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Abstract

In this paper, we present an analysis of the transverse cracking and interface failure process in-
duced in layered materials (such as composite laminates) subjected to tensile loading, with a new
level set based non-local modeling approach for damage growth (TLS: Thick Level Set). In par-
ticular, a 2D finite element model is built to study damage in a cross-ply laminate. The study
aims at evaluating the capacity of the TLS method to predict evolution of damage at the ply level,
including initiation, propagation, merging of cracks or delamination. We show how this numerical
model is able to reproduce key features such as crack spacing saturation and other experimental
observations.

Keywords: non-local damage, Thick Level Set, transverse cracking, composite laminates

1. Introduction

The appearance and development of transverse cracks in layered materials is an important
problem in many fields of engineering, for example in composite laminates (Garret and Bailey,
1977; Highsmith and Reifsnider, 1982; Manders et al., 1983), thin-films (Thouless et al., 1992),
civil engineering (Hong et al., 1997), or geology (Price, 1966). It is well established that in this
configuration of layered materials, cracks tend to self-organize, with a spacing which is directly
related to the relative thickness of layers. Explanations for this phenomenon, based on shielding
effects, have been proposed on the basis of fracture mechanics (e.g. Bai and Pollard, 1999; Bai
et al., 2000). This type of analysis relies on the study of the effect of discrete cracks placed in
elastic layers, and although it can explain why a given crack distribution is optimal or natural in
some way, it cannot provide details on the process which would lead to this crack distribution.

Transverse microcracking and local delamination in fiber-reinforced composite laminates have
been studied mainly within the framework of finite fracture mechanics. Analytical approaches
have been used for crack growth with energetic criteria that have allowed the definition of a large
number of successful fracture models such as in Dvorak and Laws (1987), and others (Hashin,
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1996; Nairn, 2000; Varna et al., 1999). Rebiere and Gamby (2004) recently proposed an analytical
energetic criterion for modeling crack initiation and propagation in the matrix as well as delamina-
tion in cross-ply laminates. Alternatively, numerical models have been proposed to model matrix
fracture, based on finite element approaches combined to bulk damage (Berthelot et al., 1996) or
cohesive elements (Okabe et al., 2004). The meso-model developed by Ladeveze (Ladeveze and
Lubineau, 2001; Ladeveze et al., 2006) predicts damage evolution directly at the ply level. Due
to the variability of local material properties within the plies, the heterogeneity of mesoscopic
structures must be considered. Some authors introduced a statistical criterion in strength like in
Berthelot and Le Corre (2000), or a statistical criterion in toughness as in Andersons et al. (2008).
Numerical studies of the propagation of debonding at the tip of transverse cracks were also treated
by a variational approach to fracture (Baldelli et al., 2011).

Modeling the progressive degradation of materials from an initial undamaged state to total
failure is still a challenge in computational mechanics. Damage models can be used to describe
the initial degradation of mechanical properties, while fracture mechanics is well adapted to final
stages leading to fracture. The Thick Level Set (TLS) approach, proposed by Moés et al. (2011),
allows for a seamless transition between damage and fracture, while providing the necessary reg-
ularization in presence of softening.

In this paper, we present an analysis of the transverse cracking and interface failure process
induced in layered materials (such as composite laminates) subjected to tensile loading, using the
TLS approach. The main aspects of this method will be presented in section 2. In section 3, a 2D
finite element model is built to study damage in a cross-ply laminate. The study aims at evaluating
the capacity of the TLS method to predict evolution of damage at the ply level, including initiation,
propagation, merging of cracks or delamination. For this, we will start from undamaged (virgin)
material with small but random variations of mechanical properties, and simulate the initiation
and evolution of cracks. In section 4, we show how this numerical model is able to reproduce key
features such as crack spacing saturation and other experimental observations. We also study the
effect of some algorithmic parameters involved in the TLS method. The paper closes with some
conclusions and perspectives.

2. Thick Level Set (TLS) approach

2.1. Continuum damage

Our objective in this work is to study the development of transverse cracks in layered materials,
starting from a virgin (crack-free) state. It is nowadays well established that continuum damage
models (CDM) are appropriate to treat early stages of material degradation. Abundant literature
on CDM is available, which analysis is nonetheless beyond the scope of the present paper, and we
will simply refer the reader to Lemaitre et al. (2009).

2.1.1. Local constitutive relations
We will work under assumptions of linearized kinematics, and consider a simple elastic-
damage model described by
oc=C): e (1)



where o is the Cauchy stress tensor, € the engineering strain tensor, and C(d) a fourth-order
elasticity tensor, function of the scalar damage variable d € [0, 1]. The model can alternatively
be described in the framework of generalized standard materials (Halphen and Nguyen, 1975;
Germain et al., 1983), by defining the free energy potential, a function of the material state {g, d}:

W(e,d) = %8 :Cd) : e. (2)

This potential in turn allows to define thermodynamical forces conjugate to state variables &€ and
d:

o= 3)
oe
ow
Y =-—-(d) 4)

It is easily verified that (3) is equivalent to (1). Relation (4) defines the energy release rate Y,
thermodynamically conjugate to damage d. The equation describing the evolution of damage is
then obtained through the dissipation potential ¥/(Y):

d € Oyy(Y) )

where dyys denotes the sub-gradient of y¥/(Y), a (potentially non-regular) convex function of Y.
Following standard arguments, convexity of ¥(Y), combined to conditions ¥(0) = 0 and ¥(Y) >
0 VY, ensures positivity of the dissipation:

D=Yd>0. (6)

This formalism allows to simultaneously cover both rate-independent and rate-dependent damage
models. Indeed, the rate-independent case corresponds to a lower semi-continuous dissipation
potential of the form:

W(Y) = 0 iftY<y, o

4o ifY > 7.

and (5) is then equivalent to Karush-Kuhn-Tucker conditions: d > 0, Y =Y, < 0, (Y — Y.)d = 0.
The rate-dependent case corresponds to more regular functions (e.g. power-law expressions of Y
or Y — Y,). Finally, a dual dissipation potential ¢* can be defined through a Legendre-Fenchel
transform:

v'(d) = sup[Yd = p(v)| and Y €0 ®)
where convexity of y/*(d) is guaranteed by properties of Legendre transforms.

2.1.2. Boundary-value problem
The boundary-value problem at a given time ¢ then consists in the static mechanical balance
equation
V.o+b=0 VxeQ 9)
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together with boundary conditions

u=u VYxe0,Q (10a)
o-n=1t VYxe€i,Q (10b)

where 0,Q | ) 0,Q = dQ and 9,02 d,Q = 0, and constitutive equations (3), (4), and (5). Vectors
b, t, and @ are respectively applied body force, applied surface traction, and imposed displacement
at time .

Alternatively, the boundary value problem can be stated in variational form:

statinff[W(Vsu,d)+w*(d’)] dV—fb-udV—f i-udS (11)
v od Jo Q bile)

o

where variations on # must verify kinematic boundary conditions.

2.2. Regularization

The above problem is well known to lead to mathematical and numerical problems when strain-
softening occurs due to the development of damage. In particular spurious mesh dependency will
appear, which can lead to damage propagation with infinitesimally small energy input in the limit.
Introduction of non-local damage is known to regularize the problem (e.g. Pijaudier-Cabot and
Bazant, 1987; Peerlings et al., 1996). Here, we will adopt the Thick Level Set (TLS) approach,
proposed by Moés et al. (2011), and briefly summarized in this section.

The basic idea of the TLS method is to constrain damage distribution to follow a given profile
in the transition zone between undamaged (virgin) and totally damaged zones. For this, a level
set function ¢ is introduced, such that the curve I'y : ¢ = 0 separates virgin and damaged zones.
The level set ¢ is then constructed as a distance function to I'y, and damage is constrained to the
following distribution:

d(¢) =0 where ¢ <0 (12a)
0<d@)<1 where0<¢ <l (12b)
d(¢) =1 where ¢ > 1. (12¢)

as illustrated in figure 1. It appears clearly from the above definition that a length scale /. has now
been introduced in the model: damage develops in a band bounded by Iy and I'. : ¢ = [. (the
Thick Level Set) and the spatial distribution of d is further constrained by the function d(¢).

Evolution of damage is now constrained by the evolution of level set ¢ (more precisely by the
evolution of curve Iy since ¢ is built as a distance function to I'y), and the variational boundary-
value problem (11) becomes:

stat inf f |W(Vu,d(@) + v (d (@)$)| dV - f b-udV - f f-udsS (13)
v oo Jo Q 0Q,
Concentrating on the minimization with respect to ¢, we can write
.
inf f f [~Yd @) +v@@))] (1 - i) dg ds (14)
¢ Jro Jo p(s)
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where s is a curvilinear coordinate along I'y and p(s) is the curvature radius of I'y (see figure 2).
Considering that ¢ is a distance function, we know that ¢ = v,,, where v, is the velocity of curve I’y
along the outward normal to the Thick Level Set zone (at ¢ = 0). The stationarity equation with
respect to ¢ (assuming conditions allowing progression of damage) then yields

le
[ [ rrawaon]aw(i- ) ssasas =0 vao (15)
Ty Jo p(s)
which can be rewritten as
le
f (-7+ 1) f d’(¢)(1 - i)dqb] Spds=0 Voo (16)
To 0 p(s)

where Y is defined by
1. , )
by Yd@ (1-:5)de

Y == p (17)
hd@(1-55)do
and, assuming a rate-independent damage model such that
.o |Yed ifd>0
Y(d) = { . (18)
+o00  otherwise

Y. is defined as
l
_ pred@(1-5)de
7, = J(; - ( (;)0( )) . (19)
hd@(1-55)de
The above equation shows that the evolution of the level set is controlled by an energy release rate
which is averaged over the thickness of the damaged band (figure 3).
Note that average quantities defined by (17) and (19) are never explicitly evaluated. Instead,
the quantity Y is evaluated by writing an associated variational problem, as detailed in Bernard
et al. (2012).

Figure 1: Damage distribution as defined by level set ¢
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Figure 3: Definition of an average energy release rate ¥ over the damaged band

2.3. Numerical algorithm

The variational formulation described above concerns the rate problem. For numerical sim-
ulations, we need to adopt a time-discrete approach. For this purpose, we followed the strategy
described in Bernard et al. (2012), summarized in Algorithm 1. This algorithm considers a quasi-
static problem, with radial loading. The load factor y is incrementally increased, and crack initia-
tion and propagation is possible at each step. The algorithm computes load factor increments such
that the damage front (curve I'y) advance a is of the order of mesh size 4. Front advance is chosen
as proportional to (¥ — Y..), (only forward motion is allowed, by irreversibility of damage), with
a coefficient k (see algorithm) computed from previous iterations. More details can be found in
Bernard et al. (2012).

Note that the initiation criterion for new cracks is purely local. Once the local energy release
rate Y reaches a value above the local critical value Y., a small damaged zone is introduced around
the critical point: for example, a level set corresponding to a circular curve I' of radius ry such
that: 1 < rg < [. (figure 4). Thus, this is not properly speaking a crack, but a small damaged zone,
which can later develop as a fully formed crack, such evolution being controlled by a non-local
criterion. Note also that damage initiation occurs in a range where the local constitutive behavior is
mathematically well-posed (i.e. hardening stress-strain relation). Later stages are treated through
the non-local TLS model, avoiding problems of pathological mesh dependence.

Some level of mesh adaption is required as damaged zones develop, in order to maintain a
sufficiently accurate geometrical description of the level set (in particular in regions of strong
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Algorithm 1 Incremental computation of crack initiation and propagation

1: initial elastic computation

2: search for material point with maximal ratio Y/ Y,

3: set load factor u such that Y., = Y. and insert first crack
4: repeat

5: compute Y

6: search for location on I'y with maximal ratio Y/Y,

7 compute associated load factor u2 = ¥,/ ¥pax

8 compute load factor increment:

Ymax
h = ampax = k((/ln +A,LL)2 % - 1)
such that maximal damage front advance is of the order of mesh size
9: move damage front:

_ Y
a —k<(u,,+A,u) > 1>+

c

10: elastic computation (frozen damage)
11: search for material point with maximal ratio Y/ Y,
12: insert new crack if Y/Y. > 1 (outside of existing damaged zone)

13: until g > pgna

curvature, as in a crack tip), as well as for numerical integration purposes. This mesh adaption is
performed by a recursive subdivision algorithm of quadtree type.

3. Model laminate

3.1. Geometry and boundary conditions

In the following, we will consider a composite laminate of type [0, 90;]; corresponding to
the stacking of unidirectional fiber reinforced plies at orthogonal directions, subject to uniaxial
tension. Relative thicknesses of each layer are determined by the number m and n of unit plies
introduced in the stacking sequence. In the configuration illustrated in figure 5, the fibers in the top
and bottom layers are aligned with the tensile axis, and these layers will thus be considered as elas-
tic, while fibers in the middle layer are orthogonal to the tensile direction, offering little resistance,
and damage will develop in that region. Planar symmetries have been taken into consideration for
the numerical model. Note that the amplitude of the applied tensile force is controlled by a load
factor, itself computed by the algorithm 1.

3.2. Material properties

The top and bottom layers are thus considered as purely elastic (no damage). Rigorously, an
orthotropic elastic stiffness tensor should be used, with different elastic properties in the direc-
tion of fibers (e,) and in the transverse direction (e,). Nonetheless, considering that longitudinal
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Figure 4: Initiation of a new damage zone
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Figure 5: Geometry of model laminate

stresses will be dominant over transverse stresses, we will use an isotropic elasticity model with
Young modulus E; and Poisson ratio v. For the central layer, the material can be considered as
isotropic (transverse isotropy) with Young modulus E. < E; and Poisson ratio v.

Damage (and cracks) can develop in the central layer, corresponding to matrix failure and/or
fiber/matrix debonding. Despite the complexity of micro-mechanisms at work, we will use a
simple scalar damage model. We will consider a damage evolution law allowing a progressive
transition from undamaged (d = 0) to totally damaged (d = 1) states, as described by the following
relation (Ladeveéze and Le Dantec, 1992):

N Y(7) - \/To>
0 -, @

which can be reformulated through the dissipation pseudo-potential given by:

v(did) = {Y“(d)d B0 ity = [VR+d(WE- V] @D

+00 otherwise

where Y is the (initial) critical energy release rate and Y, the ultimate energy release rate (i.e. at
complete failure).

In order to account for heterogeneities in the material, we introduced a small variability for
the critical energy release rate Y, in the central layer. This heterogeneity is due to variations
in the density and/or orientation of fibers, as well as other defects, resulting in zones of weaker
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and higher strength. This variability affects both initiation and propagation of the cracks in the
layer. Various distribution are used in the literature, the use of a particular distribution depending
on the composite and on the physical process considered. Here, following Berthelot and Le Corre
(2000), we chose a pseudo-normal distribution (i.e. a normal distribution, but defined on a bounded
domain), but applied on the critical energy release rate (instead of the critical stress in the original
paper), yielding

Yo = (eN@©O,1)+ 1) ¥, (22)

where N(0, 1) is the normal distribution function, o the standard deviation, and Y, the average
value of critical energy release rate. In the following, unless explicitly indicated otherwise, we will
use a standard deviation of o = 0.19. In practice, we obtain a discrete distribution, by drawing
a value for each element of the mesh, yielding the distribution illustrated on figure 6. Keeping in
line with Berthelot and Le Corre (2000), a “tail” with particularly weak values of Y, was added to
the normal distribution to account for micro-cavities which are known to occur in real materials.
Berthelot and Le Corre showed that such weak zones were necessary to reproduce more accurately
crack density evolution curves in their initial stages.

40

30

20

Number of occurences

10

035 046 058 069 081 092 1.04 115 127 138 1.50
Critical energy release rate (relative)

Figure 6: Distribution of the relative critical energy release rate Y./ ¥, over elements of the central layer

The average critical energy release rate Y; is itself computed from the fracture energy G. by
considering the following relation:

. G,
G. =Y.l < Y= T (23)

where G. is the average fracture energy.



4. Results

4.1. Influence of algorithmic parameters

In order to assess the effect of algorithmic parameters introduced by the TLS (i.e. d(¢) and [..),
we consider the case studied by Garret and Bailey (1977): a glass/polyester cross-ply composite,
with individual plies of thickness 0.8 mm and mechanical properties listed in table 1. The laminate
is subjected to tensile loading in the direction corresponding to the orientation of fibers in the top
and bottom layers. Note that our numerical model assumes plane strains. The initial mesh size is
of the order of 0.05 mm.

Table 1: Material properties for a glass/polyester composite

E;(GPa) E.(GPa) v Y,(MPa) Y, (MPa)
23.0 4.2 0.3 0.057 1.3

Given the heterogeneity of the critical energy release rate Y., damage will first develop in a well
localized zone, forming a first crack, followed by others as the applied stress increases. Cracks will
appear at a distance from each other (as discussed below), leading to a distribution as illustrated
in figure 7. Note that adaptive mesh refinement has led to about 40000 degrees of freedom at this
final stage.

stress (J2) [Pa] Y

0 5.16e+08 1.03e+09 z X
[ -

Figure 7: Transverse crack propagation in a [0, 90, 0] glass/polyester laminate.

4.1.1. Damage profile

Before looking at predictions of our numerical model, we can study the effect of algorithmic
parameters introduced by the TLS approach. First, we will consider a fixed characteristic length,
of the order of the diameter of a fiber ([. = 15 um), and vary the shape of damage function d(¢).
Various possibilities are illustrated in figure 8.

One interesting indicator for comparing results is the crack density at the final stage: in com-
puting this density, we considered only cracks that have propagated through the middle layer. The
final stage can be defined as the stress level for which no more transverse cracks appear, propa-
gation of damage occurring instead along the interface between the two layers. Results for this
indicator are given in table 2. These results indicate that the 1inear and arctan?2 profiles pro-
vide the best fit with respect to experimental measures. The polynomial profiles lead to very low
numbers: in these cases, new damaged zones seem to be more easily initiated, preventing existing
damaged zones to develop as actual, propagated, cracks.
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Figure 8: Various damage profiles d(¢)

Table 2: Final crack density in function of damage profile d(¢)

Label Profile Crack density (m™')
linear d(¢) = ;f ~ 1000
arctan | d(¢) = S arcianGs) &retan [10(2 - 0.5)] + 0.5 ~ 750
arctan [35(% - 0.2)] + arctan(7.0)
tan2 | d(¢) = - ~ 1000
arctan 2 arctan(28.0) + arctan(7.0)
P 02
poly2 d(¢) = (l—) ~0
;) 7
poly4 d(¢) = (1—) ~ 0
sin d(¢) = 0.5sin (n(£ - 0.5)) + 0.5 ~ 250
reference Garret and Bailey (1977) ~ 1000

Restricting the focus on the two damage profiles better predicting the crack density, we can
look in more details at the distribution of damage around a typical crack tip. As illustrated in
figure 9, the linear profile leads to a sharper damage distribution, while the arctan2 profile leads
to a well visible “process-zone” ahead of the crack tip. The difference is associated to the local
curvature radius of the level set describing the damage front: a small (< /.) curvature radius leads
to a thin (< 2/.) damage zone, where damage remains lower than the limit value one everywhere,
corresponding to a “process-zone”, while a larger (> [/.) curvature radius allows for a wider (> 2/,)
damage zone in the center of which damage can reach a value of one, corresponding to a crack. The
“process-zone” seems to correspond better to what is observed experimentally, with a transition
from somewhat diffuse damage to a crack, and in the following we will thus retain the arctan?2
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profile for d(¢).
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(a) arctan2 (b) linear

Figure 9: Effect of damage profile on crack tip distribution (both figures are not to scale)

4.1.2. Characteristic length

Considering a fixed damage profile, chosen as the arctan2 expression above, we can now
study the effect of the characteristic length /.. We have run the same simulation, with values of
l. = 10um, I, = 15um, and [, = 20um. Results can be compared in terms of crack density
evolution in function of applied stress, as illustrated in figure 10, for various stacking sequences
(corresponding to different thickness ratios). We can first observe that the parameter /. does not
seem to have a significant effect on results. Then, numerical results present a relatively good
agreement with experimental results of Garret and Bailey (1977). The main difference appears for
the case of the [0°,90°,0°] laminate, but it must be emphasized that a better fit can actually be
obtained by playing with the statistical distribution of Y,. Indeed, increasing the value of standard
deviation up to o = 0.5 can flatten the crack density curves, as shown in figure 11, and a translation
can be obtained by varying the average value Y.

4.2. Comparison with experimental data

4.2.1. Crack saturation

In multi-layered materials, with layers of different mechanical properties subjected to tensile
stress in the longitudinal direction, transverse cracks will appear, parallel to each others. These
cracks appear in the weaker layers, and are confined by neighboring stronger layers. When longi-
tudinal stress/strain increase, the number of cracks increases as well, with new cracks nucleating
between existing ones, up to a certain threshold, beyond which no more cracks appear. This satu-
ration state is characterized by the distance between cracks. It has been experimentally observed
(Garret and Bailey, 1977; Parvizi et al., 1978; Wu and Pollard, 1995) that this distance is related
to the relative thickness of the weak layer with respect to the strong layer.

In the following, we will verify that our numerical model is able to reproduce this kind of
behavior. For this purpose, we consider a laminate with material properties listed in table 3. Within
this preliminary study, we will adopt a strategy slightly different from what was exposed before, in
order to accelerate numerical computations (several successive computations had to be run), and
to have a more precise control on crack development. Thus, a number of transverse “pre-cracks”

12
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Figure 10: Crack density vs. applied stress: experimental measures (Garret and Bailey, 1977) and

numerical results for various /. (given in ym)
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Figure 11: Influence of standard deviation o on evolution of crack density with applied stress (with
Yo = 0.062 MPa)

(i.e. damaged zones extending over one fourth of the central layer’s thickness) is introduced at a
given distance of each others. Depending on the thickness of the strong (0°) and weak (90°) layers,
some of these cracks will evolve to become fully developed transverse cracks, while some others
not. In this approach, it is then not necessary to introduce variability in the critical energy release
rate. For various thickness ratio between the strong and weak layers, several simulations were
run, with varying spacing between the pre-cracks (arbitrarily chosen of length equal to one fourth
of the central layer’s thickness), to identify which are the ones where all pre-cracks propagated
across the whole thickness. From this batch of simulations, we could associate crack spacing and
thickness ratio. The results are given in figure 12, where they are compared to results of Bai and
Pollard (1999). This plot shows how the relative (transverse) crack spacing decreases when the
ration of thickness between the outer and inner layers increases (i.e. the central layer becomes
more and more confined). We can see that the agreement between our results and those from the
reference is reasonably good: the saturation is well captured, as well as the increase of the relative
crack spacing at lower values of thickness ratio. A potential explanation for the difference may be
that Bai and Pollard (1999) used a different ratio of elastic moduli, although they also point out
that the influence of that factor should be relatively limited.

Table 3: Material properties for crack saturation tests

E;(GPa) E.(GPa) v Y,(MPa)
130.0 13.0 0.3 0.05

4.2.2. Glassfepoxy laminates
With respect to material properties previously used for the glass fiber laminate considered
when studying algorithmic parameters, the statistical distribution of Y, has been adjusted by in-
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Figure 12: Crack saturation effect: comparison with results from Bai and Pollard (1999) (S is the crack
spacing, Ty and T, are outer and inner layers’ thickness as defined in fig. 5)

creasing standard deviation o~ and average critical energy release rate ¥, to better fit experimental
crack density curves: looking at figure 11, increasing the value of ¥, allows to shift the curve
corresponding to o = 0.7 on top of the experimental curve. Note that the value of Y, is basically
linked to the ultimate strength of the epoxy matrix. The resulting set of data is listed in table 4.

Table 4: Material properties for a glass/epoxy composite

E;(GPa) E.(GPa) v Y,(MPa) o Y,(MPa)
23.0 4.2 0.3 0.08 0.7 1.3

Results obtained from simulations performed with this adjusted set of parameters are shown
in figure 13. We can observe the appearance of successive transverse cracks in the weaker cen-
tral layer, as the average longitudinal strain increases. New cracks typically initiate at the core of
the laminate and propagate until they reach the interface between the 90° and 0° layers. One can
clearly see on this figure that, as new cracks appear, they tend to respect a spacing equivalent to
the (weak) layer’s thickness (remember that the simulation takes advantage of the transverse sym-
metry), which will ultimately lead to saturation (not reached in the numerical simulation presented
here) as previously discussed.

Figure 14 plots the evolution of transverse crack density as a function of applied longitudinal
stress, for various stacking sequences (of type [0°,90;,0°]) corresponding to a variable thickness
ratio between strong and weak layers. These curves are compared with results from Garret and
Bailey (1977), and exhibit an excellent agreement with this reference.

4.2.3. Carbon fiber reinforced laminates

We have also considered a the case of carbon fiber reinforced laminates, with an epoxy matrix.
This configuration presents a stronger elastic stiffness ratio between longitudinal (0°) and trans-
verse (90°) directions, as can be seen in table 5. Reference results for this type of laminates are

15



£:=0.4% (0 ,=79 MPa)

&,,:=0.41% (7 ,,=80 MPa)

£,:=0.45% (7 ,,=85 MPa)

&,:=0.49% (7 ,,=90 MPa)

&:,=1.2% (01,=210 MPa)

Figure 13: [0°,90°,0°] glass/epoxy laminate: transverse cracks evolution as a function of longitudinal
strain. Average tensile stress has also be indicated for reference. Color map corresponds to
strains.

available in the experimental work of Wang (1984), for example. Here again, parameters describ-
ing the statistical distribution of the critical energy release rate have been chosen so as to adjust
the crack density evolution curves: in particular the choice of ¥, allows to set the tensile stress at
which transverse cracks start to develop significantly.

Table 5: Material properties for a carbon/epoxy composite

E;(GPa) E.(GPa) v Yy(MPa) o Y,(MPa)
76.0 11.7 0.29 0.98 0.7 1.3

Figure 15 shows the evolution of transverse cracks with increasing longitudinal strain, as pre-
dicted by the numerical simulations. Again, the transverse cracks are well seen to appear at a
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Figure 14: Glass/epoxy laminates: crack density evolution with longitudinal stress and comparison with
experimental data from Garret and Bailey (1977)

regular distance from each other, as expected. The evolution of transverse crack density with
longitudinal stress is shown on figure 16, for various relative thickness of the laminate layers.
Numerical results show a good agreement with experimental measures from Wang (1984).
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I e e e T e T e e T e
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: "
0.0032 0.0084 0.0098
1.4%

Figure 15: [0°,905, 0°] carbon/epoxy laminate: transverse cracks evolution as a function of longitudinal
strain. Color map corresponds to strains, the ruler corresponds to longitudinal coordinate.

Note that in this example, before full saturation of transverse cracks (i.e. for an average lon-
gitudinal strain of about 1.4%, as illustrated in fig. 15), damage propagates along the interface
between layers, in what resembles a delamination process (see figure 17). This behavior, not ob-
served in the previous example, can probably be related to the stronger contrast between the elastic
moduli of the strong and weak layers. Note however that the actual capacity of the TLS approach
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Figure 16: Carbon/epoxy laminates: crack density evolution with longitudinal stress and comparison

with experimental data from Wang (1984)

to reproduce delamination is still the object of ongoing work. These delamination results thus
remain mostly qualitative at this stage.

Figure 17: Damage propagation along the interface in a carbon/epoxy laminate (color map indicates
damage: blue is virgin material, red is damaged material)

4.2.4. 1905, 071 laminates

As a final application of the proposed numerical modeling approach, we now consider a con-
figuration where the weak layers (i.e. the 90° plies) are located on the laminate’s skin. This setting
has been studied by Okabe et al. (2008), for example, for a glass/epoxy composite with proper-
ties listed in table 6. Note that in this configuration, transverse cracks that will appear on the top
and bottom plies will not be aligned (they will actually alternate, see figure 18), and it is thus not
possible to take advantage of the apparent geometrical symmetry of the problem.

Table 6: Material properties for a glass fiber composite

Es (GPa) E.(GPa) v Yo MMPa) Y, (MPa)
30.0 9.6 0.31 0.33 4.0

Figure 18 shows the evolution of the transverse cracks pattern in a [90°,0°,90°] laminate. One
can see new cracks appearing alternatively on the bottom or top layer, positioning themselves in
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a nonaligned fashion, as expected. The spacing at crack saturation depends, here as well, on the
relative thickness of each kind of layer, as it is well visible on figure 18.
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0 0.0012 0.0024 0.0036 0.0048

0 0.0012 0.0024 0.0036 0.0048

0 0.0012 0.0024 0.0036 0.0048

1.70%

Figure 18: [90°,0°,90°] glass/epoxy laminate: transverse crack evolution as a function of average lon-
gitudinal strain (the ruler corresponds to longitudinal coordinate)
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0 0.0012 0.0024 0.0036 0.0048

[903,0°,907]

0 0.0012 0.0024 0.0036 0.0048
[903,0°,905]

Figure 19: Final transverse crack distribution in glass/epoxy laminates with different stacking sequences
(the ruler corresponds to longitudinal coordinate)
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In terms of a more quantitative comparison, figure 20 shows the evolution of transverse cracks
density as a function of longitudinal stress, for various stacking arrangements. These numerical
results are compared to data from Okabe et al. (2008), again with a very good agreement.
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Figure 20: [907,0°,90;] glass/epoxy laminates: crack density evolution with average longitudinal

n’

strain, and comparison with experimental data from Okabe et al. (2008)

5. Conclusion

In this paper, we have presented an application of the Thick Level Set (TLS) method (Mogs
et al., 2011; Bernard et al., 2012) to numerical studies of the development of transverse cracks in
multilayered materials, and in particular in composite laminates. The TLS approach solves several
difficulties associated to numerical modeling of damage and transition between localized damage
and fracture, such as the capacity to include crack initiation and branching, and constraints linked
to mesh-related issues. It allows for seamless numerical simulations from a virgin material to fully
formed discrete cracks, within a non-local framework avoiding many numerical problems associ-
ated to mechanical softening. In contrast with other non-local methods, the non-local character of
the TLS is geometrically limited to regions of interest, avoiding for example the issue of additional
boundary conditions.

Taking advantage of these appealing features, we were able to setup numerical models of
composite laminates, and perform simulations of transverse cracks development and interactions
within this type of heterogeneous structures. In a first stage, we studied the influence of the two
main algorithmic parameters introduced by the TLS approach: a characteristic length /. and a
damage profile d(¢) used to enforce non-locality within the damage front region. It was observed
that, if the characteristic length has a limited effect on results such as crack density, the damage
profile shows a strong influence on results. Moreover, numerical experiments have shown that
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two specific damage profiles (namely a linear expression and an expression in arctan) led to
the most physical results for this specific problem of multilayered materials. In addition, the
arctan2 profile led to the appearance of a process zone ahead of the crack tip, in agreement
with many experimental observations in organic matrix composites, and was thus used exclusively
in the remaining numerical simulations. Ongoing work is aiming at a better and more systematic
understanding of how the damage profile influences the development of damaged zones and cracks,
beyond the conclusions obtained from this particular study.

With these optimized algorithmic parameters, it was shown that the TLS numerical model
was able to reproduce crack interaction phenomena such as crack saturation in layered materials,
showing good agreement with results from the literature, obtained from experimental measures or
other computational methods. Several simulations were also performed to study transverse cracks
development within different types of composite laminates ([0°, 907, 0°] and [90;, 0°,90;] stack-
ing sequences), demonstrating both qualitative agreement (e.g. crack placement) and quantitative
agreement (crack densities) with available data from the literature.

Simulations presented in this paper required between 4 hours (for the simpler ones, with pre-
existing cracks), up to about 48 hours (for the simulations starting with a virgin material and
finishing with a fully crack-saturated weak layer), on a standard single processor desktop com-
puter. Note that there is a lot of room left for optimization of the mathematical solvers, and of the
code itself, and that these computation times have already significantly decreased since the first
simulations were run.

These results tend to show that the TLS could constitute an interesting approach to study
fracture scenarios and crack patterns in heterogeneous materials such as composites. In some of
the simulations shown above, one can observe propagation along interfaces once transverse cracks
saturation has been reached. As noted before, this qualitatively looks like the early stages of a
delamination process. Yet, the proper way to model interfaces between materials (either with a
jump of properties or with a smoother gradient), both from the numerical and the physical points
of view remains an open issue, currently under investigation.

Finally, it is well established that free boundaries effects are absolutely critical in failure
processes for composite laminates. A reliable numerical analysis of fracture scenarios in lami-
nates thus requires to account for three-dimensional models, and the bi-dimensional models used
here are limited to describe generic effects, such as crack saturation. Implementation of a three-
dimensional version of the TLS algorithms has recently been completed, and future work will
focus on such simulations of complex failure scenarios in composites and other heterogeneous
materials.
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