
HAL Id: hal-01151022
https://hal.science/hal-01151022

Submitted on 12 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Informed Resource Management in the Cloud
Giang Son Tran, Laurent Broto, Daniel Hagimont

To cite this version:
Giang Son Tran, Laurent Broto, Daniel Hagimont. Toward Informed Resource Management in the
Cloud. IEEE/ACM International Conference on Utility and Cloud Computing - UCC 2013, Dec 2013,
Dresden, Germany. pp. 247-250. �hal-01151022�

https://hal.science/hal-01151022
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12902

To link to this article : DOI :10.1109/UCC.2013.59
URL : http://dx.doi.org/10.1109/UCC.2013.59

To cite this version : Tran, Giang Son and Broto, Laurent and
Hagimont, Daniel Toward Informed Resource Management in the
Cloud. (2013) In: IEEE/ACM International Conference on Utility
and Cloud Computing - UCC 2013, 9 December 2013 - 12 December
2013
(Dresden, Germany).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12902/
http://oatao.univ-toulouse.fr/12902/
http://dx.doi.org/10.1109/UCC.2013.59
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Toward Informed Resource Management

in the Cloud

Giang Son Tran, Laurent Broto, Daniel Hagimont

ENSEEIHT - University of Toulouse, France

Email: {first.last}@enseeiht.fr

Abstract—More and more companies are externalizing their
computing infrastructures to the cloud to reduce the increasing
maintenance cost of computing environments. Minimizing the
amount of hardware resource and power consumption in use
is one of the main services that such a cloud infrastructure must
ensure. This objective can be done either by the customer at
the application level (by dynamically sizing the application based
on the workload), or by the provider at the virtualization level
(by consolidating virtual machines based on the infrastructure’s
utilization rate). Many research works investigate resource man-
agement policies separately. In this paper, we show that the
different strategies for cloud resource management, including
server consolidation only, dynamic application sizing only, both
policies at the same time, do not fully bring benefits to the cloud
actors when being implemented without cooperation. Finally,
we propose and evaluate a cooperative model to combine the
efficiency from these strategies in reducing power consumption
and keeping application’s Quality of Service.

I. INTRODUCTION

As computer systems continue to evolve, companies are
externalizing their computing infrastructures to another type
of companies called the provider. The former is called the
customer. This movement is to reduce the increasing mainte-
nance cost of computing environments. This paper considers
the IaaS (Infrastructure-as-a-Service) model: the provider gives
their infrastructure’s logical resource in the form of Virtual
Machines (VMs), with virtual CPU power, cores, memory,
storage, network interface, etc., to the customer.

In this context, resource management is one of the main
services that both providers and customers must ensure. The
minimization of resources, both in CPU power and memory
usage, brings benefits for both actors. The customer only pays
for the amount of the used resource (pay-as-you-go). The
provider can lower his power consumption for their physical
devices (machines and cooling systems) by suspending or
turning off or the unused physical machines (PMs).

Various resource management policies in the cloud are
investigated: at the customer level [1], or at the provider
level [2], [3]. The need of a complement for these resource
management strategies raises when being deeply analyzed with
specific scenarios, as will be shown in this paper. Our main
contributions are (1) briefly describe, evaluate and point out the
drawbacks of the existing resource management policies with
a synthesized workload; (2) show that resource management
at these two levels are complementary and should be coor-
dinated; and (3) propose and evaluate a cooperative resource
management policy (fig. 1).

����������

	��
�������

���

����

��

���

���

����

���

����

������������������ �����������������

�
�
�

�
�
�
�� �

�
�
�

��

Fig. 1: Cooperative Resource Management Policy with
Cooperative Calls

The rest of the article is organized as follows. Section II de-
tails the resource management policies and motivates our work.
Section III presents our cooperative resource management
policy between the two layers. We evaluate and compare the
effectiveness of the policies in section IV. After highlighting
various related works in section V, we conclude and present
our future work in section VI.

II. MOTIVATION

This section motivates our work by describing and pin-
pointing the drawbacks of the various cloud management poli-
cies being investigated in the research community, including:
Server Consolidation Only; Dynamic Application Sizing Only;
both levels, but working independently.

Server Consolidation Only (SCO). Taking into ac-
count the objective of minimizing hardware resource from
the provider, this policy is relatively straightforward: pack
the deployed VMs into as few PMs as possible using VM
migration. In this scenario, only does the provider implement
their autonomic resource management system. The customer
application is provisioned with a static tier allocation (i.e. with
a fixed number of tier instances). In case of overload, the
IaaS manager can either migrate the most loaded VM out of
the most loaded node (so that this node becomes less load),
or migrate other VMs to other free nodes (so that the most
loaded VM has more power). The IaaS resize resource pool
by adding more PMs, if needed. In contrast, when allocated
VMs are under load in runtime, the management policy at the
IaaS level will make migration decision to pack the idle VMs
into as few PMs as possible. Freed PMs are then suspended
or turned off for reducing overall power consumption.

This policy shows some merits in minimizing resource
usage, and therefore, energy waste. However, multiple VMs

� �� � � �� �	
�� �

���� ���� ����

�	�

�
�
�
�
��
��
�
� �
�
�
�

Fig. 2: Synthesized workload used in all scenarios

of the same application tier may share the same PM. This
placement produces two types of performance overhead: (1)
balancer overhead - each request to the application must be
passed through the balancer; and (2) hypervisor overhead -
the hypervisor has to switch CPU resources among many VMs,
generating overhead. These overheads can be reduced by using
less VM instances with Dynamic Application Sizing.

Dynamic Application Sizing Only (DASO). This ap-
proach is based on the dynamic allocation and deallocation
of the application instances. Initially, all applications are
deployed with a minimum number of instances. Each instance
is deployed and launched in a separated VM. During runtime,
tier loads are captured by monitoring probes in the VMs, and
gathered by the autonomic application manager. It, in turns,
based on current tier loads, requests to add or remove the
VMs accordingly.

This behavior ensures the minimal number of the instances
of the application, and therefore reduces performance over-
head. However, this policy may create some resource holes:
multiple VMs of the same tier may spread on different PMs,
and leave available resources on each PM unused. These
holes can be filled by migrating the VM to ensure server
consolidation, free them for turning off and benefit in energy
saving.

Both Levels, Independent (BLI). In this scenario, both the
provider and the customer implement their resource manage-
ment policies (dynamic application sizing and server consoli-
dation) independently, to eliminate each other’s drawback. In
other word, this complementarity attempts to improve both
real resource usage (to reduce energy waste) and application
performance (by reducing overhead) in the hosting centers. The
dynamic application sizing policy at the customer level ensures
that all allocated VMs’ usage are optimized: idle or unused
VMs are deallocated automatically. Therefore the migration
policy is based on the capacity of each VM.

This combination brings significant benefit to both actors.
First, there are fewer migrations than SCO, because the mi-
gration check is only performed when there is a VM freed.
Second, the number of application instances is still minimized,
because the application manager deploys its instance on-
demand, same as DASO. Finally, more PMs can be freed than
DASO, because the IaaS manager optimizes its VM placement
with migration, results in reducing power consumption.

However, this placement still has the same problem with
SCO: the possibility of having multiple VMs of the same
application tier on a PM. This is not optimized for performance
with VM overhead and balancer overhead. This problem comes
from the fact that the application manager is not aware of its

VM location, and that the IaaS manager is not aware of the
application tiers.

III. BOTH LEVELS, COOPERATIVE (BLC) RESOURCE

MANAGEMENT

To overcome the drawbacks of DASO and SCO being
implemented without coordination, we propose a cooperative
resource management policy. The key difference in this policy,
compared with the above policies, is to gather application
instances into groups, and then manage groups with quotas
instead of VMs. These quotas can be dynamically changed in
runtime. This group notion provides the application architec-
ture to the IaaS manager, thus simplifies the VM management.
The two layers communicate with each other through cooper-
ation calls (fig. 1). A call from application layer to the IaaS
layer is a Downcall. The call in the other direction is an Upcall.

The customer’s application manager monitors its tier load,
and based on the actual runtime situation, either (1) overload:
requests a group quota increase; or (2) under load: requests a
group quota reduction. According to the request to modify a
group quota ∆q, the IaaS manager can:

Add quota (∆q > 0) for an existing VM: qvm = qvm +

∆q. This is the case when this VM has 0 < ∆q+ qvm < 100

and its host is free enough (in terms of remaining quota).
In case of not having enough free quota in the host, the
IaaS manager allocates a new VM, VMk, and informs the
application manager with an Upcall about VMk to deploy an
application instance on it.

Reduce quota (∆q < 0) for an existing VM:
qvm = qvm − |q|, only possible when qvm < |q|. If no
VM satisfies this constrain, the IaaS manager reduces quota of
several VMs and/or stop a running VM. The notification about
this tier reconfiguration will also be sent to the application
manager for tier reconfiguration.

The IaaS checks for optimizations after changing quota.
We identified several situations for tier optimization from our
experiment: migrations of VMs for freeing a PM, VM resize is
not required; or merge of collocated VM from the same group
to reduce overhead; or split of a big VM into smaller VMs
then migrations of these small VMs to free PMs.

IV. EVALUATIONS

The objective of this section is to prove the effectiveness in
minimizing resource usage and maximizing performance of the
cooperation strategy. We show the behavior of each strategy
with a hypothesized workload (fig. 2) to better compare the
benefits and the drawbacks of each policy.

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500

V
M

 c
o
u
n
t

Time(s)

Number of VMs over time

PM 1 #VM
PM 2 #VM
PM 3 #VM

Fig. 3: SCO: VM Allocation

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000 3500

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Time (s)

Average Response Time for Application 3

Ideal placement
SCO
BLC

Fig. 4: Response time of Application 3

Given a cap value 0 < ck,i ≤ nc (number of cores per PMs)
in each duration tk,i (in seconds) for a VM VMk, we define the
VM occupation in our experiments as ωk =

∑n

i=1
ck,i× tk,i.

From this definition, we have a VM occupation of each appli-
cation Appj as Ωj =

∑n

k=1
ωk. This metric can be used to

evaluate the effectiveness of each resource management policy
toward minimizing the booked resource for the customers.

A. Experimental Setup

Our experiments were performed in a private cluster of 7
nodes, equipped with an Intel Core 2 Duo 2.66GHz (2 cores),
4GB RAM and running Debian Squeeze with Xen 4.1.5 as
the hypervisor. The RUBiS application is considered as the
customer’s multi-tier applications. We consider only MySQL
tier in our experiments to simplify the management policies.

B. Evaluating performance overhead in SCO

Fig. 3 shows the VM placement for SCO. Initially two
MySQL server instances are deployed for each application
(provisioned). Before the experiment, all VMs for idle MySQL
instances are packed into PM3 (500th-700th second). There
are several VM migrations (800th, 1050th, 2900th... seconds)
when the application loads rise and drop. From 1600th sec-
ond to 2450th second, each PM has two VMs of the same
application running at their maximum workload.

Fig. 4 compares the average response time of the third
RUBiS application with different scenarios, including an ideal
VM placement: only one big VM of each application is
placed on each PM. From the figure, the response time of
SCO during full load is approximately 10%-15% higher than
the one in the ideal VM placement, because of the balancer
and hypervisor overhead. This overhead shows the trade off
between minimizing PM usage and maximizing performance.

C. Evaluating power waste in DASO

There is no migration in the DASO policy (fig. 5): all
the resource management jobs are handled by the customer

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

V
M

 c
o
u
n
t

Time(s)

Number of VMs over time

PM 1 #VM
PM 2 #VM
PM 3 #VM

Fig. 5: DASO: VM Allocation

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

V
M

 c
o
u
n
t

Time(s)

Number of VMs over time

PM 1 #VM
PM 2 #VM
PM 3 #VM

Fig. 6: BLI: VM Allocation

application managers. Initially, each application deploys only
one instance of MySQL(400th second). MySQL instances are
then dynamically added (800th, 1050th, and 1300th second)
and removed (2600th, 2950th, and 3250th second) according
to the CPU load of this tier, to ensure response time and a
minimal number of VMs.

Fig. 5 shows a possibility to consolidate PM2 and PM1
at time 2950th second of the experiment: PM2 and PM1 each
have one VM. This placement creates two holes, each on a PM.
However, since there is no consolidation strategy implemented
in this scenario, these under-used nodes are kept intact until
the deallocation of a VM on PM1 at 3250th second. A node
in our cluster consumes approximately 60 watts in full-load
state, 50 watts in its half-load state and 3 watts in sleep mode.
If one VM is migrated from PM1 to PM2, PM2 is full loaded
(60W) and PM1 can be suspended (3W). Therefore, 37W is
wasted in a 300s duration of this experiment.

D. Evaluating the overhead of two policies in BLI

We use the same generated workload in this experiment
to confirm the benefits (in minimizing hardware usage) and
drawbacks (in performance overhead) of these two policies
when being used at the same time (fig. 6). All three RUBiS
applications are started with three MySQL servers (one for
each application). Each MySQL VM requires half of a PM, in
terms of CPU and memory quota. The initial VM allocation is
relatively similar to one in fig. 5. The benefit from triggering a
consolidation is shown at 2950th second: a VM from PM2 is
moved to PM1, freeing up PM2 for suspension to save energy.
Compared to section IV-C, this migration saves 37W from
2950th to 3250th second.

However, BLI still has a higher response time than the ideal
VM placement (only one VM for each application on one PM).
In our experiment with BLI, response time of the application
3, similar to the one in DASO, is still approximately 10%-
12% higher than the ideal scenario in full load (fig. 4). This
difference shows the performance drawback for BLI.

PM3

PM2

PM1

 0 500 1000 1500 2000 2500 3000 3500

A
p
p
lic

a
ti
o
n
 V

M
s

Time(s)

VM and quota distribution

VM for App 3
VM for App 2
VM for App 1

PM3

PM2

PM1

A
p
p
lic

a
ti
o
n
 V

M
s

Time(s)

VM and quota distribution

Fig. 7: BLC: VM and Quota Distribution

E. Evaluating two policies at the same time, with cooperation

The cooperation scenario involves two actors at the same
time. The cooperation calls are sent in runtime to notify each
actor’s ongoing situations and actions. The VM and quota
allocation of all applications in this experiment are shown
in fig. 7: each application uses Downcalls to ask for quota
increase during the upramp phase (950th, 1050th, 1450th,
1550th, etc second). Depending on the VM placement and
available quota on each PM in the time of those Downcalls,
the IaaS either increases quota for an existing tier VM (1050th,
1550th and 1750th second) or allocates a new VM (950th,
1450th and 1650th second). In the later case, the IaaS uses
Upcalls to notifies this allocation to the customer application
manager, so that a new application tier instance is deployed.
Similarly, the possibilities to decrease a tier quota are handled
in the downramp of the workload. According to the customer
application manager’s Downcalls, the IaaS then decides to
reduce quota for a tier VM (2600th, 2900th and 3150th second)
or to remove it (2650th and 2950th second).

Notice that during runtime, with the knowledge provided
by the application managers, the IaaS manager proposes to
merge small VMs into bigger ones, in attempt to reduce
overhead. For example, a cooperative merge happens at 2650th
second: the IaaS merges two VMs for application 2 (in PM1
and PM3) into one big VM (in PM3). At the same time,
another cooperative merge is executed between two VMs of
application 3 (in PM1 and PM2) into a big VM in PM1.
Application 3 then benefits with a single instance running in
a big VM: its response time reaches to the level of ideal VM
placement from 2650th second to the end of the experiment
(fig. 4). Additionally, after reducing quota for the VM of
application 2 at 2950th second, the IaaS migrated the VM
for application 1 from PM2 to PM3 and turned PM2 off.

F. Comparison

Table I summarizes the capabilities of the above policies.
The VM occupation values show the total of booked resource,
and the total PM utilization times show the hardware resource
usage. The higher PM utilization time, the more energy the
provider needs to spend. Similarly, the higher value of the
booked resource, the more the customer has to pay.

Table I confirms the goals of SCO and DASO: SCO
minimizes the amount of PMs being used for the provider
(7419s), and DASO minimizes the booked resources for the
customer (ΩDASO = 2131). However, each policy brings
disadvantages to the other actor when being implemented
separately: ΩSCO is very high (almost doubles the amount
of the remaining scenarios), and PM utilization of DASO is

12.5% higher than the one of SCO. BLI attempts to reduce the
PM utilization of DASO by 288 seconds by migrating a VM
from PM2 to PM1. This total reduction of PM usage confirms
the benefit of this scenario in section IV-D. Our proposed
BLC has slightly higher hardware resource usage than SCO
(2.5%, 7611s compared to 7419s), but greatly reduces the
booked resource for the customer (53% of SCO). In short,
BLC reduces cost to both the customer and the provider.

Value SCO DASO BLI BLC

PM Utilization (s) 7419 8347 8059 7611

Average VM Occupation Ω 3902 2131 2136 2083

TABLE I: Comparison of the Policies

V. RELATED WORKS

Few systems addressed dynamic resource management at
both levels. [4] proposed a two-level resource management,
but their resource provisioning at the hosting center level was
only based on the allocation of additional resource to VMs.
[5] proposes a solution to the coordination problem between
VMs and the hosted applications when the resource availability
has changed. The [5]’s approach uses a hybrid solution (a
feedback learning solution combine with a proactive solution)
to prevent the reconfiguration of VMs and the applications
they run. Most two-level resource management systems did
not provide a cooperative strategy for these two levels, and
thus, did not achieve optimal energy saving and performance.

VI. CONCLUSION AND PERSPECTIVES

This paper shows that cloud resources can be managed
at two levels: at the application level and at the IaaS level.
Moreover, it shows that resource management strategies at
these two levels are complementary, especially when these
two levels work cooperatively. We are currently conducting
performance evaluations with real workload (monitored in
a real hosting center), instead of synthesized workload, to
demonstrate the effectiveness of this approach. A longer term
perspective of this work will be to consider an optimal al-
gorithm for VM placement and quota management based on
workload prediction.

REFERENCES

[1] H. AbdelSalam, K. Maly, R. Mukkamala, M. Zubair, and D. Kaminsky,
“Towards energy efficient change management in a cloud computing
environment,” in Scalability of Networks and Services. Springer, 2009.

[2] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, and Y. Chen,
“Greencloud: a new architecture for green data center,” in Proceedings

of the 6th international conference industry session on Autonomic com-

puting and communications industry session. ACM, 2009.

[3] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “En-
tropy: a consolidation manager for clusters,” in Proceedings of the 2009

ACM SIGPLAN/SIGOPS international conference on Virtual execution

environments. ACM, 2009, pp. 41–50.

[4] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-tiered on-demand
resource scheduling for vm-based data center,” in Proceedings of the

2009 9th IEEE/ACM International Symposium on Cluster Computing

and the Grid. IEEE Computer Society, 2009, pp. 148–155.

[5] X. Bu, J. Rao, and C.-Z. Xu, “A model-free learning approach for coor-
dinated configuration of virtual machines and appliances,” in Modeling,

Analysis & Simulation of Computer and Telecommunication Systems

(MASCOTS), 2011 IEEE 19th International Symposium on, 2011.

