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Abstract. Nowadays, virtualization is present in almost all computing infras-

tructures. Thanks to VM migration and server consolidation, virtualization helps

reducing power consumption in distributed environments. On another side, Dy-

namic Voltage and Frequency Scaling (DVFS) allows servers to dynamically

modify the processor frequency (according to the CPU load) in order to achieve

less energy consumption. We observed that these two techniques have several in-

compatibilities. For instance, if two virtual machines VM1 and VM2 are running

on the same physical host (with their respective allocated credits), VM1 being

overloaded and VM2 being underloaded, the host may be globally underloaded

leading to a reduction of the processor frequency, which would penalize VM1

even if VM1’s owner booked a given CPU capacity. In this paper, we analyze

the compatibility of available VM schedulers with DVFS management in virtu-

alized environments, we identify key issues and finally propose a DVFS aware

VM scheduler which addresses these issues. We implemented and evaluated our

prototype in the Xen virtualized environment.

Keywords: DVFS, virtual machines, scheduling.

1 Introduction

Nowadays, many organizations tend to outsource the management of their physical

infrastructure to hosting centers. They subscribe for a quality of service (QoS) and

expect providers to fully meet it. By acting this way, companies aim at reducing their

costs by paying only for what they really need. The providers, instead, are interested in

saving resources while guaranteeing customers QoS requirements.

On the provider side, virtualization was introduced in order to facilitate resource

management. Virtualization is a software-based solution for building and running si-

multaneously several operating systems (called guest OS or Virtual Machine) on top of

an underlying OS (called host OS or hypervisor). In hosting centers, virtualization is

a means to implement server consolidation. Indeed, servers being underutilized most

of the time (below 30% of processor utilization [17]), VM (Virtual Machine) migra-

tion helps achieving better server utilization by migrating VMs on a minimal set of

machines, and switching unused machines off in order to save energy.



However, powerful computers with high processor frequency, multiple cores and

multiple CPUs are an important factor contributing to the continuous increase of en-

ergy consumption in computing infrastructures. To reduce power consumption of such

infrastructures, processor manufacturers have developed a hardware technology called

Dynamic Voltage and Frequency Scaling (DVFS). DVFS [12] allows dynamic processor

frequency control, and hence, helps in reducing power consumption.

DVFS is largely used in non-virtualized systems, but its implementation in virtu-

alized architectures reveals some incompatibilities with VM schedulers. In virtualized

systems, VMs are generally created and configured with a fixed CPU share. DVFS,

according to the host’s global CPU load, dynamically scales the processor frequency

regardless of the VM local loads. In a scenario with some overloaded VMs, but a glob-

ally underloaded host, DVFS will scale down processor frequency, which will penalize

overloaded VMs.

The contributions of this paper are two folds. First, we analyze and highlight the

incompatibility of available VM schedulers with DVFS management in virtualized sys-

tems. Second, we identify the key issues and propose a DVFS aware VM scheduler

which addresses these issues. To demonstrate the effectiveness of our approach, we

implemented and evaluated a prototype in the Xen [1] virtualized environment.

The rest of this paper is structured as follows. Section 2 presents the context of our

work. Section 3 analyzes VM schedulers and DVFS principles and pinpoints their in-

compatibilities. In Section 4, we present our DVFS aware VM scheduler prototype.

Section 5 presents our experiments and results. After a review of related works in sec-

tion 6, we conclude the article in Section 7.

2 Context

In this section, we introduce the basic concepts of virtualization and DVFS.

2.1 Virtualization

Virtualization is a software and/or hardware-based solution for building and running

simultaneously several guest OS on top of an underlying host OS. The key technique is

to share hardware resources safely and efficiently between these guest OS. In the host

OS, a hypervisor implements several execution environments also known as Virtual

Machines (VM) in which guest OS can be executed. Thanks to the hypervisor, guest OS

are isolated from each other, and have the illusion of being in the presence of several

separate machines. The hypervisor is also the program that ensures good sharing of

hardware resources among multiple guest OS. It emulates the underlying hardware for

VMs1 and enables communication between guest OS and real devices.

The hypervisor is responsible for scheduling VMs on the processor. Initially, VMs

are created and configured in order to have, among other parameters, an execution pri-

ority and a CPU credit. The hypervisor scheduler chooses the VM to execute, according

1 Each guest OS has the illusion of having host’s processor, memory and other resources all to

itself.



to its scheduling algorithm and the VM parameters. It ensures dynamic and fair allo-

cation of CPU resources to VMs. However, in each VM, the execution of a guest OS

implies the execution of processes scheduled by another process scheduler. Therefore,

the execution of an application in a virtualized environment involves different levels of

scheduler, but the hypervisor is not conscious of it. From its point of view, VMs are

just processes which are scheduled in such a way that each VM receives its associated

credit of the CPU [18] (a percentage of the CPU time).

In the rest of the article, we will use the term VM to refer to a guest OS running in a

virtual machine.

2.2 Dynamic Voltage and Frequency Scaling (DVFS)

Today, all processors integrate dynamic frequency scaling (also known as CPU throt-

tling) to adjust frequency at runtime. The system service which adapts frequency in the

operating system is called a governor. Different governors can be implemented with

different policies regarding frequency management.

In the Linux kernel, the Ondemand governor changes frequency depending on CPU

utilization. It changes frequency between the lowest level (when CPU utilization is less

than 20% [22]) and the highest level (when CPU load is higher). The Performance

governor always keeps the frequency to the highest value while the Powersave gov-

ernor keeps it at the lowest level. The Conservative governor decreases or increases

frequency by one level through a range of values supported by the hardware, according

to the CPU load. Finally, the Userspace governor allows user applications to manually

set the processor frequency [13].

In order to control the CPU frequency, governors rely on an underlying subsystem in-

side the kernel called cpufreq [22]. Cpufreq provides a set of modularized interfaces to

allow changing the CPU frequency.

As aforementioned, effective usage of DVFS brings the advantage of reducing power

consumption by lowering the processor frequency. Moreover, almost all computing in-

frastructures rely on multi-core and high frequency processors. Therefore, the benefit

from using DVFS has been experienced in many different systems.

2.3 Consolidation and DVFS

Virtualization allows VMs to be dynamically migrated between hosts, generally accord-

ing to the CPU load on the different hosts, and to switch unused machines off. Ideally,

a consolidation system should gather all the VMs on a reduced set of machines which

should have a high CPU load, and DVFS would therefore be useless.

However, as argued in [16], an important bottleneck of such consolidation systems is

memory. Any VM, even idle, needs physical memory, which limits the number of VMs

that can be executed on a host. Therefore, even if consolidation can reduce the number

of active machines in a hosting center, it cannot optimally guarantee full usage of CPU

on active machines as it is memory bound. Consequently, DVFS is complementary to

consolidation.

The next section analyzes the incompatibilities between virtualization and DVFS for

energy saving.



3 Analysis

The overall goal of this paper is to show that combining virtualization and DVFS man-

agement may raise incompatibilities and that it is required a smart coordination between

DVFS management and VM management (i.e., VM scheduling). In this section, we first

review VM schedulers, especially those that are effectively used in virtualization solu-

tions (such as Xen). We then analyze the issues that are raised when these schedulers

are combined with DVFS management.

3.1 VM Schedulers

VM schedulers are in charge of allocating CPU to VMs. Commonly, schedulers are

classified into three categories: share, credit allocation and preemption [6]. In our work,

we focus on credit allocation schedulers as they aim at allocating a portion of processor

to a VM. This portion of the processor corresponds to a SLA (service level agreement)

negotiated between the provider and the customer, i.e. this portion of the CPU was

bought by the client and has to be guarantee by the provider.

In the credit scheduler category, we distinguish: fix credit and variable credit sched-

ulers.

With fix credit scheduler2, the CPU credit of each VM is guaranteed, which means

that the VM always obtains the time slices corresponding to this credit (a percentage of

the processor). For instance, if two VMs are running on the same physical host with the

same priority and CPU credit (50%), then each of them will receive at most 50% of the

CPU time even if one of them becomes inactive.

With variable credit scheduler3, the CPU credit of each VM is also guaranteed, but

only if the VM has a computation load to effectively use it. In the case of unused CPU

time slices, they are redistributed among active VMs. It means that the processor is

idle only if there is no more runnable VM. For example, with two VMs with the same

priority and CPU credit (50%), each of them will receive 50% of the CPU time slices

if they are both fully using their time slices, but if one of them becomes inactive, the

active VM may receive up to 100% of the CPU.

In this paper, we conducted our experiments with the Xen system (version 4.1.2).

Xen has three schedulers called Credit, Simple Earliest Deadline First (SEDF) and

Credit2. Credit2 scheduler is an updated version of Credit scheduler, with the intention

of solving some of its weaknesses. This scheduler is currently available in a beta ver-

sion. Credit is the default Xen scheduler and SEDF is about to be removed from Xen

sources. In the following, we only consider credit and SEDF schedulers as they allow

illustrating the incompatibilities (with DVFS) we aim at addressing.

Xen Credit scheduler is primarily a fix credit scheduler. A VM can be created with

a given priority and a given credit, and the VM credit is always guaranteed. The only

exception is when allocating a VM with a null credit. In this latter case, the VM will not

have any credit limit and it can use any CPU time slices that are not used by other VMs

(such a VM behaves as with a variable credit scheduler, except that it does not have any

guaranteed credit).

2 Also called non-work conserving scheduler
3 Also called work conserving scheduler



With Xen SEDF scheduler, each VM is configured with a triplet (s,p,b), where s

represents the lowest slice of time during each period of length p where the VM will

use the CPU. The boolean flag b, indicate whether the VM is eligible or not to receive

extra CPU time slices that are not used by other VMs. Therefore SEDF can be both used

as a fix or variable credit scheduler (according to the b flag), and the credit allocated to

a VM can be defined with the s and p parameters.

In our experiments, we create VMs with a given fraction of the CPU capacity (a

credit corresponding to a SLA) and we illustrate the incompatibilities between DVFS

and VM schedulers by using Xen Credit scheduler as fix credit scheduler and Xen SEDF

scheduler as variable credit scheduler.

In the rest of the paper, we will not consider different VM priorities as we assume

that the overall goal of a hosting center provider is to allocate portions of a processor

(with VMs) to customers, without any priority between customers.

3.2 Combining DVFS and VM Scheduling

In version 4.1.2, Xen supports four governors (as described in Section 2.2): ondemand,

performance, powersave and userspace.

The Ondemand governor is the most used for DVFS. Depending on the global host

CPU load, the governor adjusts the processor frequency between the highest and the

lowest level. However, the VM scheduler selects and executes VMs regardless of pro-

cessor frequency, and therefore a processor frequency reduction influences VM perfor-

mance.

Let us consider a Xen virtualized system with two VMs (V20 and V70) running on

the same physical host. They are respectively configured with 20% and 70% of credit.

The Ondemand governor will set the suitable processor frequency according to the load.

We assume in the illustrative example used below that reducing the processor frequency

slows down the processor by 50%.

Then, let us consider, the two following scenarios (with different schedulers).

Scenario 1 - Fix Credit Scheduler. We assume that the host is working with a fix

credit scheduler. If V20 is overloaded (100% of its 20% CPU credits) and V70 is un-

derloaded (0% of its 70% CPU credits), then the host is globally underloaded (the load

is theoretically 20%). The Ondemand governor scales down the processor frequency.

This reduction saves energy, but V20 is heavily penalized. Indeed, instead of receiving

its percentage (20%) of the computing capacity, V20 receives less (50% of 20%) be-

cause of the frequency reduction. When a credit is allocated to a VM as a percentage

of the total host CPU capacity, this percentage is a fraction of the processor capacity

at the maximum frequency. If the processor frequency is decreased because V70 is not

using its allocated credit (and the host is therefore globally underloaded), V20 does not

obtain its initially allocated credit.

In summary in this scenario, scaling down frequency decreases V20’s performance

and therefore its applications QoS, because the fix credit scheduler is not aware of

processor frequency scaling.



Scenario 2 - Variable Credit Scheduler. Now, consider that our host is working with

a variable credit scheduler. With the same assumptions than in the previous section

(V20 overloaded, V70 underloaded), V70’s unused CPU time slices can be given to

V20, because of variable credit allocation, which counterbalances the effects described

with fix credit scheduler if we would have a frequency reduction. However, we will

not have any frequency reduction. All the V70 unused time slices can be given to V20

(without any limit), which leads to a globally overloaded host, which in turn prevents

the processor frequency be scaled down.

In this scenario, the problem with the variable credit scheduler is that by giving

unused time slices to V20, it will prevent frequency scaling, thus wasting energy from

the point of view of the provider.

Design Principles of Power Aware Scheduling. Because of the independence of VM

schedulers and DVFS governors, either the provider cannot guarantee the QoS required

by the customers (with the fix credit scheduler) or a VM will be allowed to use more

CPU than its allocated credit, preventing DVFS scaling (with the variable credit sched-

uler). The previous scenarios reveal incompatibilities between schedulers and gover-

nors.

Our proposal is to take advantage of DVFS to lower power consumption while guar-

anteeing the credits allocated to VMs. Concretely, when the processor frequency is

modified, we reconsider the credit associated with VMs in order to counterbalance the

effect of the frequency modification. The consequence is that:

– the initially configured credit of a VM is a percentage of the computing capacity

of the processor at the maximum frequency (20% for V20 and 70% for V70 in our

scenario)

– a VM will see its credit increased (resp. decreased) whenever the processor fre-

quency is decreased (resp. increased), this credit (at the new frequency) being

equivalent to the initial credit (at the maximum frequency). In the previous sce-

nario, when the processor frequency is decreased (slowing down the processor by

50%), V20 will be given 40% of credit to counterbalance the frequency reduction.

– a VM is never given more computing capacity than its allocated credit, enabling

frequency reductions

The next section details this contribution.

4 Contributions

As previously argued, DVFS and VM schedulers have incompatibilities. DVFS was in-

troduced for power reduction, but cannot directly be exploited for the same purpose

in virtualized systems. Our contribution aims at managing DVFS in a virtualized envi-

ronment while (i) benefiting from power reduction and (ii) guaranteeing allocated CPU

credits.

We implemented our Power Aware Scheduler (PAS for short) in the Xen environment

as an extension of the Xen Credit scheduler, which is the default and most achieved

VM scheduler. The following subsections present our implementation choices and the

implementation of the PAS scheduler.



4.1 Implementation Choices

We considered three possible implementations for our PAS scheduler:

– user level - credit management. In this design, we let the Ondemand governor man-

age the processor frequency. Then, a user level application monitors the processor

frequency, and periodically computes and sets VM credits in order to guarantee

initially allocated credits.

– user level - credit and DVFS management. In this design, a user level application

monitors the VM loads. Periodically, it computes and sets the processor frequency

which can accept the load, and it also computes and sets the updated VM credits.

With this solution, the VM credits can be updated each time the processor frequency

is modified.

– in the Xen system - credit and DVFS management: A user level implementation

can be quite intrusive because of system calls and it may lack reactivity. Another

possibility is to implement it as an extension of the VM scheduler. DVFS and VM

credit computations and adaptations are then performed each time a scheduling

decision is made.

We experimented with these three solutions. The results reported in this paper are

based on the third implementation.

4.2 PAS Scheduler Implementation

In our implementation of the PAS scheduler, we rely on two main assumptions:

– proportionality of frequency and performance. This property means that if we mod-

ify the frequency of the processor, the impact on performance is proportional to the

change of the frequency.

– proportionality of credit and performance. This property means that if we modify

the credits allocated to a VM, the impact on performance is proportional to the

change of the credits.

Proportionality of Frequency and Performance

This proportionality is defined by:

Lmax

Li

=
Fi

Fmax

× cfi (cfi is very close to 1) (1)

which means that if we decrease the frequency from Fmax down to Fi, the load will

proportionally increase from Lmax to Li. For instance, if Fmax is 3000 and Fi is 1500,

the frequency ratio is 0.5 which means that the processor is running 50% slower at Fi

compared to Fmax. So if we consider a load (Lmax) of 10% at Fmax, the load (Li)

should be 10%
0.5 = 20% at Fi.

Even if cfi is very close to 1, we kept this variable in our equations as we observed

that it may vary according to the machine architecture and the considered frequencyFi.



A similar proportionality is defined for execution times. But we add here that exe-

cution times depend on the credit (j) allocated to the VM which hosts the computation

(VM credits are considered below)4.

T j
max

T
j
i

=
Fi

Fmax

× cfi (2)

We define the frequency ratio as ratioi =
Fi

Fmax
.

Proportionality of Credit and Performance

This proportionality is defined by:

T init
i

T
j
i

=
Cj

Cinit
(3)

which means that if we increase the credits of a VM from Cinit up to Cj , the execu-

tion time will proportionally decrease from T init
i to T

j
i . Here, the execution time also

depends on the frequency (i) of the processor. For instance, if we increase the credits

allocated to a VM from 10% to 20%, we double the computing capacity of the VM.

Then the execution time should become half of the initial execution time.

These proportionality rules are validated at the beginning of the evaluation section

(Section 5).

In our algorithms, the first equation (1) is used to estimate, for a given CPU load,

what would be the load at a different processor frequency. Therefore, if we measure a

load Li at frequency Fi, we can compute the absolute load, i.e., the equivalent load at

Fmax which is Li ∗ ratioi ∗ cfi. And if we want to check whether such an absolute load

can be supported at a different frequency (i), we will check whether this absolute load

is less than 100 ∗ ratioi ∗ cfi.

The two other equations (2 and 3) are used to compute the modification of VM cred-

its, which can compensate the performance penalty incurred by a frequency reduction.

Assume that a VM is initially allocated credit Cinit (which is a fraction of the proces-

sor at frequency Fmax). Then assume that the frequency of the processor is reduced

down to Fi. We are looking for the new credit Cj to assign to this VM, so that its ex-

ecution time would be the same as with credit Cinit and frequency Fmax, i.e. so that

T
j
i = T init

max.

According to equation 3, Cj =
T init
i ∗ Cinit

T
j

i

According to equation 2, T
j
i =

T j
max

ratioi ∗ cfi
, so T init

i =
T init
max

ratioi ∗ cfi

Therefore, Cj =
T init
max ∗ Cinit

ratioi ∗ cfi ∗ T
j

i

and we want that T
j
i = T init

max

So Cj =
T init
max ∗ Cinit

ratioi ∗ cfi ∗ T init
max

= Cinit

ratioi ∗ cfi

4 in the following, frequencies are show as subscripts and credits as exponents



In summary:

Cj
=

Cinit

ratioi ∗ cfi
(4)

This means that with our assumptions, we can compensate the performance penalty

incurred by a frequency reduction as follows:

– If we run a computation in a VM with 20% credit at the Fmax frequency.

– If we reduce the processor frequency from Fmax to Fi, for instance half the maxi-

mum frequency, so that ratioi is 0.5.

– we can change the credit to 20%÷0.5 = 40% in order to have the same computing

capacity, and we will have the same computation time or the same computation

load under this new frequency (assuming that cfi=1).

We now describe the implementation of the PAS scheduler.

The PAS scheduler relies on a set of variables that are used for the computation of

the processor frequency to be used and the credits to be associated with VMs. We also

define additional variables that are used to explain the behavior of our PAS scheduler in

the evaluation section.

– VM[] is a table of the VMs managed by the scheduler and nbVM the number of

VMs.

– Credit[] is a table of the credit associated with each VM.

– Freq[] is a table of the possible processor frequencies and fmax is the number of

frequencies (so Freq[fmax] is the maximum frequency).

– CF[] is a table of the variables (cfi) associated with the different frequencies.

– CurrentFreq is the current frequency of the processor.

– VM load is the observed load of a VM (e.g., V20 has a VM load of 100% in our

previous scenario).

– VM global load is the contribution of a VM to the load of the processor (e.g., V20

which is allocated a credit of 20% and which has a VM load of 100%, contributes

to the processor load for 100% of 20%, that is 20%). If a VM is allocated a credit

of VM credit, then VM global load = VM load * VM credit.

– Global load is the load of the processor. Therefore,

Global load =
∑

VM global load. 5

– Absolute load is the processor load that we would have if processor was running at

the maximum frequency. According to our previous assumption regarding frequen-

cies, we have:

Absolute load = Global load * CurrentFreq

Freq[max] * cfCurrentFreq.

As mentioned in Section 4.1, the PAS scheduler has been implemented both at user

level and at system level. In the following, we rely on the system implementation.

At each tick in the VM scheduler, we compute the appropriate processor frequency

according to the Absolute load, as depicted in the algorithm below (Listing 1.1). We

5 Note that, each time we consider the Global load, it represents an average of three successive

processor utilization.



iterate on the processor frequencies (line 2). Following our assumption regarding fre-

quencies, we compute for each frequency the frequency ratio (line 3) and check if the

computing capacity of the processor at that frequency can absorb the current absolute

load (line 4).

i n t computeNewFreq ( ) {
f o r ( i =1 ; i<=fmax ; i ++) {

i n t r a t i o = Freq [ i ] / Freq [ fmax ] ;

i f ( r a t i o ∗ 100 ∗ CF [ i ] > A b s o l u t e l o a d )

r e t u r n Freq [ i ] ;

}
r e t u r n Freq [ fmax ] ;

}

Listing 1.1. Algorithm for computing the next processor frequency

At each tick, we need to compute the new credits associated with VMs and to mod-

ify VM credits and the processor frequency. This is described in the algorithm below

(Listing 1.2). For the new frequency of the processor, we compute the frequency ratio

(line 3) and for each VM, we compute the new credit that has to be associated with each

VM (line 5) and assign it (line 6). The credit of a VM increases when the frequency of

the processor decreases. Finally, we modify the processor frequency (line 7).

An important remark is that with this algorithm, when the processor frequency is

low, the sum of the VM credits may be more than 100%, because we computed the new

credit limit for each VM.

void u p d a t e D v f s A n d C r e d i t s ( ) {
i n t newFreq = computeNewFreq ( ) ;

i n t r a t i o = newFreq / Freq [ fmax ] ;

f o r (vm=1; i<=nbVM ; vm++) {
i n newCred i t = C r e d i t [vm ] / ( r a t i o ∗ CF [ newFreq ] ) ;

s e t C r e d i t (VM[vm ] , newCred i t ) ;

}
s e t F r e q u e n c y ( newFreq ) ;

}

Listing 1.2. Algorithm for computing VM credits, and setting VM credits and processor fre-

quency

Some of these VM are active and some are lazy. For active VM, this new limit ex-

tends their computing capacities and compensate the frequency reduction. For lazy VM,

this new limit is meaningless as it will not be reached (if the load of lazy VMs increases,

the processor frequency will increase and VM credits will be decreased).

5 Evaluation

5.1 Environment

Our experiments were performed on a DELL Optiplex 755, with an Intel Core 2 Duo

2.66GHz with 4G RAM. We run a Linux Debian Squeeze (with the 2.6.32.27 kernel)



in a single processor mode. The Xen hypervisor (in his 4.1.2 version) is used as virtu-

alization solution.

The evaluation described below were performed with two applications:

– when we aim at measuring an execution time, we use an application which com-

putes an approximation of π. This application is called π-app.

– when we aim at measuring a CPU load, we use a web application (a Joomla CMS

server) which receives a load generated by httperf [14]. This application is called

Web-app. The Joomla server consists of Joomla 1.7, relying on Apache 2.2.16, PHP

5.3.3 installed into Apache with modphp5 and MySQL 5.1.49. This application is

called Web-app in the following.

5.2 Verification of Our Assumptions

As said at the beginning of Section 4, the implementation of our PAS scheduler relies

on two main assumptions: proportionality of frequency and performance (equation 1 &

2) and proportionality of credit and performance (equation 3).

In order to validate these two assumptions, we conducted the following experiments:

– Proportionality of frequency and performance. We ran different Web-app work-

loads at the different processor frequencies. For each workload, we measured the

loads L(freq) at the different freq processor frequencies and we drew for each work-

load the ratios
L(freqmax)

L(freq) and freq

freqmax
, in order to compute the cfi values for each

frequency and to verify that they were constant under various workloads (thus val-

idating equation 1). We also ran different π-app workloads at different processor

frequencies and measured the execution times, allowing us to verify the propor-

tionality of frequency ratios and execution time ratios (equation 2).

– Proportionality of credit and performance. We ran different π-app workloads on

VMs configured with different credits (with the Xen credit scheduler). For each

workload and credit (index j), we measured the execution time and computed the

credit ratio ( Cj

Cinit ) and the execution time ratio (
T init
i

T
j

i

), in order to verify equa-

tion 3.

These experiments allowed to validate these proportionality assumptions and to com-

pute the cfi values (more details are given in Section 5.8).

Finally, in order to verify the accuracy of equation 4 which is used to compensate

(with a credit allocation) the performance penalty incurred by a frequency reduction,

we executed π-app at the maximum frequency (2667 MHz) with different initial credits

(10, 20, 30 . . . ), then we ran the same experiment at frequency 2133 MHz, but computed

with equation 4 what should be the associated credits which compensate this frequency

reduction. Figure 1 shows our results. The X axis at the bottom gives the initial credits,

the X axis at the top gives the computed credits, and the Y axis gives the execution

times. This experiments shows that we can effectively compensate a frequency reduc-

tion with a credit allocation.
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Fig. 1. Compensation of Frequency Reduction with Credit Allocation

5.3 Execution Profile

In the rest of this evaluation section, we rely on the Web-app application previously

described and we consider 2 virtual machines called V20 and V70, with respectively

20% and 70% of initially allocated credit. The remaining 10% of credit are allocated

for the hypervisor (the Dom0 in Xen) which is configured with the highest priority in

the VM scheduler. The two VMs have the same priority.
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The objective of the execution profile we are considering is to reveal the scheduling

problem we are addressing and to demonstrate the effectiveness of our solution (the

PAS scheduler). Both VMs have a three-phase profile: inactive-active-inactive:

– inactive. During the inactive phase, the VM does not receive any load from the load

injector (httperf).

– active. During the active phase, the VM may receive two types of load: either the

injector is configured to generate a load which represents 100% of the VM capacity

but not more (we call such a load an exact load), or it is configured to generate a

load which exceeds the VM capacity (we call such a load a thrashing load).

Figure 2 shows the VM global load (as defined in Section 4, the contribution of the

VM to the load of the processor) for both VMs when executing this profile with the

credit scheduler, and with the processor frequency being kept at its maximum value

(the frequency is shown on the Y axis on the right side). Notice here that the same

performance figure is obtained with an exact load or a thrashing load, since the credit

scheduler limits the amount of CPU that a VM may use (according to its initially allo-

cated credit). This figure characterizes the execution profile we will use in the rest of

the article.

5.4 Credit Scheduler in Default

We now run the same execution profile (with an exact load) with the credit scheduler,

but with the Ondemand DVFS management governor.

As observed on Figure 3, the default Ondemand governor is quite aggressive and

unstable. Therefore, we implemented our own (ondemand) governor, which is less ag-

gressive and more stable, and consequently saves less energy. We performed the same

experiments with both governors and observed the same overall behaviors (Figure 4),

but without such oscillations with our governor (that we use in rest of this evaluation

for readibility of figures).

In the two previous figures, when a VM is in the active phase, its VM global load is

70% for V70 and 20% for V20 (its contribution to the load of the processor).

While the previous Figures gave the observed VM global loads, Figure 5 shows

the Absolute load (defined in Section 4 as the processor load that it represents with

a processor running at the maximum frequency, or more precisely Absolute load =

Global load * CurrentFreq
Freq[max] * cfCurrentFreq). We observe that in the first phase (when

V20 is active and V70 inactive), the absolute load of V20 is close to 10%. This is due

to the lowered processor frequency, since the global load of the processor is only 20%.

However, as soon as V70 becomes active, the global load of the processor becomes high

enough to scale up the processor frequency at the maximum level, and then the absolute

load of V20 climbs to 20%. In summary, V20 is only granted its allocated (absolute)

credit (20%) when the processor frequency is at the maximum level.

5.5 SEDF Scheduler Brings a Solution

We ran the same experiment with the SEDF scheduler. Remind that with SEDF, unused

CPU time slices can be given to active VMs. Therefore, as observed on Figure 6, in
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Fig. 5. Absolute loads with our governor / Credit scheduler / exact load

the first phase (when V20 is active and V70 inactive), V20 has a global load of 35%,

because it is given time slices which are not used by V70. And when V70 becomes

active, then the initially allocated credits are respected and V20 ends up with 20% of

global load (at the maximum processor frequency).

And if we observe the absolute load in this experiment (Figure 7), we see that unused

time slices that were given to V20 allowed to compensate the penalty of the lowered

processor frequency. V20 has a 20% absolute load during the entire experiment. There-

fore, SEDF brings a solution to our identified issue, i.e., the fact that an active VM can

be victim of a frequency reduction (due to other VM laziness).

5.6 SEDF Scheduler in Default

However, the SEDF scheduler does not actually solve the problem. In the previous

experiments, we used exact loads (which represents 100% of the VM capacity but not

more). If we use thrashing loads (which exceed VM capacities), we observe (Figure 8)

that in the first phase (when V20 is active and V70 inactive), the SEDF scheduler gives

unused time slices to V20, which in turn brings the processor frequency at the highest

level. In this first phase, V20 is allowed to consume 85% of the processor. This is not

consistent from the point of view of the provider in a hosting infrastructure, since V20
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Fig. 8. Global or absolute loads with our governor / SEDF scheduler / thrashing load

was initially allocated 20% of credit and the provider does not benefit from a frequency

reduction due to V70 inactivity.

In the second phase, when V70 becomes active, the SEDF scheduler guarantee the

initially allocated credits and V20 cannot benefit from unused time slices anymore.

Notice here that in this experiment, the global and absolute load figures are the same

(we only show a single figure) since the processor frequency is kept at the highest level

during the whole experiment.

5.7 PAS Scheduler Solves the Problem

Our PAS scheduler recomputes credits allocated to VMs according to the frequency of

the processor. Therefore, it provides the same benefits than the SEDF scheduler with the

exact load, but also guarantees the respect of credits under thrashing loads. In Figure 9,

the PAS scheduler computes that in the first phase, V20 should be granted 33% of credit

in order to compensate the low processor frequency (1600 MHz). In the second phase,

V20 is granted 20% of credit as the processor frequency reaches the maximum value.

With this strategy, the absolute loads of each VM is consistent with credit allocations

(Figure 10).
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5.8 Other Environments

In order to study the applicability of this approach in other environments, we experi-

mented with different hardware architectures and different virtualization systems.

Other Hardware. We verified that our proportionality assumptions, described in Sec-

tion 4.2 and validated in Section 5.2 are valid on other hardware architectures. Therefore,

we measured for different workloads the introduced variable cfi, which may depend on

the hardware architecture, for different types of machines available on Grid5000, the

french national grid (Table 1). We report the measurements (cfi) only for the minimal

frequency, as many processors only have 2 available frequencies. We observed that even

is cfmin is most of the time equal to one, it may significantly vary on particular archi-

tectures (e.g. Intel Xeon E5-2620).

Table 1. cfmin on different processors

Intel Xeon Intel Xeon Intel Xeon AMD Opteron Intel Core

X3440 L5420 E5-2620 6164 HE i7-3770

cfmin 0,94867 0,99903 0,80338 0,99508 0,86206

Other Virtualization Platforms. We verified that the issue we address is relevant in

other virtualization platforms. Therefore, we ran the same scenario as in Section 5.3

on different virtualization environments and measured the execution time of the V20

virtual machine (Table 2). V20 can be penalized by a frequency reduction when V70 is

lazy. These measurements were performed on the leading virtualization products (com-

mercial or open-source) that we installed on the same hardware configuration, a HP

compaq Elite 8300 (with an Intel Core i7-3770 3.4GHz with 8G RAM). This machine

embeds hardware assisted virtualization technologies that were enabled in all our ex-

periments. On the left part of the table, we compare solutions with a fix VM credit

scheduler. The V20 virtual machine is significantly penalized on Hyper-V Server 2012,

Vmware ESXi 5 and Xen (with its credit scheduler), and our PAS scheduler in Xen



cancels this degradation by allocating additional credits to V20. On the right part of the

table, solutions with variable credit schedulers have a much faster execution time, since

the CPU capacity of V70 is given to V20 when V70 is lazy. However, V20 may con-

sume any amount of unused CPU capacity, which prevents a reduction of the processor

frequency, thus wasting energy.

Table 2. Execution Times on Different Virtualization Platforms

Fix credit scheduler Variable credit scheduler

Hyper-V VMware Xen/credit Xen/PAS Xen/SEDF KVM Vbox

Performance 1601 1550 1559 1559 616 599 625

OnDemand 3212 2132 2599 1560 616 599 625

Degradation(%) 50 27 40 0 0 0 0

6 Related Work

In recent years, we observed the rapid development of hosting infrastructures and their

energy consumption became an important issue.

Energy saving in hosting centers

In order to better manage hosting center energy consumption, the Green Grid [2] as-

sociation defined metrics, such as Power Usage Effectiveness (PUE). PUE is a mea-

sure of how efficiently a hosting center uses its power; specifically, how much of the

power is actually used for computing (in contrast to cooling and other overheads). It

is computed as follows: PUE = TotalFacilityPower
ITEquipmentPower

where TotalFacilityPower and

ITEquipmentPower represent respectively the global power consumption of the host-

ing center and the power associated with all the IT equipment (computers, storage, net-

work equipments, etc.). The ideal value of PUE should be 1, meaning that all the power

consumed by the hosting center is dedicated for computing. Such metrics allow the

estimation of the energy efficiency of hosting centers, to compare the results against

other hosting centers, and to determine if any energy management improvements can

be made. For example, in [10], James Hamilton exploits the PUE metrics to determine

the power distribution of his computing infrastructure in order to reduce high-scale data

center costs.

Energy Saving for Computing Servers

Many research projects have focused on reducing the energy consumed by servers in

hosting centers. The general orientation is to rely on dynamic resource allocation. In

hosting centers, hardware resources are mutualized among multiples customers, which

is a means to use less resources while fulfilling the requirements of customers. Cus-

tomers subscribe for resources, but those resources are made available to customers

only if effectively used. Therefore the amount of active resources can be reduced, thus

leading to energy saving. Such energy management policies are generally implemented

at the level of servers.

In 2001, Chase et al. [4] showed that hosting center servers used at least 60% of their

peak power in idle state. Therefore, it is beneficial to gather computations on a reduced



set of servers and to switch idle servers off. In this vein, servers Vary-On/Vary-Off

(VOVO) [19] strategies have been proposed and adopted by many researchers. They

consist in load-balancing a computing load on a set of servers, and according to the

load, increasing or decreasing the number of active servers in that set [20]. Chen at

al. [5] investigated the use of this strategy for power saving in a HPC system.

However, such VOVO approaches require applications to be structured following

a master-slave model where a load-balancer balances the load between a number of

slave servers, which can be adapted according to the received load. This is an important

constraint on the design of applications.

Energy Saving in Virtualization Environments

If virtualization technologies were first introduced about 30 years ago [9], they are now

increasingly used for resource management in hosting centers. In this context, the main

advantage of virtualization is to relax the previous constraints on applications [21]. Ap-

plication services can be deployed on separate virtual machines and a global resource

manager is responsible for the allocation of resources to these VMs according to the

load. This global manager can notably rely on VM migration [8] to gather VMs on

fewer physical machines and to switch unused machines off. Such an approach is gen-

erally known as server consolidation [3,15]. Another important advantage of virtual-

ization is isolation of applications, as consolidation may collocate VMs from different

applications on the same physical host [1].

Energy Saving with Frequency Scaling

Beside the reduction of the number of active machines in a hosting center, another way

to reduce energy consumption is to dynamically adapt the frequency of active machines

according to the CPU load on these machines. Such techniques are known as Dynamic

Voltage and Frequency Scaling (DVFS). Several studies showed that DVFS allows sig-

nificant energy consumption reductions [7,11]. Moreover, recent works studied the im-

pact of DVFS on applications performance and their Quality of Service. Chengjian Wen

et al. [23] proposed to combine DVFS management and VM scheduling in a cluster in

order to ensure fairness in the energy consumption of VMs, by accounting VMs power

usage and prioritizing VMs accordingly. In the same vein, Laszewski et al. [12] inves-

tigated a similar approach while ensuring QoS in terms of execution times.

Positioning Our Contribution

Our contribution shares many objectives with the works mentioned in the previous para-

graph. Similarly, our goal was to guarantee a QoS allocated to VMs while saving energy

thanks to DVFS. However, these projects didn’t consider that a VM is allocated a com-

puting capacity (a credit) at creation time and that it has to be managed as a Service

Level Agreement (SLA). Our Power-Aware Scheduler (PAS) allows DVFS manage-

ment while guaranteeing that the computing capacity allocated to a VM (and bought by

a customer) is available. We are not aware of any similar contribution to this issue.

7 Conclusion and Perspective

With the emergence of cloud computing environments, large scale hosting centers are

being deployed and the energy consumption of such infrastructures has become a



critical issue. In this context, two main orientations have been successfully followed

for saving energy:

– Virtualization which allows to safely host several guest operating systems on the

same physical machines and more importantly to migrate guest OS between ma-

chines, thus implementing server consolidation.
– DVFS which allows adaptation of the processor frequency according to the CPU

load, thus reducing power usage.

We observed that these two techniques suffer from incompatibilities, as DVFS gov-

ernors are implemented in the hypervisor and don’t take into account the existence of

different VMs with allocated credits and different loads. If a machine is globally under-

loaded but hosts a loaded VM (which consumes a significant part of its credit), then the

frequency of the processor may be scaled down, thus affecting the computing capacity

of the loaded VM.

In this paper, we proposed a Power-Aware Scheduler (PAS) which addresses this

issue. A credit is associated with a VM at creation time and represents its allocated

computing capacity. If the machine which hosts the VM is underloaded and its fre-

quency is therefore scaled down, the credit associated with the VM is recomputed in

order to maintain its computing capacity.

Our PAS scheduler was implemented in the Xen hypervisor and evaluated through

different scenarios which demonstrate its advantage over the Credit and SEDF sched-

ulers, the two schedulers available in Xen.

Our main perspective is to address the issue presented in Section 2.3. Memory is

the main limitation factor for an efficient consolidation system. We are investigating

energy aware resource management strategies which would coordinate VM scheduling,

frequency scaling and memory management in a hosting center. Furthermore, we plan

to extend our scheduler and take into account other technology factors such as hyper-

threading, multi-core, per-socket DVFS, and per-core DVFS.
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