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ABSTRACT. Using shape matching within a k–nearest neighbor approach, shape context descrip-
tor has been applied in several classification problems with outstanding results. However, the
application of this framework on large datasets or online scenarios is challenging due to its
computational cost. To overcome this limitations, we evaluate the use of shape context as in-
put features for neural networks. We test the proposed method in a problem of recognition of
handwritten mathematical symbols. For a total of 75 classes of symbols, we obtained a recog-
nition rate of 89.8%, comparable with a k–nearest neighbor approach, but with reduced time
complexity.

RÉSUMÉ. Les descripteurs de contexte de formes ont été utilisés comme caractéristiques dans
les classifieurs k–plus proches voisins avec des résultats remarquables. Néanmoins, l’utilisation
de cette approche sur de grosses bases de symboles ou dans des contextes applicatifs à la volée
reste difficile à cause de sa complexité calculatoire. Pour dépasser ces limitations, nous pro-
posons l’utilisation des descripteurs de contexte de formes avec des réseaux de neurones au
lieu de l’approche k–ppv. Nous évaluons la méthode proposée dans un problème de reconnais-
sances de symboles mathématiques en–ligne. Pour un total de 75 classes de symboles, un taux
de reconnaissance est de 89.8% est obtenu, ce qui est comparable aux résultats de l’approche
initiale mais avec une complexité nettement diminuée.
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1. Introduction

Shape context descriptor has been applied in several Computer Vision classifi-

cation problems with outstanding accuracy. In (Belongie et al., 2002), the authors

evaluated shape context on the recognition of handwritten digits – using the MNIST

dataset (Lecun et al., 1998) – and 3D objects – using the COIL-20 dataset (Murase and

Nayar, 1995) – and obtained around 99.4% of accuracy on both problems. In (Prasanth

et al., 2007) shape context was used in a recognition problem that involved a large

number of classes: using a handwritten Tamil scripts dataset with 156 classes of sym-

bols, results of 79% top 1 and 92% top 2 accuracy were reported. More recently, the

work in (Wang et al., 2011) combined shape context and SIFT descriptors for leaf

image classification (220 leaf species) and obtained 91% of accuracy.

Shape context is generally used within a k–nearest neighbor approach. However,

the k–nearest neighbor approach does not scale well on large databases, due to the

computational load to find the nearest neighbor(s) and the need to store the class mod-

els (Hastie et al., 2009). For instance, results in (Prasanth et al., 2007) reported a

recognition time of 240 seconds per symbol. This also makes online applications a

challenging scenario for this method, because of the need to immediate system re-

sponses.

Symbol classification is a key step in the problem of online recognition of hand-

written mathematical expressions. This problem presents two issues that make the

application of shape context difficult: (1) large quantity of (symbol) classes, which

makes essential the use of large datasets, and (2) the need for efficient classification

methods to allow immediate recognition results for the input expressions.

To overcome the computational cost of the k–nearest neighbor approach, we eval-

uate the use of shape context descriptors as input features for a neural network clas-

sifier. We test the proposed approach on the Competition on Recognition of On-line

Mathematical Expressions (CROHME 2012) dataset (Mouchere et al., 2012), that is

composed of 75 symbol classes. The proposed method achieved 89.8% of correct

recognition rate, being comparable to the 90.16% by the nearest neighbor approach.

Further, while the nearest neighbor implementation has a recognition rate of 15 sec-

onds per symbol, the corresponding neural network performance is around 0.001 sec-

onds per symbol, being an efficient way to introduce shape context descriptor in online

recognition scenarios.

The rest of the paper is organized as follows: we discuss shape context calculation

and issues in k–nearest neighbor computation in Section 2. In Section 3, we describe

the neural network structure and integration with shape context. The experimental

setup is described in Section 4 and results are reported and discussed in Section 5.

Finally, conclusions and further work are presented in Section 6.
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2. Shape Context

Shape context was originally proposed as a shape descriptor in (Belongie et al.,
2002). This descriptor can be calculated from offline or online data. In the first case,

the input is an image and an edge extraction process must be previously applied to

determine a set of points that represent the object shape. In the second case, the object

shape is directly captured by an input device and a software that samples the written

strokes. In this process, time information can also be captured by the device. As

sampling of points may not be homogeneous (quick writing may cause hardware to

sample less points in some parts of the symbols), before shape context calculation,

preprocessing techniques, such as smoothing or interpolation must be applied.

In this work, we focus on online data. In addition, without loss of generality, we

will hereafter consider a symbol as a set of points.

2.1. Shape context calculation

Given a symbol P = {p1, p2, . . . , pn}, the shape context of a point pi in P is a

log polar histogram that expresses the distribution of the remaining points relative to

pi (Belongie et al., 2002). Figure 1 illustrates shape context calculation for two points

of a symbol. In that example, the symbol area is divided into 8 angular regions and

3 radial regions, for a total of 24 bins, where a bin contains the quantity of points

spatially placed in that bin.

Given two symbols P = {p1, . . . , pn} and Q = {q1, . . . , qn}, the similarity

measure, or matching cost, between shape contexts of a point pi in P and qj in Q is

given by the χ2 test statistic (Belongie et al., 2002):

Cij =
1

2

X∑

x=1

[hpi(x)− hqj(x)]
2

hpi(x) + hqj(x)
[1]

where X is the number of bins, and hpi(x) and hqj(x) denote the histogram value of

pi and qj at bin “x”. If both hpi(x) and hqj(x) are empty, the term is not considered

in the summation.

By using the above measure, the total cost of a one-to-one matching of the points in

P with points in Q is given by the sum of the cost of all matching pairs. To calculate a

similarity measure between P and Q, we look for a matching that minimizes the total

matching cost. To find a matching with minimum cost, for each pair of points pi and

qj , a χ2 cost is calculated. The calculated costs are stored in a matrix of dimension n
x n. Then, we use the Hungarian algorithm (Kuhn, 1955), with the matrix of costs as

input, to determine a matching with minimum cost.

With such an approach, the time order of the points is not kept, and only the best

offline matching guides the pairing process. This can be seen as a way to circumvent
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types for fours than those for zeros (Belongie et al., 2002). Although several methods

have been proposed to reduce the set of prototypes without reducing accuracy, the

scalability of the method is still a weak point (Hastie et al., 2009).

In (Mori et al., 2005) the authors proposed a modified version of the shape context

in order to more efficiently search for the best prototypes. The method is divided into

two steps: fast pruning of candidates by means of a light version shape context com-

parison, followed by a selection of the best prototype (from the remaining prototypes)

using a richer, but more expensive, shape context version. Although this method im-

proves the search of best candidates, it does not cope with the problem of storing

prototypes; the scalability of the method to problems with high number of classes is

still challenging.

3. Shape contexts as input features for Neural Networks

By using shape contexts as input features for neural networks, we loose the ex-

plicit similarity measure on which shape context classification is based on. In some

sense, it is up to the neural network to figure out which histogram is similar to which

one. Roughly speaking, shape contexts features of a symbol can be seen as a set of

histograms calculated at each sampled point of the symbol; but with the particularity

that histograms are defined over a log polar space, which makes shape context of a

point more sensitive to positions of nearby sample points (local features) than those

of points farther away (global features) (Belongie et al., 2002).

As input for neural networks, shape contexts must follow an order relative to the

units of an input layer. Unfortunately, the order in which strokes are introduced or

writing direction may change the order of shape contexts. This problem may be

solved, at some extent, using enough training data to reflect different writing varia-

tions, so that it is possible for neural networks to learn these kinds of variations.

Considering reported applications (Belongie et al., 2002; Prasanth et al., 2007;

Mori et al., 2005), we can see that the number of sampled points and bins for shape

context calculation vary around 30 and 40, respectively. Using such parameters, the

number of input features for neural networks could reach values of 1200 features.

To reduce the number of input features, we maintain the rate of sample points (30

points per symbol), but extract shape contexts of only a subset of points. For instance,

with the parameters mentioned above, we could calculate only the shape context of

points at positions 1, 15 and 30, and get a total of 120 features (3 shape contexts,

each containing 40 bins). This method is based on the fact that shape contexts of near

points of a same symbol may be similar, thus, it allows us to reduce redundancy on

features. Section 4 describes the evaluated reduced versions of shape contexts.
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4. Experimental setup

As mentioned in Section 1, to evaluate the proposed methods, we used the

CROHME 2012 dataset (Mouchere et al., 2012). 1 The dataset consists of 1,824 math-

ematical expressions with a total of 23,375 symbols and 75 symbol classes. The ex-

pressions were handwritten by 347 people from France, India and Korea; using several

kinds of input devices as digital pen technologies, white-boards and tablets with sen-

sible screens. Given this variety of devices, symbols were sampled in different scales

and resolutions.

It is important to note that symbols which are considered here come from entire

mathematical expressions. However, we are considering only the sub–problem of

symbol recognition, since we use the ground–truth segmentation to extract the sym-

bols from their expressions. Hence, a symbol might be influenced by its context. For

example, symbols written before and after a symbol X may influence the way people

write X. This may have introduced more variability on symbol classes.

To evaluate the neural network classifier, we divided the dataset into two sets: one

with 1,336 expressions for training and the other with 488 expressions for test (as

defined on Part-III dataset in (Mouchere et al., 2012)). From the training set, we used

70% to train neural networks with different shape contexts configurations and the rest

for validation.

In our shape context implementation for neural networks, we used 3 radial regions

and 8 angular regions, for a total of 24 bins. We extracted 30 points per symbol and

evaluated the recognition performance considering from 3 to 10 shape contexts per

symbol. For the nearest neighbor based approach, we extracted 30 points per symbol.

Shape contexts configuration was fixed to 4 radial regions and 10 angular regions, for

a total of 40 bins. These values were fixed to obtain best recognition rates using the

validation dataset part.

In addition to shape context features, we used raw online data as features in a

neural network classifier described in (Awal, 2010). We compare neural network per-

formance using both feature sets separately and jointly.

We used a Multilayer Perceptron neural network. For configuration, the input

layer size was determined by the number of input features and the output layer size by

the number of symbol classes (75). We used one hidden layer with 100 nodes. This

configuration was determined using the validation dataset.

1. The CROHME 2012 dataset is publicly available at: ❤tt♣✿✴✴✇✇✇✳✐❛♣r✲t❝✶✶✳♦r❣✴

♠❡❞✐❛✇✐❦✐✴✐♥❞❡①✳♣❤♣✴❉❛t❛s❡ts❴▲✐st.
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5. Results and discussion

Table 1 shows neural network performance using different number of shape con-

text features. The reported recognition rate was calculated using the validation dataset,

after training on the train part.

Table 1. Impact on Neural network performance of varying the number of shape con-
text features.

# s. contexts

(# features) (%) Recognition rate

3 (72) 84.55

4 (96) 86.1

5 (120) 87.8

6 (144) 88.32

7 (168) 89.05

8 (192) 89.47

9 (216) 89.14

10 (240) 89.22

30 (720) 89.9

Results show that by using more than 8 shape contexts, the recognition rate does

not improve considerably. Thus, for combination with the online features, we used 8

shape contexts per symbol and trained neural networks for the three cases: only online

features, only shape context and with both feature sets. This evaluation was also done

using the train and validation parts. For evaluation on the test set we include the 1–

nearest approach. Table 2 compares the recognition performance of the classifiers in

the test set.

Table 2. Recognition rate for nearest neighbor approach and neural networks (NN).
Classifier (%) Recognition rate

1-nearest neighbor 90.16

NN with online features 88.6

NN with shape context 87.8

NN with online features and shape context 89.8

We can see that the neural network approach using shape context and online fea-

tures performed almost as good as the 1–nearest neighbor approach. On the other

hand, there is a considerable difference in recognition time: 15 seconds per symbol

with the 1–nearest neighbor versus 0.001 seconds per symbol with the neural network

approach.

As mentioned in Section 3, a concern on the application of shape context as input

features to a neural network was the variability of handwritten symbols. However,
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the variety of training samples per symbol class seems to help the neural network to

“learn” this variability.

With regard to the nature of the recognition task, it is important to note that some

symbols can not be recognized by considering only shape information. For example,

symbols “x”, “X” and × (“\times” latex code) may be handwritten with an identical

shape. To solve those ambiguities, context from the mathematical expressions must

be used.

6. Conclusions and Further work

To overcome the expensive computational cost of the shape context matching

based approach, we used shape context as input features for neural networks. To

reduce the descriptor dimension, we extracted shape contexts from only a subset of

points of a symbol, instead of extracting one shape context per each point. Results

showed that this reduced version of shape contexts alone or combined with online

features, performs almost as good as a 1–nearest neighbor approach and makes a con-

siderable improvement in terms of time recognition.

The neural network approach showed to be a practical method to introduce shape

context descriptor in an online recognition problem. Further work includes evalua-

tion of the classifier in the context of recognition of online handwritten mathematical

expressions. In this problem, symbols are not already segmented, and during the seg-

mentation process wrong symbol hypothesis may be generated. Identification of those

wrong segmented symbols is a main concern in this problem. In this regard, rich

features as shape context may help to improve performance recognition.
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