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ABSTRACT

Multifractal analysis has matured into a widely used signal and im-

age processing tool. Due to the statistical nature of multifractal pro-

cesses (strongly non-Gaussian and intricate dependence) the accu-

rate estimation of multifractal parameters is very challenging in sit-

uations where the sample size is small (notably including a range of

biomedical applications) and currently available estimators need to

be improved. To overcome such limitations, the present contribution

proposes a Bayesian estimation procedure for the multifractality (or

intermittence) parameter. Its originality is threefold: First, the use of

wavelet leaders, a recently introduced multiresolution quantity that

has been shown to yield significant benefits for multifractal analysis;

Second, the construction of a simple yet generic semi-parametric

model for the marginals and covariance structure of wavelet lead-

ers for the large class of multiplicative cascade based multifractal

processes; Third, the construction of original Bayesian estimators

associated with the model and the constraints imposed by multifrac-

tal theory. Performance are numerically assessed and illustrated for

synthetic multifractal processes for a range of multifractal param-

eter values. The proposed procedure yields significantly improved

estimation performance for small sample sizes.

Index Terms— multifractal analysis, Bayesian estimation,

wavelet leaders, multiplicative cascade processes, log-cumulants

1. MOTIVATIONS, RELATED WORKS, CONTRIBUTIONS

Motivations. Multifractal analysis has become a standard tool

for signal and image processing, focussing on the characterization

of local regularity fluctuations and scale invariance properties. It has

been successfully used in a variety of applications of very different

natures, including biomedical (heart rate variability [1], fMRI [2]),

physics (turbulence [3]), geophysics (rainfalls [4]), finance [5], Inter-

net traffic [6], to name but a few. A recently introduced powerful for-

malism for multifractal analysis relies on wavelet leaders LX(j, k)
[13, 11, 16], which are constructed from wavelet coefficients. It as-

sumes that the time averages of the q−th powers ofLX(j, k) at given

analysis scales a = 2j behave as power-laws over a wide range of

scales a ∈ [am, aM ], i.e.,

S(q, j) ≡
1

nj

nj
∑

k=1

LqX(j, k) ≃ aζ(q), am ≤ a ≤ aM . (1)

The so-called scaling exponents ζ(q) fully characterize the scaling

properties and local regularity fluctuations. It is known from multi-

fractal theory that the analysis of the full scaling properties of data

requires the use of both positive and negative values of q.

Two major classes of processes commonly serve as models for

the scaling properties observed in real-world data: self-similar pro-

cesses, for which ζ(q) = qH in a neighborhood of q = 0, frac-

tional Brownian motion (fBm) [7] being the emblematic member of

this class, multiplicative cascade-based processes, for which ζ(q)
is a strictly concave function, fBm in multifractal time (MF-fBm)

[8, 9, 10] being a well-known member of this class. Deciding which

class better models real-world data is of crucial importance in appli-

cations since the underlying construction mechanisms are of funda-

mentally different natures: Additive for self-similar processes, mul-

tiplicative for cascade-based processes. Practically, this amounts to

testing whether the estimated ζ(q) are linear or strictly concave [11].

In a seminal contribution [12], B. Castaing suggested the use of

the polynomial expansion ζ(q) =
∑

p≥1 cpq
p/p! and showed that

the coefficients cp are related to the cumulants of the logarithm of

the multiresolution quantities used for the analysis (here, the wavelet

leaders LX(j, k)) Cp(j) = Cump lnLX(j, k) independently of k.

Notably, C1(j) ≡ E[lnLX(j, k)] = c01 + c1 ln 2
j and

C2(j) ≡ Var [lnLX(j, k)] = c02 + c2 ln 2
j . (2)

It can be shown theoretically that c2 ≡ 0 implies that ∀p ≥ 3, cp ≡
0 [13]. Estimating c2, referred to as the intermittence or multifrac-

tality parameter, is thus of prime importance in multifractal analysis

since it measures the departure from linearity of ζ(q) around q = 0.

Related Works: Estimation of c2. Historically, scaling and mul-

tifractal analysis used to be based either on increments, oscillations

or wavelet coefficients [14]. It has later been observed that it should

be based on the modulus maxima (or skeleton) of the continuous

wavelet transform (CWT) [15]. Recently, it has been shown that

the wavelet leader based formulation of multifractal analysis bene-

fits both from a better theoretical grounding and from it being based

on the discrete wavelet transform (DWT) [13, 11], thus enabling fast

and efficient numerical implementations as well as straightforward

extensions to higher dimensions (images notably) [16].

Deciding which class of processes better describes data was

classically performed by estimating scaling exponents ζ(q) for a

collection of values of q and testing a posteriori whether ζ(q) is lin-

ear or not (cf., e.g., [15, 11]). Formalizing the test is, however, very

difficult because the S(q, j) for different q are, by nature, strongly

dependent. This motivated the estimation of c2 as an alternative [12]

and testing a posteriori whether1c2 ≡ 0 or c2 < 0 [11].

Estimation in multifractal analysis has been most commonly

performed by means of linear regressions of log2 S(q, j) versus

log2 2
j = j for ζ(q) and of Cp(j) versus ln 2j for cp (cf., e.g.,

[12, 15, 11]). The use of ordinary versus weighted linear regres-

sions has been documented in [11]. Multifractal analysis was first

employed in the context of hydrodynamic turbulence, where ex-

perimental data can be collected for long periods of time, yielding

very long time series of tens of thousand of samples (this is also the

case for Internet traffic monitoring). Then, linear regressions based

on Eq. (1) are useful tools: DWT and linear regressions induce

1Note also that for self-similar processes c2 ≡ 0 while linearity of ζ(q)
generally holds only in a neighborhood of q = 0, see, e.g., [17] for details.



very low computational cost and can thus be applied to very long

time series. They furthermore yield very satisfactory performance

(unbiased estimations with rapidly decreasing variance). However,

in numerous other applications where multifractal analysis is com-

monly used, notably in biomedical applications such as fMRI or

heart rate variability, sample size is drastically limited and can be

as small as a few hundreds of samples only. For such small sample

size, it has been documented that estimators of c2 based on DWT

coefficients are unbiased but their variance is too large for their use

in most applications, while wavelet leaders (or skeleton of CWT)

have better variance at the price though of a bias increase (cf., [11]).

Attempts to overcome this limitation for small sample size are

given by generalized moment approaches. They do, however, heav-

ily depend on fully parametric models for the data and achieve, to

the best of our knowledge, only limited actual benefits [18]. The

Bayesian framework, classical in parameter inference, has been ap-

plied to the specific case of fBm, either in the wavelet domain [19],

the frequency domain [20] or directly in the time (or space) domain

[21]. Indeed, fBm is a jointly Gaussian process with fully parametric

covariance structure and thus fits well in a Bayesian framework. Yet,

Bayesian estimation has never been performed for the multifractality

parameter c2. This is essentially due to the statistical properties of

scale invariant processes with strictly negative c2 which strongly de-

part from Gaussian and exhibit intricate dependence structures that

are not fully studied.

Contributions. In real-world applications, the use of fully para-

metric models is often very restrictive. The challenge addressed in

the present contribution thus consists of proposing a Bayesian proce-

dure for the estimation of c2 for small sample sizes that assumes as

little information as possible (essentially the simple relations (1-2))

on data. To this end, it is first shown that for multiplicative cascade

based processes the distributions of lnLX(j, k) are at each scale

a = 2j well approximated by Gaussian laws whose covariances can

be efficiently modeled with few parameters, including the desired c2
(cf. Section 2). From this generic modeling, valid for all members of

the class of multiplicative cascade-based processes, a Bayesian pro-

cedure for the estimation of parameter c2 is devised in Section 3. An

appropriate prior distribution is assigned to the multifractality pa-

rameter c2 to ensure relevant constraints inherent to the model (e.g.,

positivity of the variance of the coefficients lnLX(j, k)). This prior

allows a large class of covariance structures to be efficiently handled.

The Bayesian estimators associated with the resulting posterior are

then approximated by Monte Carlo sampling. Due to the constraints

imposed on the multifractality parameter, a suitable Markov chain

Monte Carlo (MCMC) algorithm is designed to sample according

to the posterior distribution of interest. Specifically, the admissible

set of values for c2 is explored through a random-walk Metropolis-

Hastings scheme that ensures the required positivity constraint. The

performance of the Bayesian estimation of parameter c2 is then as-

sessed by means of Monte Carlo simulations and compared to the

one obtained for linear regressions, for various c2 and different short

sample sizes, demonstrating the clear benefits and potentials of the

Bayesian approach (cf. Section 4).

2. MODELING WAVELET LEADER STATISTICS

Multifractal processes. For the class of multiplicative cascade

based multifractal processes, characterized by a strictly negative c2,

it is well-known that the marginal distributions depart from Gaus-

sianity and that the dependence has a long range structure (cf., e.g.,

[22]). The statistics of these processes are not known exactly in gen-

eral except for the (power law) scaling behaviors made explicit in (1)

or (2). Departures from Gaussianity and long-range dependence also

hold for wavelet coefficients and leaders. The fact that the statistics

of such processes and of the corresponding wavelet coefficients and

leaders are not known exactly is the key reason that has precluded

the use of Bayesian approaches for estimation.

Yet, we show below that the marginals and intra-scale covari-

ance of the logarithm of wavelet leaders associated with multiplica-

tive cascade based processes can be well approximated by a generic

semi-parametric model, which will in turn allow us to devise a

Bayesian estimation procedure for c2. A prominent model for this

class of process, multifractal random walk (MRW), is chosen here

for illustrations since it is easy to simulate and c1, c2 are easy to

prescribe. It has been verified that equivalent results are obtained

for other multiplicative cascade based processes, specifically for

MF-fBm. MRW has been introduced in [23] as a non Gaussian pro-

cess with stationary increments whose multifractal properties mimic

those of the celebrated Mandelbrot’s multiplicative log-normal cas-

cades. The process is defined as X(k) =
∑n
k=1GH(k)eω(k),

where GH(k) consists of the increments of fBm with parameter

H . The process ω is independent of GH , Gaussian, with non

trivial covariance: Cov[ω(k1), ω(k2)] = c2 ln
(

L
|k1−k2|+1

)

when

|k1−k2| < L and 0 otherwise. MRW has scaling properties as in Eq.

(1) for q ∈
[

−
√

2/c2,
√

2/c2
]

, with ζ(q) = (H+ c2)q− c2q
2/2.

Wavelet coefficients and leaders. Let ψ denote the oscillating

reference pattern referred to as the mother wavelet. It is charac-

terized by its number of vanishing moments Nψ , a strictly posi-

tive integer, defined as: ∀n = 0, . . . , Nψ − 1,
∫

R
tkψ(t)dt ≡ 0

and
∫

R
tNψψ(t)dt 6= 0. Further, ψ is chosen such that its dilated

and translated templates ψj,k(t) = 2−jψ(2−jt − k) form an or-

thonormal basis of L2(R). The (L1-normalized) discrete wavelet

transform coefficients dX(j, k) of X are defined as dX(j, k) =

2−j/2〈ψj,k|X〉. Readers are referred to, e.g., [24] for detailed in-

troduction to wavelets. Wavelet leaders LX(j, k) are defined as the

local supremum of wavelet coefficients taken within a neighborhood

over all finer scales [13, 11]: LX(j, k) = supλ′⊂3λj,k
|dX(λ′)|,

where λj,k = [k2j , (k + 1)2j) and 3λj,k =
⋃

m{−1,0,1} λj,k+m.

Modeling the marginal distribution of wavelet leaders. The

statistics of wavelet coefficients and – a forteriori – leaders of multi-

plicative cascade multifractal processes strongly depart from Gaus-

sianity. Numerical simulations reveal, however, that the logarithm

of wavelet leaders lX(j, k) = lnLX(j, k) (which enters relation

(2)) of multiplicative cascade based processes has a distribution very

well modeled by a Gaussian. This is illustrated in Fig. 1 (top row)

for MRW with small to large |c2| (weak to strong multifractality).

Modeling the intra-scale covariance of wavelet leaders. The

model is motivated by results in [25] which show that the asymp-

totic covariance of ln |dX(j, k)| in random wavelet cascades (a spe-

cific multiplicative process directly defined on wavelet coefficients)

behaves linearly in log2(∆k) coordinates. Numerical simulations

indicate that the covariance of lX(j, k) = lnLX(j, k) for multi-

plicative cascade based multifractal processes is well described by

Cov[lX(j, k), lX(j, k +∆k)] ≈

≈ Γ(j,∆k; c2) = γ(c2) + c2(log2(∆k/N) + j) ln 2 (3)

for 3 < ∆k ≪ 2−jN , where N is the sample size, and for a

wide range of the multifractality parameter. We combine (3) with

the variance relation (2) to form a piecewise linear (in log2(∆k) co-

ordinates) model Σ(j,∆k; c2, c
0
2) for the full intra-scale covariance
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Fig. 1. Top: Quantile plots of log2(lX(j = 3, ·)) against standard Normal. Bottom: covariance estimates (in red) and model (in blue) as

functions of log2(∆k/N2j1) for scales j1 = 2 to j2 = 4 (1000 realizations of length N = 29; ln(2) factors are absorbed in the axes).

of lX(j, k):
a. Σ(j,∆k; c2, c

0
2) = c02 + jc2 ln 2 for ∆k = 0

b. Σ(j,∆k; c2, c
0
2) = max(0,Γ(j,∆k; c2)) for 3 ≤ ∆k ≤ 2−jN

c. Σ(j, 0; c2, c
0
2) and Σ(j, 3; c2, c

0
2) are connected with a line seg-

ment (in log2(∆k/N) coordinates).

In b.), only non-negative values are admitted for numerical reasons

(conditioning number of the covariance matrices Σ used in Section

3). The linear part c.) models the short-term correlations of log

wavelet leaders. The parameter γ(c2) in (3) is obtained from the

heuristic condition Cov[lX(j, k), lX(j, k +∆k = ⌊N2−j/5⌋] = 0
(⌊·⌋ truncates to integer values). It could in principle be estimated

as a third free parameter together with c2, c
0
2 using the procedure

described in Section 3. Fig. 1 (bottom row) plots the intra-scale co-

variances of lX(j, k) and the model Σ(j,∆k; c2, c
0
2) for MRW with

small to large |c2|. Note that the proposed model provides excellent

fits for the positive portion of the observed covariances.

3. BAYESIAN ESTIMATION

3.1. Bayesian model

Let j1 (resp., j2) denote the finest (resp., coarsest) scale used in

the estimation and lX(j, k) the logarithm of the kth wavelet leader

(k = 1, . . . , nj) in the jth scale (j = j1, . . . , j2). These coefficients

are scale-wise centered, rearranged and stacked in a unique n × 1-

vector ℓX = [ℓX (1) , . . . , ℓX (n)]T , with n =
∑j2
j=j1

nj . This

vector is assumed to be distributed according to a zero-mean Gaus-

sian distribution with covariance matrix Σ (γ2) = E[ℓXℓTX ], where

γ2 ,
[

c2, c
0
2

]T
are the parameters to be estimated. Note that, for

clarity, the dependence of the covariance matrix on the parameters

c2 and c02 has been explicitly mentioned by denoting Σ (γ2). We

propose to estimate the set of parameters γ2 in a Bayesian setting.

The likelihood function and prior distributions for the unknown pa-

rameters required to build the Bayesian model are introduced in the

following paragraphs.

Likelihood. The statistical properties of the wavelet leaders intro-

duced in Section 2 yield the following likelihood function for ℓX :

f (ℓX |γ2) = (2π)−
n
2 [detΣ (γ2)]

−1/2

× exp

[

−
1

2
ℓ
T
XΣ (γ2)

−1
ℓX

]

. (4)

Prior for γ2. To ensure positivity of the variance C2(j) =
[Σ (γ2)]j,j (j = j1, . . . , j2) in (2), the parameters c2 and c02
must belong to the admissible set C2 = (C−

2 ∪ C+
2 ) ∩ Cm2 with

C−
2 = {(c2, c

0
2) ∈ R

2
∣

∣c2 < 0 and c2j2 + c02 > 0}, C+
2 =

{(c2, c
0
2) ∈ R

2
∣

∣c2 > 0 and c2j1 + c02 > 0} and Cm2 = {(c2, c
0
2) ∈

R
2
∣

∣|c2| < cm2 , |c
0
2| < c0,m2 }, with (cm2 , c

0,m
2 ) the largest admis-

sible (c2, c
0
2). In absence of additional prior knowledge regarding

(c2, c
0
2), a uniform prior distribution on C2 is assigned to γ2:

f(γ2) ∝ 1C2(γ2). (5)

Posterior distribution. The posterior distribution of γ2 can be

computed from the Bayes rule:

f (γ2|ℓX) ∝ f (ℓX |γ2) f (γ2) . (6)

Due to the non-trivial dependence of f (γ2|ℓX) upon the parameters

c2 and c02, computing the Bayesian estimators (e.g., the maximum

a posteriori (MAP) and the minimum mean square error (MMSE)

estimators) associated with (6) is not straightforward. To allevi-

ate the difficulty, it is common to resort to a Markov chain Monte

Carlo (MCMC) algorithm to generate samples distributed according

to f (γ2|ℓX) (denoted as ·(t), t = 1, . . . , Nmc) that are used to ap-

proximate the estimators. The proposed algorithm is described next.

3.2. Gibbs sampler

This section describes the Gibbs sampling strategy that allows sam-

ples
{

c
(t)
2 , c

0(t)
2

}Nmc

t=1
to be generated according to the posterior (6).

This algorithm is divided into two successive steps that consist of

sampling according to the conditional distributions associated with

the joint distribution f
(

c2, c
0
2|ℓX

)

. The reader is invited to consult

[26] for more details regarding MCMC methods.

Sampling according to f
(

c2|c
0
2, ℓX

)

. To sample according

to the conditional distribution f
(

c2|c
0
2, ℓX

)

, a Metropolis-within-

Gibbs procedure is proposed. Precisely, we use a random-walk

algorithm with a normal distribution as the instrumental distribu-

tion. Let denote as γ
(t)
2 = [c

(t)
2 , c

0(t)
2 ]T the current state vector at

iteration t of the sampler. A candidate c
(⋆)
2 is drawn according to a

proposal distribution q(c
(⋆)
2 |c(t)2 ) chosen as the Gaussian distribution

N (c
(t)
2 , η2) where η2 is a given variance (to ensure good mixing

properties). Then the proposed state vector γ
(⋆)
2 = [c

(⋆)
2 , c

0(t)
2 ]T is



accepted with the probability pc2 = min(1, ρc2) where ρc2 is the

Metropolis-Hasting acceptance rate

ρc2 =
f
(

γ
(⋆)
2 |ℓX

)

f
(

γ
(t)
2 |ℓX

)

q
(

γ
(t)
2 |γ

(⋆)
2

)

q
(

γ
(⋆)
2 |γ

(t)
2

)

=

[

detΣ
(

γ
(t)
2

)

detΣ
(

γ
(⋆)
2

)

]1/2

1C2

(

γ
(⋆)
2

)

× exp
[

− 1
2
ℓTX

(

Σ
−1

(

γ
(⋆)
2

)

−Σ
−1

(

γ
(t)
2

))

ℓX

]

(7)

Finally, the current vector γ
(t)
2 is updated as γ

(t+ 1
2
)

2 = γ
(⋆)
2 or as

γ
(t+ 1

2
)

2 = γ
(t)
2 with probabilities pc2 and 1− pc2 , respectively.

Sampling according to f
(

c02|c2, ℓX
)

. In a similar fashion, to

sample according to f
(

c02|c2, ℓX
)

a random-walk Metropolis-

Hastings step is used to update the current vector γ
(t+ 1

2
)

2 =

[c
(t+ 1

2
)

2 , c
0(t+ 1

2
)

2 ]T . At iteration t+ 1
2

, a candidate c
0(⋆)
2 is proposed

according to a Gaussian instrumental distribution N (c
0(t+ 1

2
)

2 , η20),

leading to the candidate γ
(⋆)
2 = [c

(t+ 1
2
)

2 , c
0(⋆)
2 ]T . The current state

vector γ
(t+ 1

2
)

2 is updated either as γ
(t+1)
2 = γ

(⋆)
2 with probabil-

ity pc02
or as γ

(t+1)
2 = γ

(t+ 1
2
)

2 with probability 1 − pc02
, where

pc02
= min(1, ρc02

) and ρc02
is computed as in (7).

3.3. Approximating the Bayesian estimators

The proposed Gibbs sampler enables us to generate Nmc samples

{γ2
(t)}Nmc

t=1 which are asymptotically distributed according to the

distribution (6). After a short burn-in ofNbi iterations, these samples

can be used to approximate the Bayesian estimators, i.e.,

γ̂MMSE
2 ≈

1

Nr

Nmc
∑

t=Nbi+1

γ2
(t); γ̂MAP

2 ≈ argmax
t=1,...,Nmc

f
(

γ2
(t)|ℓX

)

.

4. ESTIMATION PERFORMANCE

We analyze the estimation performance for 200 realizations of MRW

defined as follows: sample size N = 256 or N = 512 and param-

eter c2 varying from weak (c2 = −0.01) to strong (c2 = −0.08)

multifractality. We use Daubechies’ wavelet with Nψ = 2 vanish-

ing moments, scaling range j1 = 2 and j2 = 4 (N = 256) and

j2 = 5 (N = 512), respectively. The Gibbs sampler is run with

Nmc = 700 andNbi = 350. Table 1 summarizes the mean, bias and

(root) mean square error (RMSE) of the weighted linear regression

(LF) and Bayesian MMSE and MAP estimators for c2. The results

clearly indicate that the proposed semi-parametric Bayesian estima-

tion procedure significantly improves the quality of c2 estimates for

the small sample sizes considered here: Compared to weighted lin-

ear regression, the Bayesian estimators have RMSEs systematically

and strongly reduced by a factor ranging from 3 (for |c2| small) to

4 (for |c2| large). This drastic improvement of estimation quality is

mostly due to the significant reduction of variance of the Bayesian

estimators (indeed, standard deviations are reduced by a factor 3 to

4 for small and large |c2|, respectively) while the bias plays a mi-

nor role: linear regression and Bayesian estimators display similar

bias for large |c2| and linear fits have slightly smaller bias for small

|c2|. This slight advantage in terms of bias is, however, strongly out-

weighed by the severely larger variability of linear regression based

estimators. Furthermore, note that the increase in variance when

N = 2
8 | c2 -0.01 -0.02 -0.03 -0.04 -0.06 -0.08

m
ea

n

LF −0.019 −0.023 −0.037 −0.044 −0.072 −0.094
MMSE −0.023 −0.031 −0.039 −0.045 −0.058 −0.073

MAP −0.019 −0.028 −0.039 −0.045 −0.061 −0.076

st
d

LF 0.055 0.064 0.073 0.077 0.097 0.106
MMSE 0.015 0.018 0.020 0.020 0.021 0.024

MAP 0.016 0.020 0.022 0.022 0.022 0.025

rm
se

LF 0.056 0.064 0.073 0.077 0.097 0.107
MMSE 0.020 0.021 0.022 0.021 0.021 0.025

MAP 0.018 0.021 0.023 0.023 0.022 0.025

N = 2
9 | c2 -0.01 -0.02 -0.03 -0.04 -0.06 -0.08

m
ea

n

LF −0.010 −0.021 −0.033 −0.037 −0.068 −0.077
MMSE −0.019 −0.029 −0.037 −0.047 −0.062 −0.076

MAP −0.017 −0.028 −0.036 −0.047 −0.063 −0.078

st
d

LF 0.032 0.037 0.044 0.056 0.052 0.066
MMSE 0.011 0.012 0.014 0.016 0.017 0.015

MAP 0.011 0.014 0.015 0.016 0.018 0.017

rm
se

LF 0.032 0.037 0.045 0.056 0.052 0.066
MMSE 0.014 0.015 0.016 0.017 0.017 0.016

MAP 0.013 0.016 0.016 0.018 0.018 0.017

Table 1. Mean, standard deviation and root mean square error of

estimators of c2 for N = 256 (top) and N = 512 (bottom).

increasing |c2| (due to stronger variability of the data) is less pro-

nounced for the Bayesian estimators. Finally, when comparing the

two Bayesian estimators, MMSE is slightly advantageous in terms

of bias, MAP in terms of variance, and both yield equivalent RM-

SEs. The gain in estimation performance is a direct consequence of

the covariance structure included in the proposed Bayesian model.

It furthermore demonstrates the relevance of the proposed model for

the statistics of the logarithm of wavelet leaders. Similar results are

obtained for MF-fBm and are not presented here for space reasons.

5. CONCLUSIONS AND PERSPECTIVES

We have, to the best of our knowledge, devised the first operational

Bayesian estimation procedure for the multifractality parameter c2.

The procedure is designed for the large class of multiplicative cas-

cade based multifractal processes. Its versatility results from the

proposition of a simple yet accurate and generic statistical model

for the logarithm of wavelet leaders that incorporates the marginal

distributions, the covariance at each scale, and the power law scal-

ing of the variance across scales. An MCMC algorithm is proposed

to sample according to the joint posterior distribution of the multi-

fractal parameters, ensuring inherent constraints for the multifractal

paradigm. The procedure enables the reliable estimation of the mul-

tifractality parameter c2 in applications where sample size is small

and the variance of commonly used linear regression based estima-

tors is prohibitively large. Indeed, the proposed Bayesian estimators

yield a decrease in variance and MSE of up to a factor 4 (at the

price though of increasing computation time by orders of magni-

tude). The performance could be further improved by incorporating

(application dependent) prior information (here, vague priors have

been used). The Bayesian framework also enables the construction

of confidence intervals and hypothesis tests for c2. Their perfor-

mance are currently under study. The procedure is currently being

applied to the analysis of fMRI and heart rate variability data. Fu-

ture work includes the definition of a generic model for the joint

time-scale covariance of wavelet leaders as well as extensions of the

proposed procedure to 2D images.
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