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Abstract—In the development of complex critical systems, an
important source of errors is the misinterpretation of system
requirements allocated to the software, due to inadequate com-
munication between system engineering teams and software
teams. In response, organizations that develop such systems
are searching for solutions allowing formal system engineering
and system to software bridging, based on standard languages
like SysML. As part of this effort, we have defined a formal
profile for SysML (OMEGA SysML) and we have built a
simulation and verification toolbox for this profile (IFx). This
paper reports on the experience of modelling and validating an
industry-grade system, the Solar Generation System (SGS) of
the Automated Transfer Vehicle (ATV) built by Astrium, using
IFx-OMEGA. The experience reveals what can currently be
expected from such an approach and what are the weak points
that should be addressed by future research and development.
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I. INTRODUCTION

One of the major risks of errors in the development of

real time critical embedded software is the misinterpretation

of the system requirements allocated to the software. These

misunderstandings between the system team and the soft-

ware team may have several sources, but are very often due

to the following causes:

• Use of ambiguous means to describe the system re-

quirements and the software implementation, leading

to different interpretations by the system designers, the

software developers and the reviewers.

• Insufficient knowledge by the software team of the

formalisms and jargon used by the system team, leading

to the development of software that does not satisfy the

system requirements.

• Insufficient knowledge by the system team of the for-

malisms and jargon used by the software team, leading

to inefficient reviews of the software specification and

code by the system team.

The errors potentially introduced during the development

are then generally discovered very late by very costly test

processes.

This situation is a cause of particular concern in the

aerospace domain, where multiple suppliers have to build

integrated systems based on common system requirements.

It has lead the main actors of the field (agencies and main

contractors) to search for solutions allowing formal system

engineering and system to software bridging. One such

effort was the ASSERT project1 led by the European Space

Agency (ESA), with the objective of defining a complete

system/software engineering process for complex and crit-

ical space systems. The ASSERT development process is

now supported by a set of tools called TASTE [9]. The

main scope of the ASSERT project was the management of

non functional requirements, from the capture of system re-

quirements to the automatic generation of code. The present

work is part of a follow-up project, Full MDE2 [8], which

aims to complement the ASSERT process on the functional

aspects, allowing full functional system modelling based on

an adapted use of the SysML standard [21].

SysML is a graphical modelling language well adapted for

system engineering and it is increasingly used in industry in

the development of real-time embedded systems. For exam-

ple, Astrium Space Transportation has deployed SysML for

capturing the systems requirements of the new version of

the Ariane-5 launcher. But its semantics is underspecified

in order to preserve the generality of the language. The

OMEGA Profile [13], previously defined for UML [23], has

been adapted to SysML in order to suppress any ambigui-

ties and provide a formal operational semantics, rendering

SysML models amenable to formal verification. The UML

version of the OMEGA profile was conceived to be used

in the design and validation of real-time embedded systems,

and it has been used in several industry-grade models (e.g.,

[18], [20]) providing interesting validation results. Like the

UML profile, OMEGA SysML is implemented in the IFx

toolkit3 [19] which provides simulation and timed-automata

based model-checking [7].

In this paper we assess the use of OMEGA SysML and

IFx in the design and validation of the system models of

a space vehicle control subsystem: the Solar Generation

System (SGS), which manages the deployment and posi-

tioning of the solar wings of the Automated Transfer Vehicle

(ATV)4 developed by Astrium Space Transportation for the

1ASSERT was a European FP6 Integrated Project lasting from September
2004 to December 2007. http://www.assert-project.net/

2Full Model Driven Development for On-Board Software, Contract
ESTEC 22618/09/NL/JK

3http://www.irit.fr/ifx
4http://www.esa.int/atv



European Space Agency. The case study, led by Astrium,

covers the entire system engineering phase of SGS; however,

in this paper we concentrate on the aspects that are specific

to OMEGA SysML and in which the IFx toolbox plays

a role. The OMEGA SysML profile was used in reverse

engineering to capture the system architecture, covering

software, hardware and external subsystems interacting with

the SGS, and to give a high-level functional model for each

of these pieces. In terms of SysML, the architecture descrip-

tion takes the form of block diagrams, and the functional

description of the blocks takes the form of detailed state

diagrams, including timing and lower-level action details.

The overall system requirements are also formalized so

that their satisfaction can be determined by simulation and

model-checking with the IFx toolbox.

The case study shows how a formal system engineering

approach helps increasing the confidence in system design

models, which are used as starting point in the subsequent

development steps. The purpose of this paper is to reveal

what can currently be expected from such an approach and

what are the weak points that should be addressed by future

research and tool development.

Paper structure: In Section II we position the IFx-

OMEGA approach in the Full MDE Process, while Sec-

tion III presents an overview of the OMEGA SysML Profile.

Section IV provides a brief description of the architecture

and main functionalities of the SGS case study. Section V

presents the verification model and the properties this model

has to satisfy. The validation methodology and the main

results obtained by simulation and model-checking are de-

scribed in Section VI. In Section VII we position our

approach with respect to other toolsets, before concluding.

II. THE FULL MDE PROCESS

The Full MDE project aimed at filling the gaps between

system modelling and software modelling, and between the

code generated automatically from the software model and

manual code corresponding to functional requirements, by

using a Model Driven Engineering (MDE) approach.

In the Full MDE process, each step of development of em-

bedded software is formalized by safe and non-ambiguous

languages which also provide proof techniques. The Full

MDE approach has selected:

• for system design, the OMEGA SysML Profile which

is also used in the ASSERT process to capture non-

functional requirements;

• for software design, SCADE suite [34] - a graphical

modelling language mixing automata and data flow

views - and

• for implementation code, the SPARK Ada language

[35] designed to support the development of software

systems where the correct operation of software is

essential for the security and safety of the system.

The successive refinement steps between the three model

layers are realized by model transformation techniques.
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Implementation codeImplementation code

+
Software specificationSoftware specification
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System designSystem design
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Figure 1. FullMDE: An engineering process based on models, formal
methods and model transformation

The purpose of a formal approach is to verify as early

as possible by simulation and proofs the system and to

discover potential errors, an approach that is more reliable

and potentially less costly compared to a more traditional

one relying only on informal paper documents and on tests.

Figure 1 summarizes the Full MDE process.

The system design is an important task for the develop-

ment of critical systems and it guides the entire process. The

architecture of the system and its properties are expressed

in the OMEGA SysML Profile and are subject to formal

validation within the IFx toolbox. Once it is verified, the

model is transformed and integrated into SCADE modeller

which verifies the complementary sets of requirements.

SPARK Ada code is then generated automatically from

SCADE by a certifiable tool. The combination of SPARK

and SCADE allows the verification of correct integration of

manual and generated code, the absence of runtime errors

and the satisfaction of functional properties. A more detailed

description of the process can be found in [8].

III. OVERVIEW OF OMEGA SYSML AND IFX

OMEGA SysML defines the semantics of a rich subset

of SysML elements, providing the necessary constructs for

modelling real-time embedded systems designs. The profile

also defines a very few extensions, in the form of stereo-

types; their use however is not mandatory and a SysML

model can generally be interpreted as an OMEGA SysML

model without syntactic changes.

The architecture of a system is defined in terms of

blocks; OMEGA supports most of the standard features of

SysML blocks, such as properties (attributes and parts), re-

lationships (associations, compositions and generalizations),

interconnection elements (connectors, ports, interfaces) and

mechanisms for defining structured data types and signals.

As usual in SysML, such elements are described in Block

Definition Diagrams (BDDs) and Internal Block Diagrams

(IBDs). Being a formal profile, OMEGA defines a set of

additional well-formedness rules, in particular for strong

static typing. The profile also clarifies the semantics of



elements that are not fully described in the SysML standard,

such as the default behaviour of ports. The well-formedeness

rule set is fully formalized in OCL [24] and is enforced by

the IFx tools, which encourages rigorous system engineer-

ing. Further details on the rules, their rationale and their

formalisation can be found in [17].

The behaviour of system components is expressed in

OMEGA by state machines, possibly involving detailed

action descriptions, which can be structured into operations.

Actions are expressed in concrete textual semantics, compli-

ant with the UML action metamodel, and cover notions like:

variable assignments, signal output, block and connector

creation/destruction, operation calls, expression evaluation,

value return. As the standard action language of the OMG,

ALF [25], is under work, there are plans to use ALF as

action syntax in OMEGA in the future.

OMEGA defines a timed operational semantics, based

on the asynchronous composition of the behaviours of

different blocks. In order to allow the user to control the

concurrency granularity, which can have an important impact

on the effectiveness of the verification tools, the semantics

partitions the set of blocks into activity groups, based on the

concurrency meta-attribute (a standard feature of SysML).

Thus each block can be defined as active or passive, and each

active block defines an activity group consisting of itself and

its dependent passive blocks. Activity groups are executed

concurrently and they react to external stimuli (signals) in

atomic run-to-completion steps. Details on the execution and

communication model can be found in [16].

The model time base can be either discrete or dense and it

is specified by the user when simulation or model-checking

is performed. Model time is controlled using the primitives

of timed automata with urgency [5]: clocks, timed guards

and transition urgency annotations, which are stereotypes

used to control how logical time can progress depending

on the transitions that are fireable in a certain state. Time

progress can thus be disabled (when at least one urgent

transition is fireable), enabled but bounded (when there

is no urgent transition but there is at least one delayable

transition), or enabled and unbounded.

One of the few syntactic extensions defined in the profile

concerns observers, which are used to formalize the system

requirements that correspond to timed safety properties.

An observer is a special type of block (stereotyped with

≪observer≫) that can monitor the system states and

events and give verdicts about the (non-)satisfaction of a

requirement. Its behaviour is defined by a state machine,

with some states qualified as ≪error≫, respectively

≪success≫, states expressing the (non-)satisfaction of

a safety requirement.

The SysML Profile is implemented by the IFx-OMEGA

toolbox, which provides static checking, compiling, simula-

tion and model-checking tools. The tools rely on the trans-

lation of the relevant parts of a model to the input language

of the IFx Toolset5 [6], which is based on asynchronous

communicating timed automata.

IV. THE ATV SOLAR GENERATION WING

MANAGEMENT SYSTEM

The ATV, developed by Astrium Space Transportation for

the European Space Agency, is a space cargo ship launched

into orbit by the European heavy launcher Ariane-5 with

the aim of resupplying the International Space Station. The

case study presented here - the Solar Generation Subsystem

(SGS) - manages the solar arrays which provide the vehicle,

for up to 6 months, the energy needed to fulfil its mission.

SGS is responsible with providing functional chains to re-

alise the solar arrays deployment and controlling the rotation

of the solar wings of the ATV.

The SGS consists of a set of hardware and software

entities; its software part is a subsystem of the Flight

Application Software. The hardware of this subsystem has

more than 70 devices, with multiple levels of redundancy

for achieving reliability and availability in case of failures.

Its main elements are the four wings, each of them being

powered by two motors; a set of four motors (one from

each wing) is controlled by a solar array driving electronics

(SADE). Each wing has four hold-down and release systems

(HDRS) which maintain the wing in its initial stowed

position during the Ariane-5 flight. To deploy a wing, each

HDRS has to be cut by a thermal knife; there are two knives

for each HDRS, a nominal one and a redundant one. All

these hardware pieces are enabled at the right time by four

power units and four thermal control units. The activation

of each piece of hardware is given by two command and

monitoring units which also supervise the entire system.

Each thermal control unit has 2 regulators - solar arrays

driving group (SADG) -, which control 4 thermal knives

each. Each regulator cannot power more than one thermal

knife at a time.

The system has two operating modes:

1) The solar wing deployment mode. During take-off the

four wings of the ATV are stowed. Their deployment

starts by removing the safety barriers from the ther-

mal control units (TCU). Safety barriers prevent the

unwanted release of a wing by forbidding the enabling

of the thermal knives by the TCUs. Then the restraint

cables are cut by at least 4 of the 8 thermal knives of

the wing. In order for the HDRS to be cut, each knife

has to be active for 50 seconds. The deployment of

the panels starts immediately after the last hold-down

system has been cut. The deployment motion is driven

by deployment strings at the root hinge and the panel

hinges. After the deployment is completed, the panel

hinges and root hinge lock positively to provide a

stiff, backlash free, deployed configuration and safety

barriers are restored.

5http://www-if.imag.fr/



2) The solar wing rotation mode. It is realized by two

motors that control the position of the wing and

connect it with the avionics equipment chain. The

position of the wing is measured by reed switches

and magnets fixed on the wing’s motors. The solar

array driving electronics that control the wings are

working in cold redundancy: at a given time only one

can be on and control the orientation of the 4 wings.

The measures captured by the sensors are sent via the

active SADE device to a central processing unit which

numerically computes the direction in which the wings

should be rotating and their speed, results sent back to

SADE to be executed. The rotating mode is infinite,

by cyclic activation of one SADE device.

V. THE SYSTEM MODEL

In the scope of the Full MDE R&T project, the SysML

model has been built in reverse engineering by the Astrium

engineering team using IBM Rhapsody6. In this section

we describe the architecture of the model, the structural

issues that have been detected by applying the OMEGA

well-formedness rules and the changes they induced in the

model, and the formalization of the dynamic property that

was verified.

A. The original system model

The SysML model captures both the architecture of the

system and its timed behaviour. There are three types of

blocks:

• 9 hardware block types describe the equipment of the

ATV. Their behaviour is generally split in two operating

modes: a healthy mode which models the nominal

behaviour and a failure mode.

• 3 software block types, each with a specific function

(e.g. deployment, rotation, etc). Each block reacts to

stimuli coming from the environment (external mission

management) and controls the behaviour of the hard-

ware devices by executing automated procedures.

• A block that “simulates” the mission management.

It initiates the two functionalities of the ATV solar

generation system (deployment and rotation of wings)

respecting the timing constraints imposed by each of

these modes. In order to validate the software, the

mission management models a finite behaviour - the

wing deployment and three wings rotations.

Some blocks are further decomposed in sub-blocks, the

maximum depth consisting of 4 layers. The model defines a

total of 20 block types (7 of which are refined by means of

24 Internal Block Diagrams), 204 ports and 234 connectors.

The entire system contains 95 block instances: 12 composite

ones refined into 78 hardware devices, 3 software instances,

one instance of the mission management and the one repre-

senting the entire system; with a total of 517 port instances

and 366 connectors.

6http://www-01.ibm.com/software/awdtools/rhapsody/

B. Static coherence and compliance with OMEGA

The first benefit of applying the Full MDE process to

this SysML model comes from the application of the static

well-formedness rules of the OMEGA profile, which allows

detecting a range of inconsistencies, in particular related

to typing. Indeed, standard SysML modelling tools like

Rhapsody do not impose strong static typing rules, and

accept for example the definition of untyped ports. Since

ports are not typed, connectors can also be defined between

potentially incompatible ports. Such errors can go unnoticed

throughout the system engineering phase, and last sometimes

until the integration test campaign, when correcting them

becomes very costly.

The initial SGS model did not contain any interface

definition, and all the 204 ports were untyped. The errors

provided by the OMEGA compiler have led to the definition

of 18 interfaces which were used to specify port contracts.

This allowed us also to detect connection errors in the

model, such as duplicated connectors. We found that around

20% of the ports defined throughout the model were not

respecting the uniqueness and completeness rules, which

means that the destination of an incoming signal was either

undefined or ambiguous. This led to another reiteration on

the system model either correcting the contract for these

ports or splitting their functionality with respect to the target

object.

As a counterpart, several syntactic changes were required

for static compliance to the OMEGA profile. For example,

OMEGA requires unique names within a block or state

machine: an attribute and signal reception having the same

name or two sub-states within two parallel states of the same

statechart with the same identifier are forbidden. The syntax

for certain constructs (timers, enumeration literals, access to

arrays, etc.) is different from the one used in Rhapsody/C++.

However, the effort required for these syntactic changes is

minor relative to the size of the project: between 1 and 2

person*days for the SGS model.

C. Preparing the model for formal verification

Once the model is statically coherent and compliant with

OMEGA, some effort is still necessary to prepare it for

formal verification, in particular for formally defining the

properties to be verified. The main objective, for SGS, was

to verify that the system is 1-fault tolerant: the mission

succeeds even if one component of the system has failed

during execution.

Injecting failures into the system model. The failure

mode was already modelled for each of the 62 hardware

devices of the SGS: thermal knives, hold-down and release

systems, thermal control units, solar arrays driving groups,

power units and command and monitoring units. However,

in order to ease the definition of verification configurations,

we decided to add a block that commands the failure of one

equipment, chosen based on a parameter that can be con-

figured before each verification session without recompiling



the whole model. We have added another 144 ports and 138

connectors for inducing errors. The target device fails non-

deterministically, at an arbitrary moment during the system

execution.

Formalizing system properties. Requirements are captured

by OMEGA observers, then verified against the model under

the 1-fault hypothesis.

The requirement we describe here is defined with respect

to temporal properties of the system and is concerned with

the behaviour of the system in case of failure: no matter

what error for equipment devices is injected in the system,

the deployment of the wings shall succeed. This implies

that the redundant devices replace nominal ones in case of

failure.

Property 1: After 10 minutes since SGS start-up, all four

wings are deployed and the mission management is aware

of it.

The observer in Figure 2 models this property. In the

initial state the system is off. Because we need to observe

specific objects from the system and these objects exist only

after the initialization of the entire system, the observer

waits until the initialized signal is emitted by the ATV.

Then it triggers the transition and arms a clock with the

value deployment duration, in this case 10 minutes. If

after this deadline the four wings have not been deployed,

the observer enters the state NOT DEPLOYED and the

property is violated. If the wings have been deployed, the

observer enters the state DEPLOYED in which it verifies

if the mission management is aware of it. After the entire

deployment process, the software piece concerned by this

task verifies the locked status of the wings, via an inter-

mediary control and monitoring unit (CMU), and forwards

the global confirmation to mission management (MVM).

The MVM resumes its behaviour and continues its mission

until the END state is reached. Then the observer enters the

success state MISSION EVENT and the expressed property

is satisfied. If it is not the case in the time passed from start-

up then an error has occurred and the property is violated.

VI. SYSTEM VALIDATION

A. Validation methodology

In IFx-OMEGA, the validation of models consists in per-

forming several steps, supported by different tools, according

to the following workflow:

1) The first step is the translation phase from the

OMEGA model to an IF model by a sysml2if com-

piler, which enforces the well-formedness rules de-

fined by the profile and allows detecting some static

errors, as already discussed in Section V-B.

2) One can proceed with an interactive random simula-

tion phase, which allows us to quickly detect certain

problems, such as deadlocks that occur systematically.

3) The correct modelling of the system can be verified

via the absence of deadlocks. It is an extension of

the simulation phase in which we can pre-check the

SYSTEM_IS_OFF

Reactions

deployment_duration = 600000

SYSTEM_IS_ON

/match informal "initialized" by ATV //
clock.set(deployment_duration)

NOT_DEPLOYED

«error»[clock>=0]/clock.reset()

MISSION_EVENT

«success» DEPLOYED

[(ATV.SGS.WING1.LOCKING @ DEPLOYED ) and 
( ATV.SGS.WING2.LOCKING @ DEPLOYED ) and 
( ATV.SGS.WING3.LOCKING @ DEPLOYED ) and 
( ATV.SGS.WING4.LOCKING @ DEPLOYED )]

[ATV.MVM @ END]/
clock.reset()

NO_MISSION_EVENT

«error»[clock>=0]/clock.reset()

Figure 2. Observer modelling that the four wings are deployed 10 minutes
after start-up and the mission management is aware

system model by searching for certain state space

configurations.

4) The main validation step is the model-checking phase

which, in IFx-OMEGA, consists in the exhaustive ex-

ploration of the product state space of the relevant part

of the model and a set of observers while searching

for the absence of error states and stopping at success

state. If the model-checking algorithm finds errors then

it produces scenarios which can be replayed in the

simulator, in order to diagnose the cause.

The verification is usually not a one-shot phase, differ-

ent strategies for reducing the combinatorial explosion

of the state space being often applied in an iterative

fashion. In IFx-OMEGA, some reduction of the state

space can be obtained automatically, for example by

applying conservative model transformations based on

static analysis techniques (dead code/variable elimi-

nation, variable abstractions) or by applying partial

order reduction [12]. However, it is often necessary

to involve the user for manually defining abstractions,

as we will show in the case of SGS.

B. Validation by simulation

Despite the fact that the SysML model had been thor-

oughly reviewed, the interactive simulation of nominal sce-

narios and the execution of a series of random simulations

allowed several modelling errors to be found.

Most errors discovered in this phase concern unexpected

message receptions. When a block receives a message while

in a particular state when the message is not expected, it will

block and this generally leads to a global deadlock or model

failure. In the SGS model, several such problems have been

found in the behaviour of thermal knives and of wings. Some

unexpected message receptions had to be modelled.

In some cases, like for the SGS mission management

block, the unexpected message receptions were due to the



existence of parallel composite states reacting to the same

message; the designer intended only one parallel state to

react to the message during a certain flight phase, but failed

to specify correctly the conditions that enabled and disabled

the receptions when going from one phase to another. Even if

the model is intended to be a high-level system description,

such behaviours can be quite intricate and errors are difficult

to find without a simulation tool.

We mention that the length of a SGS simulation scenario

is around 2400 steps (a step corresponding to the firing of a

transition), and needs less than a minute to be executed on

a regular desktop computer.

C. Verifying the absence of deadlocks

Even though a large set of deadlocks was detected

and corrected during the simulation phase, in unexplored

states of the system other deadlocks might appear. These

ones concern the hardware devices which can block if

the software parts send inadequate (sequences of) requests.

The absence of deadlocks ensures only that the system is

correctly modelled and does not guarantee that the system

correctly behaves. Finding the modelling errors that result in

deadlocks is an important task since we can detect unrealistic

behaviours of the modelled systems that often go unnoticed

due to incorrect interpretations of the model until software

integration.

It was the case for solar array driving electronics (SADE),

responsible for the wing rotation, which failed due to an

incorrect deactivation sequence: the deactivation command

preceded the disabling command. The two signals were sent

in this order by the software: deactivation via a power unit

and disable directly, without any timing constraints being

imposed. This error was due to an unrealistic approximation

made in the model, namely that the deactivation command is

executed in zero time. In the real software, the deactivation

command has a 200 ms execution time thus leading to a

correct switch-off of the device. The correction consisted in

adding a timer for the deactivation command in the power

unit.

No other deadlocks were found after this verification step,

under the hypothesis of no induced failures.

D. A failed model checking attempt with positive results

The next validation step was to attempt to verify, by

model-checking, the property described in Section V-C.

This requirement had to be verified against the 62 possible

failures of hardware devices. In the current configuration

of the system, the verification of this requirement does not

finish7.

We chose to continue by using a non-exhaustive explo-

ration strategy: the system is executed on only two threads,

one thread for the simulation block which induces failures

7We were using a IA64 computing server with 16GB of memory. The
state space generation had to be stopped after 3 hours as the memory was
exhausted.

and the second thread for all the other SGS blocks. This

execution is partial in the sense that signals sent to different

blocks are always handled in the order in which they were

sent and different action interleavings are not taken into

consideration. But, as long as errors are detected, it is an

acceptable search strategy, and it allowed finding the three

errors detailed below:

• In case of a power unit failure, the violation of Prop-

erty 1 led us to discover a major error in the model

concerning the connections between the power units

and the wings. With the initial connections, in case

of power unit failure, a wing could not be deployed,

because both the nominal and the redundant connection

were established between the same power unit and

wing. In order to really be one fault tolerant, each power

unit shall power two wings, and each wing shall be

powered by two units.

• In the case of a thermal knife failure, in a particular

configuration, the state machine of the corresponding

hold-down and release system could deadlock because

two knife OFF signals were received (one from the

nominal, one from the redundant knife) but only one

was handled.

• In the case of a control and monitoring unit failure,

Property 1 is rejected. At the end of the deployment

mode, wings’ status verification does not finish in

the given time and the MVM does not receive the

confirmation to continue its mission. This type of error

is actually incorrect, since, in reality, the CMU is

composed by two independent devices which make it

1-fault tolerant, and it has been removed from the set

of possible induced failures. A similar case was found

for thermal control unit failures, which have also been

eliminated.

These errors are very similar to those found by interactive

simulation, but the particular configurations in which they

occur makes them very hard to detect without an automatic

search of the state space.

E. Verification using abstractions

After the errors described above were corrected, the

state space search with concurrency reduced to two threads

produced no further errors. However, since the reduction

eliminates potentially problematic executions, this is not

sufficient to establish the satisfaction of the required property

in the general case. To proceed with verification, we set out

to use abstractions.

Figure 3 shows the communication graph of the SGS

system, generated automatically from the state space ex-

plored as discussed before. Nodes represent block instances

and arrows represent the existence of at least one signal

communication between the block instances at the ends. In

order to make it readable, we structure the graph accordingly

to the three categories of the system - mission management,

software and hardware - and we group the instances of each
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Figure 3. System’s communication graph displaying the block instances - represented as nodes - and communications between them - represented as
arrows

wing as they represent the key concept of our abstraction.

As one can see, each of the 4 wings generate a large

structure of block instances, corresponding to the hardware

equipment of the wing. However, from the point of view of

the software blocks (which are the only other blocks with

which it communicates), a wing that does not experience any

hardware fault exhibits a very simple behaviour: it ends up

by being deployed. Therefore, one can set out to verify the

property of deployment under 1-fault hypothesis (Property 1)

by replacing all the 3 wings in which no fault occurs by

an abstract version that models this simple behaviour. This

requires to run a separate verification for each one of the

62 faults, using one of four possible versions of the SGS

model (one version for every combination of 3 wings that

are replaced by an abstract model).

Due to the interconnection of wings and solar array

driving groups - members of thermal control units (TCUs), it

is actually possible to further group an abstract wing and its

corresponding TCU, if the concrete wing is not connected to

the same TCU. The corresponding abstraction is represented

by a TCU WING block. Thus, after abstraction, each of the

4 versions of the model contains one concrete wing and its

TCU, one abstract wing connected to the same TCU, an

ABSTRACT TCU block connected to both concrete wing

and abstract wing, and two abstract TCU WING blocks.

The communication graph of an abstract model is shown in

Figure 4. The system is reduced, in average, by 55% with

respect to the number of block instances, port instances and

connectors.

The behaviour of an abstract wing consumes all received

signals and answers not deployed for the first 400 seconds

since system start-up (the minimal delay needed for a correct

deployment) and as deployed after 350 seconds since start-

up (the answer between 350 and 400 seconds is non-

deterministic). The difference of 50 seconds is related to the

end steps of the deployment procedures, in which the wing

can be deployed or not. The abstracted TCU WING has a

similar behaviour, with the difference that needs at least 280

seconds for deployment and can be not deployed for at most

330 seconds. These intervals were manually computed by

adding the time needed for each step and trying to minimize

their intersection were the wing has a non deterministic

behaviour with respect to its status.

The reduced model was model-checked by injecting fail-

ures one at a time. Concerning thermal knives, due to the

parallelization, we found an error scenario. Deployment

starts by switching on a subset of nominal knives for each

wing. The knife will inform the hold-down and release

system of its enabling. If, in these 50 seconds needed for

the cut, the redundant knife (which is off) fails, it will send

the disabling command to the hold-down system, and the

HDRS won’t be cut. Now, the redundant knife cannot be

enabled (due to the failure mode), the cable is not cut and

the wing not deployed. The correction is to send the switch

off request in case of failure only if the knife is on.

For all the other injected failures, the property is satisfied.

Table I presents the average time needed for the verification

(in seconds) of each class of errors. In the case of the later

one, the verification of the induced failure on the power unit

responsible for the nominal connection with the concrete

wing does not finish, while with the induced failure on

the power unit responsible for the redundant connection the
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Table I
AVERAGE TIME VERIFICATION FOR INDUCED FAILURES

Induced Failure Average Verification Time (s)

Thermal Knife 13993

Hold-down and release system 12272

Solar array driving group 11377

Power unit ∞

requirement is verified in 11394 seconds. This shows the

asymmetry of the system model.

F. Towards contract-based reasoning

In order for the verification described in the previous

section to be complete, we still need to prove that the

abstractions of wings and TCUs that we used are correct.

However, this is not possible without making certain as-

sumptions about the environment in which a wing operates,

which is composed of the mission management, the software

parts, the control and monitoring units and the power units.

The assumptions concern the order and the timing in which

messages are sent by the environment; in their absence,

the concrete model of a wing can deadlock or malfunction,

which is not captured by the abstraction.

One then has to verify that the environment actually

guarantees these assumptions, which is true only under the

assumption that the wings and TCUs operate correctly as

specified in the abstraction. This kind of circular argument

is used and can be proved to be sound in certain contract-

based verification frameworks [30], [29].

Defining such a contract framework for OMEGA SysML

and supporting it in the toolset is part of our future work

roadmap. In initial experiments, we have manually repre-

sented guarantees as observers and verified each guarantee

for the concerned component by manually extracting the

relevant model part. When a guarantee needed to be used

as assumption for another component, we represented it as

a normal SysML block exhibiting all behaviours allowed

by the guarantee, again by manually constructing the corre-

sponding state machine. All these steps have been formally

verified within our toolbox, thus proving the abstraction

correct.

VII. RELATED WORK

In the recent years, several tools have been developed

to support model-checking for high-level languages such

as UML, SysML or AADL [33]. Based on well known

model checkers, they are either directly integrated into tool

modellers or they provide transformation techniques from

the input model (usually expressed in an XMI file) to the

target language of the model checker used. For example,

the toolkit SysML Companion [31] provides as extensions

model-checking in UPPAAL [39] and Spin [36].

IBM Rhapsody includes validation by simulation in its

toolbox. [10] proposes to use UPPAAL in order to verify

Rhapsody state machines, the transformation being based on

state name equivalence with intermediary states generated

for composed actions. System’s properties, even though ini-

tially described by requirements diagram, have to be given as

Computational Tree Logic (CTL) formulas for the UPPAAL

model to be checked. However, the lack of an automatized

toolset for these transformations makes the approach error

prone - the model described in the two frameworks might

not be equivalent, which makes harder to identify if the

errors found by model-checking are spurious, introduced at

the translation, or true system errors.

ARTiSAN Real-time Studio [2] is connected to NuSMV

[15] model-checker in [1] which translates a large subset of

UML/SysML diagrams (e.g., sequence, activity and timing

diagrams, state machine diagrams, block definition and

internal block diagrams) to the intermediary Configuration

Transition Systems (CTS) formal model. The framework

proposes to verify system designs both by model-checking

and by metrics and program analysis. Structure diagrams

are usually subject to metrics analysis, while behavioural

diagrams are translated into the intermediate formal model

and model-checked with respect to automatically generated

properties and manually specified ones as CTL formulas. For

example, hierarchical state machines are transformed into

CTS where each state represents either its correspondent

one in case of top states or a set of states in case of a



composite state in the original diagram. For each state of the

CTS, reachability and deadlock formulas are automatically

generated as CTL formulas and verified on the model.

However, the temporal extensions for state machines are

not presented and neither their impact on the operational

semantics. Moreover, state machines are model-checked

separately. Our case study is based on the composition of

several individual behaviours, composition that is not taken

into consideration within this approach which makes it less

suitable to be explored. Furthermore, expressing properties

as CTL formulas might be a difficult step since system and

software engineers are not experts in formal methods and

temporal logic.

The Topcased Environment [38] provides connections

with UPPAAL and CADP toolkit [11] for SysML models.

The AGATE project [32] uses SysML Activity Diagrams, a

different formalism than ours, extended with MARTE Profile

[22] stereotypes to model the timed behaviour of a system

model and translates them into UPPAAL timed automata

in order to analyse the execution of the system on a mono

platform processor. A second approach within TOPCASED

is the usage the pivot language FIACRE [4] to connect

AADL and SysML models to CADP. In this case, the latter

transformation is not implemented to our knowledge and

could not be evaluated.

The academic TTool [37] transforms SysML models that

comply with the AVATAR Profile [26] into UPPAAL and

CADP for model checking, minimization and bisimulation

verification. It takes into account SysML Block Diagrams

and state machines extended with temporal operators to

express timing constraints (e.g., the delay for which the

activity of a block is suspended and computation time

for instructions). The communication between blocks is

realized via synchronous and asynchronous channels mod-

elled as connectors (between ports). Safety requirement are

expressed using TEPE property language [14], while secu-

rity properties are expressed and checked within ProVerif

[27]. Because TTool is compatible only with the profiles

it supports and our project can’t be imported, experiments

were carried out on toy models. The main difference between

the two approaches relates to the sound typing system that

OMEGA-IFx provides with respect to ports and connectors.

In AVATAR, ports are typeless (contracts cannot be spec-

ified for ports), while connectors statically specify which

signals they forward and in which direction. This leads to

models of bidirectional ports which are a source of typing

inconsistencies when translating a SysML model into an

implementation language, as explained in [17]. Moreover,

a signal can be sent through only one channel and the

same channel can transfer requests in both way. This greatly

increases the complexity of the verification model, since in

our case study the same request is transferred through several

connectors; for example, when the four wings communicate

their deployment status to the control and monitoring unit,

they use the same output port of their owner connected in

cascade with the target. Also, the broadcast communication

type is not considered in this framework, while OMEGA-

IFx implements this option used in industrial system mod-

els often implemented in synchronous languages [3]. With

respect to the properties model, TEPE uses the parametric

diagrams of SysML to express logical and temporal relations

between block attributes and signals. The system described

by blocks and state machine diagrams is translated into

timed automata; parametric diagrams are transformed into

observer automata for the UPPAAL model and checked

for reachability and liveness. It uses the same principle as

our toolbox, with the difference that we express properties

as state machines which can be more handy for system

engineers than learning a new specification language. One

can see than even if AVATAR-TEPE-TTool is an interesting

approach, our framework is more industrially-oriented and

fits the process of developing safe code for embedded critical

systems, also due to the Full MDE Process.

VIII. CONCLUSIONS

The difficulties often met during the development of

complex critical systems are well-known: late discovery of

errors in the system architecture, incompatible interfaces

of interacting components, ambiguities in the descriptions

leading to misinterpretations by the development teams. The

Model Driven Engineering process proposed by the Full

MDE project aims at decreasing the number of misunder-

standings during the development process, reducing the cost

of verification and validation and improving the quality of

the final system.

In this paper we have presented the validation of a reverse

engineering model of the Solar Generation System of the

ATV by using the IFx-OMEGA approach. We have worked

on a subsystem developed with OMEGA SysML Profile for

which we expressed requirements by observers that were

then verified by simulation and model-checking using the

IFx toolset. Due to the complexity of the system model the

verifications were performed on an abstraction of the model.

This framework has allowed discovering residual errors in

the system model at early stages of the development process.

The case study has also allowed to point out the weak

points of current tools and the path to future improvements.

In particular, all proofs were realized on abstraction that have

been manually designed. For industrial models, this might

be a difficult and time-consuming task. In order to cope with

the complexity of nowadays systems, we propose to develop

within our framework automated abstractions generation

and proofs by integrating a contract-based approach. [30]

has proposed a framework for compositional verification of

systems with assume/guarantee contracts for different input

formalism, like labelled transition systems, modal transition

systems [29] or input/output automata [28]. We are currently

working on adopting this methodology and extending it for

OMEGA SysML components, which are a version of timed

input/output automata.
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