is said to be
common for an execution if all of its nodes are common in that execution.

The proof of the next Lemma is exactly the same as for the original EIG protocol, however we
include it here for completeness.

Lemma 4 ([17]) After t + 1 rounds of the proposed protocol, there exists a path covering that is
common in this execution.

Proof of Lemma 4: We prove that the set C of all the nodes whose labels are of the form xi
where pi is a correct process is a common path covering. First, by Lemma 3 all these nodes are
common as they end with a correct process id. Second, as each path from the root to a leaf has
exactly t + 1 non-root nodes and no process id appears more than once, consequently there is at
least one node whose label ends with the id of a correct process since there are at most t Byzantine
processes. �

Lemma 5 After t + 1 rounds of the proposed protocol, the following holds. If there is a common
path covering of the sub-tree rooted at a node labeled x, then either x is common or one of its
ancestors is common.

Proof of Lemma 5: The proof is by induction on the length of the tree labels from t + 1
down to 1.

Base case: The leaves x of the tree (of length t+1). The only node of the common path covering
is x itself, which is common by definition of a common path covering.

Induction: Assume the lemma is true for labels greater then l, where 0 ≤ l ≤ t, if any. Let x be
a node label of size l and C a common path covering rooted at x. If x ∈ C or if x ends with the id
of a correct process then the lemma holds by, respectively, the definition of C and Lemma 3. If x
has a correct ancestor then the lemma also holds. So let us consider the case where x is composed
of the ids of Byzantine processes. By the definition of a common path covering, any child x` of x
is a common path covering and, moreover, by the induction hypothesis, ` is common. According
to the decision making procedure (the computing of newval(x)), there are three cases to consider:

• x belongs to level l = t. As the process ids that compose a node x of level l = t are all
Byzantine (see above), consequently all its child nodes end with the id j of correct processes
and these nodes are common by the induction hypothesis. On the other side, for each child
node xj, cval(xj) is a value reported by a correct process pj . By Lemma 1, correct processes
report correctly messages and thus, as the decision making procedure is deterministic and
correct processes have the same data concerning x, all correct processes will compute the
same newval(x) and x is common.

• x belongs to level l ≤ t− 1. Suppose x = yj, for some node y and process pj . Let us consider
the set of process ids top set = {k | xk is a child node of x ∧ newval(xk) = >}. This set
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contains process ids k such that the child node of x the label of which terminates with the id
k has a newval set to >. This set is the same for all the EIG trees maintained by the different
correct processes by the induction hypothesis. If | top set |< (n− t− l) then by the decision
making procedure, any correct process pi sets newval(x) to the same value ⊥ and the lemma
follows.

If | top set |≥ (n − t − l) then at least (n − t − l) − (t − l) = n − 2t > t + 1 of the processes
represented in top set are correct (recall that the number of Byzantine processes whose ids
are in top set is at most t − l as x is composed of the ids of l Byzantine processes). This
means that among the processes represented in the set top set there is a strict majority of
correct processes. Moreover, this majority of such correct processes pk do not suspect process
pj (recall that x = yj) by the definition of the set top set and by Lemma 3 applied to node
xk. If they do not suspect pj this means that they reported the same value cval(xk). Indeed,
if two correct processes report different values from some process, it is necessary that at most
one of these processes can confirm the value it reported and the second one will suspect the
sender (by the confirmation mechanism). Hence, the value cval(xk) is a strict majority among
the processes of top set, and consequently this same value is assigned to newval(x) and x is
common.

• x = λ (level l = 0). By the definition of newval(x) and the induction hypothesis, x is
common. In more details, suppose to the contrary that λ is not common. Then, by inductive
hypothesis, each of its children y consisting of a unique process id would be common, which
means that it has the same newval(y)k across correct processes pk. Consequently, by the
definition of newval(λ) and by the fact that the number of children of λ consisting of a
correct process id is at least n− t > t, the newval(λ)i are the same across correct processes
pi. This means that λ is common, violating our contradictory assumption.

�

Theorem 2 (Agreement) The proposed protocol ensures the agreement property of consensus.

Proof of Theorem 2: After t+ 1 rounds of the algorithm, by lemmas 4 and 5 and the fact that
the node λ has no ancestor, λ is common. Agreement follows as newval(λ) is the decision value.
�

6 Complexity Analysis and Improvement

If we consider binary consensus (only two possible value can be proposed), the main algorithm, as
described in Section 4, achieves O(n3) communication complexity, in terms of the number of bits
sent by any correct process. Each process sends, respectively, O(1), O(n) and O(n2) bits during
the first three rounds, and then O(n2) bits in each subsequent round: a list of suspected processes
and the echoes of the lists received in the previous round (n2 bits at most). For the maximal value
of t (which is O(n)), the communication bit complexity of this protocol is O(n3) per process, and
thus O(n4) for all correct processes in total.

In the case of multivalued consensus, the proposed value of each process is taken from a set V
of proposable values, the size of which is k. The bit complexity of the first three rounds becomes
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O(n2) log2 k per process, where the factor log2 k comes from the size of the binary representation
of a proposed value. The complexity of the subsequent rounds of the algorithm does not depend
on k, as processes only exchange suspicion information, namely, O(n3) bits per process. The total
bit complexity is thus O(max(n4, n3 log k)). If log2 k = O(n), the bit complexity of the algorithm
is O(n4).

However, similarly to the floodset protocol for solving the consensus problem in crash-prone
synchronous systems, our protocol can be modified to use only an incremental dissemination of the
suspicions (instead of sending the whole list of suspected processes all the time). Indeed, once a
process suspects another process it will suspect it until the end of the execution and there is no
need to resend this information at each round. Namely, each suspicion is sent only once, that is, in
the first time where it is discovered. A correct process can suspect at most t processes. Obviously,
if a suspicion is sent only once, the echo is also sent only once by correct processes. A Byzantine
process can be suspected by possibly all the other processes. Due to the relay, we can say that
during the execution of the protocol each process sends t suspicions and relays (n− 1)t suspicions.
Each relay of a suspicion needs two process ids, i.e., who suspects who. That is, the protocol needs
O(nt log n) bits per process, where the factor log2 n comes from the size of the binary representation
of a process id. Moreover, each process sends respectively O(1), O(n) and O(n2) bits during the
first three rounds, which are special rounds. Finally, the property of well-formed messages requires
from each process to send its id, of logarithmic size, to each process in every round; this contributes
another O(t log n) to the bit communication complexity per each process. For the maximal value
of t, which is O(n), the bit communication complexity of the modified protocol is O(n2 log n) per
process, therefore O(n3 log n) in total for binary consensus.

Again, if we consider that the proposed values are taken from a set V of size k then the
complexity of the algorithm becomes O(n3 log(max(n, k))).
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