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Abstract

Possibilistic networks are important tools for mod-
elling and reasoning, especially in the presence of
imprecise and/or uncertain information. These
graphical models have been successfully used in sev-
eral real applications. Since their construction by
experts is complex and time consuming, several re-
searchers have tried to learn them from data. In
this paper, we try to present and discuss relevant
state-of-the-art works related to learning possibilis-
tic networks structure from data. In fact, we give
an overview of methods that have already been pro-
posed in this context and limitations of each one of
them towards recent researches developed in possi-
bility theory framework. We also present two learn-
ing possibilistic networks parameters methods.

Keywords: Possibility theory, graphical models,
possibilistic networks, machine learning

1. Introduction

Over the last three decades, a lot of effort has been
put into learning graphical models from data but
most of the proposed methods are relative to prob-
abilistic models. In particular, Bayesian networks
[1] have been widely studied and used in real ap-
plications [2]. However, where imprecision is inher-
ent in the studied domain or where available in-
formation are simply preferences, non-classical un-
certainty theories such as possibility theory [3] and
belief functions theory [4] stand out as best alter-
natives to probability theory [5]. Therefore, other
graphical models have been proposed to model and
reason with this form of imperfect information.
Among these models, we are interested by possibilis-
tic networks representing possibilistic counterpart
of Bayesian networks. The choice of possibility the-
ory is due to its ability to offer a natural and simple
formal framework representing imprecise and uncer-
tain information and its ability to describe states of
the world in both qualitative and quantitative as-
pects [5]. Many researchers have been interested by
possibilistic networks using them in several domains
such as information retrieval [6], intelligent tutoring
systems [7], automotive industry [8] and data fusion
[9]. Despite the multitude of works concerning infor-
mation propagation in these models e.g. [10, 11, 12],

works related to their learning [12, 13, 14] remain
very limited.

In this paper, we discuss the problem of learn-
ing possibilistic networks parameters. In fact, we
propose to apply existing estimation possibility dis-
tribution methods in our context. Then, we present
an overview of structure learning methods highlight-
ing their limits and we redefine some basic notions
such as the possibilistic score. Finally, we propose
a learning algorithm evaluation strategy based on
possibilistic networks sampling.

This paper is organized as follows: Section 2 gives
a brief introduction to possibility theory and pos-
sibilistic networks. Section 3 is dedicated to the
proposition of two methods to learn parameters of
these models and Section 4 gives an overview of
structure learning methods. Finally, Section 5 de-
tails our proposed evaluation strategy to learning
possibilistic networks algorithms.

2. Basic concepts and possibilistic networks

This Section gives a brief overview of possibility the-
ory (for more details see [3]) and introduces possi-
bilistic networks [10].

2.1. Possibility theory

2.1.1. Notations and definitions

Let V = {X1, ..., Xn} be a set of variables such that
D1, ..., Dn are their respective domains and let xik
be an instance of Xi, i.e. each xik ∈ Di corre-
sponds to a state (a possible value) of Xi. The
agents knowledge (state set) of Xi can be encoded
by a possibility distribution π(Xi) corresponding to
a mapping from the universe of discourse Di to the
unit interval [0,1]. For any state xik ∈ Di, π(xik)
refers to π(Xi = xik). π(xik) = 1 means that xik re-
alization is totally possible, π(xik) = 0 means that
xik is an impossible state. It is generally assumed
that at least one state xik is totally possible and
π is then said to be normalized. Extreme cases
of knowledge are presented by complete knowledge,
i.e. ∃xik ∈ Di s.t. π(xik) = 1 and ∀xij ∈ Di

s.t. xij 6= xik, π(xij) = 0 and total ignorance, i.e.
∀xik ∈ Di, π(xik) = 1 (all values in Di are possible).
Let π(i) be the ith degree in a possibility distribution
π considered in a decreasing order of π values (π(1)
is the highest degree and π(m) is the smallest one).
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The definition of a possibility distribution could be
generalized to a set of variables V defined on the
universe of discourse Ω = D1×...×Dn encoded by π.
π corresponds to a mapping from Ω to the unit in-
terval [0,1]. The marginalization in the possibilistic
case uses the maximum operator for both quantita-
tive and qualitative interpretations and is expressed
as follows: π(Xi) = maxXj ,j 6=i π(X1, . . . , Xn)
Possibility theory is based on minimum specificity

principle. Let π and π′ be two possibility distribu-
tions, π is said to be more specific (more informa-
tive) than π′ iff ∀xik ∈ Di, π(xik) ≤ π′(xik). In this
context, one of non-specificity measures is denoted
by nsp, and expressed as follows [15]: nsp(π) =
[
m∑
i=1

(π(i)−π(i+1)) log2 i]+(1−π(1)) log2 m (πm+1 = 0

by convention).
Given a possibility distribution π, we can define

for any subset A ⊆ Di two dual measures: pos-
sibility measure Π(A) = max

xik∈A
π(xik) and necessity

measure N(A) = 1−Π(Ā) where Π assesses at what
level A is consistent with our knowledge represented
by π whereas N evaluates at what level Ā is impos-
sible.
The particularity of the possibilistic scale is that

it can be interpreted in two different ways. First,
it can be interpreted in an ordinal manner which
means that possibility degrees reflect only a specific
order between possible values. Second, the possi-
bilistic scale can be interpreted in a numerical way
meaning that possibility degrees make sense in the
ranking scale. These two interpretations induce two
definitions of possibilistic conditioning which con-
sists in reviewing a possibility distribution by a new
certain information A. The product-based condi-
tioning is defined as follows:

π(ω|∗A) =
{

π(ω)
Π(A) if ω ∈ A

0 otherwise.
(1)

The min-based conditioning is defined as follows:

π(ω |m A) =

 1 si π(ω) = Π(A) and ω ∈ A
π(ω) if π(ω) < Π(A) and ω ∈ A
0 otherwise.

(2)

2.1.2. Possibility theory and probability theory

One view of possibility theory is to consider a pos-
sibility distribution as a family of probability distri-
butions [3] for which the measure of each subset A
of Di will be respectively lower and upper bounded
by its necessity and its possibility measures. Sev-
eral researches have been proposed to transform a
probability distribution into a possibility one di-
rectly [16, 17, 18, 19] or through confidence intervals
[20, 21, 22]. Note that all these transformations
make sense in the numerical interpretation of the
possibilistic scale. We detail a method of transfor-
mation of each category, i.e. optimal transformation

[17] and maximum normalization using confidence
intervals [20]. Let P (Xi) be a probability distribu-
tion relative to a variableXi and {p(1), p(2), ..., p(m)}
is the descending order of P (Xi). Optimal transfor-
mation is defined as follows:

π(xik) =
∑

j/p(j)≤p(k)

p(j) (3)

Maximum normalization using confidence intervals
with a confidences degree ε is defined as follows [20]:

π(xik) = min( puk
maxj=1..m plj

, 1) (4)

where puk = min(p(k) + cε√
N

√
p(k)(1− p(k)), 1),

plj = max(p(j) − cε√
N

√
p(j)(1− p(j)), 0),

cε = 1
100 ∗

1+ε
2 and N is the number of observations

in the database.
In the ordinal interpretation, some methods have

been proposed to estimate a possibility distribution
from infinitesimal probabilities [23, 24, 25]. Note
that [20] suggest that their transformations could
be applied in the ordinal case, but using principles
that [3] restricted to the numerical interpretation.

2.1.3. Possibility distribution estimation

In the numerical interpretation, Joslyn [26] has pro-
posed a possibility distribution estimation method
from imprecise data using possibilistic histograms.
Moreover, Joslyn discusses the specificity of ob-
tained possibility distributions in some particular
cases such as certain and consistent data sets (for
more details see [26]). Let Di = {d(l)

i } be a dataset
relative to a variable Xi, d(l)

i ∈ Di (resp. d(l)
i ⊆ Di)

if data are precise (resp. imprecise). The num-
ber of occurrences of each xik ∈ Di, denoted by
Nik, is the number of times xik appears in Di:
Nik = |{l s.t. xik ∈ d

(l)
i }|. The non-normalized

estimation π̂nn(xik) is expressed as follows:

π̂nn(xik) = Nik
N

(5)

where N is the number of observations in Di. N is
equal (resp. lower or equal) to the sum of Nik if
data are precise (resp. imprecise).

Joslyn normalizes the obtained possibility distri-
bution by dividing it by the maximum. Equation 5
becomes:

π̂n(xik) = Nik
max(Nik) (6)

Equation 6 could be defined as a set of vari-
ables Xi, Xj , ...Xw. In this case, Nik becomes
Nik,jl,...,wp = N({xikxjl...xwp} ⊆ Dijw).

2.1.4. Variable sampling

The variable sampling corresponds to the genera-
tion of a dataset representative of its possibility
distribution. In the numerical interpretation, two
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approaches [27, 28] have been proposed to sample
a variable. These methods are based on α-cut no-
tion: α-cutXi = {xik ∈ Di s.t. π(xik) ≥ α} where
α is randomly generated from [0,1]. The method
proposed by Guyonnet et al. in [28] focuses on the
generation of imprecise data by returning all val-
ues of α-cutXi for any variable Xi. Chanas and
Nowakowski proposed another method in [27] which
is dedicated to the generation of precise data by
returning a single value uniformly chosen from α-
cutXi .

2.2. Possibilistic networks

Possibilistic networks [12, 10] represent the possi-
bilistic counterpart of Bayesian networks [1] having
similarly two components: a graphical or qualitative
component composed of a Directed Acyclic Graph
(DAG) which encodes a set of independence rela-
tions (i.e. each variable Xi ∈ V is conditionally
independent of its non-descendent given its par-
ents) and a numerical or quantitative component
corresponding to the set of conditional possibil-
ity distributions relative to each node Xi ∈ V in
the context of its parents, denoted by Pa(Xi), i.e.
π(Xi|Pa(Xi)). The two definitions of the possibilis-
tic conditioning lead naturally to two different ways
to define possibilistic networks [12, 10]: quantita-
tive also called product-based possibilistic networks
based on the product-based conditioning expressed
by Equation 1. These models are theoretically and
algorithmically close to Bayesian networks. In fact,
these two models share the graphical component,
i.e. the DAG and the product operator in the com-
putational process. This is not the case of qual-
itative also called min-based possibilistic networks
based on min-based conditioning defined by Equa-
tion 2 that represents a different semantic. Note
that quantitative possibilistic networks can be in-
terpreted as a particular case of credal networks [29]
based on imprecise probabilities.
In the both two cases, possibilistic networks are

a compact representation of possibility distribu-
tions. More precisely, the joint possibility distri-
bution could be computed by the possibilistic chain
rule expressed as follows:

π⊗(X1, ..., Xn) = ⊗i=1..nπ(Xi |⊗ Pa(Xi)) (7)

where ⊗ corresponds to the minimum operator
(min) for qualitative possibilistic networks and to
the product operator (*) for quantitative possibilis-
tic networks.
Possibilistic networks encode conditional inde-

pendence relations for which there are several defi-
nitions in the possibilistic framework [30] unlike the
case of the probabilistic framework where a single
definition exists. The most common definitions sat-
isfying the semi-graphoid properties are expressed
as follows:

• Product-based independence relation, denoted
by Iprod, using numerical conditioning on which
quantitative possibilistic networks are based
and expressed by: ∀Xi, Xj ∈ V Iprod(Xi, Xj)
iff π(Xi, Xj) = π(Xi) ∗ π(Xj).
• Non-interactivity relation, denoted by INI ,
using ordinal conditioning on which qualita-
tive possibilistic networks are based and ex-
pressed by: ∀Xi, Xj ∈ V INI(Xi, Xj) iff
π(Xi, Xj) = min(π(Xi), π(Xj))

Note that in [12], authors define quantitative possi-
bilistic networks differently with a numerical com-
ponent whose conditional possibility distributions
are not necessarily normalized. Moreover, they are
based on non-interactivity relation which is applica-
ble only in the ordinal interpretation. In this con-
text, it is also possible to apply the chaining rule
(Equation 7) to non-normalized possibility distri-
butions.

Bayesian networks and possibilistic networks are
important representation and analysis tools in
the presence of uncertain information. However,
Bayesian networks require perfect knowledge on the
numerical component to be operational which is not
the case with possibilistic networks which total ig-
norance is naturally supported by the possibility
theory. For example, in [6], authors try to select
from a collection of relevant documents. Their pos-
sibilistic network distinguishes such rejection using
the two measures: possibility and necessity. The
possibility of relevance is used to eliminate irrele-
vant documents while the necessity measure selects
the most interesting relevant ones. In addition, the
weighting of a word with a unique probability does
not capture the dual concept of speciality and non-
speciality used in information retrieval, more easily
modelled by possibility theory.

Unlike Bayesian networks, few softwares manip-
ulate possibilistic networks. These solutions do
not allow the definition, learning and reasoning
tasks. For inference in product-based possibilistic
networks, we can mention Pulcinella [31], POSS-
INFER [32] and PNT (Possibilistic Networks Tool-
box) [11]. PNT manipulates, also, min-based net-
works. Note that there is no solution for parameters
learning. For product-based possibilistic networks
structure learning, there is a unique software: INeS
(Induction of Networks Structure) [12] that imple-
ments several methods as detailed in Section 4.2.

3. Quantitative possibilistic networks
parameters learning

In the remaining, we are interested by quantitative
possibilistic networks, so, the symbol | means |∗.
This section deals with parameters learning, where
the structure (DAG) is known, and where we have
to estimate the parameters (conditional possibility
distributions) from data.
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3.1. Theoretical framework

Parameters learning of Bayesian networks is per-
formed satisfying the maximum entropy principle
[33]. The possibilistic analog of the latter corre-
sponds to minimum specificity. Therefore, by anal-
ogy to Bayesian networks, learning possibilistic net-
work parameters consists in estimating possibility
distributions according to minimum specificity prin-
ciple [15], i.e. estimating the least specific possi-
bility distributions. To the best of our knowledge,
learning possibilistic networks parameters has not
been studied yet. We propose two solutions inspired
by possibility distributions estimation methods (de-
scribed in Sections 2.1.2 and 2.1.3). The first naive
solution is to use probability possibility transforma-
tions. First, we learn probability distributions of
each node P (Xi|Pa(Xi)) from precise data. Then,
we transform the obtained distributions into possi-
bility ones. The second method is used to estimate
possibility distributions from imprecise data using
possibilistic histograms described in Section 2.1.3.
We will show that these two solutions yield to inco-
herent results.

3.2. Learning parameters based on
transformations

The first solution consists in transforming proba-
bility distributions learned from data to possibil-
ity distributions (see Section 2.1.2). Using trans-
formations, we can learn product-based possibilis-
tic networks parameters only from precise data
(or with missing data using EM algorithm [34]).
This approach is based on the relationship between
maximum likelihood proposed in the probabilistic
framework and possibility distributions [3]: When
prior probabilities are lacking, likelihood functions
can be interpreted as possibility distributions, by
default. Recall that transformation methods ma-
nipulate probability distributions either directly or
through confidence intervals. In what follows, we
present an example of a transformation of each cat-
egory, i.e. optimal transformation and maximum
normalization using confidence intervals.

Example 1 Let the Bayesian network described by
Table 1 be composed of two variables X1 and X2 de-
fined by D1 = {x11, x12, x13} and D2 = {x21, x22}.
Tables 2 and 3 represent possibilistic networks
obtained by transforming this Bayesian network.
π(X1, X2) represents the joint possibility distribu-
tion obtained by transforming the initial Bayesian
network joint distribution. πt(X1, X2) is the joint
possibility distribution computed from conditional
possibility distributions using Equation 7. Example
(a) uses optimal transformation and Example (b)
uses maximum normalization using confidence in-
tervals. Note that π(X1, X2) and πt(X1, X2) values
are different.

3.3. Learning parameters directly from data

Joslyn’s method [26] estimates possibility distribu-
tions directly from data. It handles more generic
form of imperfect data (see Section 2.1.3). In
what follows, we will try to apply this method to
learn possibilistic networks parameters from impre-
cise data.

Example 2 Let consider the imprecise dataset de-
scribed by Table 4. If we apply Joslyn’s method, we
obtain the possibility distributions presented in Ta-
ble 5. To estimate conditional possibility distribu-
tions, we compute for example π̂n(x21|x11) by divid-
ing π̂nn(x11, x21) = 0.6 by π̂nn(x11) = 0.6 obtained
by Equation 5, then, we normalize possibility de-
grees. Note that obtained values of π̂n(X1, X2), the
joint possibility distribution estimated from data and
π̂nl (X1, X2), the joint possibility distribution com-
puted from conditional distributions (Equation 7),
are different.

3.4. Discussion

In the previous sections, we have applied two exist-
ing methods to learn possibilistic networks parame-
ters: probability possibility transformation and di-
rect possibility distribution estimation. We have
shown with two simple examples that none of these
methods is satisfactory. Examples 1 and 2 show
that these methods could be applied only with
the joint possibility distribution and not with local
distributions separately. Transformation methods
[16, 17, 18, 19] have been already studied in [35]
and this paper confirms our conclusion. Remaining
transformation methods presents the same inconve-
nient. This is due to the fact that marginalization
notion of probability measures using sum opera-
tor is very different to marginalization of possibility
measures applying maximum. Similarly, the direct
method presents the same inconvenient. Therefore,
we should apply these methods cautiously: do we
need primarily estimating local parameters (usual
interest of probabilistic and possibilistic graphical
models) or directly estimate the joint distribution
ignoring the interest of graphical decomposition? It
is also possible to wonder about the interest of learn-
ing a possibilistic network from precise data. The
imprecision could be due to limited data and in this
context, credal networks [29] present a better alter-
native.

4. Quantitative possibilistic networks
structure learning

Several attempts have been made to learn possibilis-
tic networks structure from data. However, all these
works have been proposed before advances made
concerning possibilistic networks as models of in-
dependence [30] ignoring also parameters learning
problem. In what follows, we give an overview of
possibilistic networks structure learning methods.
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X1

X2

X1 P (X1) X1 X2 P (X1|X2) X1 X2 P (X1, X2)
x11 0.2 x11 x21 0.4 x11 x21 0.08
x12 0.3 x11 x22 0.6 x11 x22 0.12
x13 0.5 x12 x21 0.9 x12 x21 0.27

x12 x22 0.1 x12 x22 0.03
x13 x21 0.3 x13 x21 0.15
x13 x22 0.7 x13 x22 0.35

Table 1: Example of a Bayesian network

X1

X2

X1 π(X1) X1 X2 π(X2|X1) X1 X2 πt(X1, X2) π(X1, X2)
x11 0.2 x11 x21 0.4 x11 x21 0.08 0.11
x12 0.5 x11 x22 1 x11 x22 0.2 0.23
x13 1 x12 x21 1 x12 x21 0.5 0.65

x12 x22 0.1 x12 x22 0.05 0.03
x13 x21 0.3 x13 x21 0.3 0.38
x13 x22 1 x13 x22 1 1

Table 2: Example (a) of transformation of Bayesian network in a possibilistic network using the optimal
transformation

X1

X2

X1 π(X1) X1 X2 π(X2|X1) X1 X2 πt(X1, X2) π(X1, X2)
x11 0.78 x11 x21 0.68 x11 x21 0.54 0.28
x12 1 x11 x22 1 x11 x22 0.78 0.41
x13 1 x12 x21 1 x12 x21 1 0.89

x12 x22 0.22 x12 x22 0.22 0.11
x13 x21 0.51 x13 x21 0.51 0.51
x13 x22 1 x13 x22 1 1

Table 3: Example (b) transformation of Bayesian network in a possibilistic network using maximum normal-
ization

X1 X2
x11,x12 x21,x22
x12, x13 x21, x22
x11, x12 x21
x11, x13 x21
x12 x22

Table 4: Example
of imprecise dataset

X1

X2

X1 π̂n(X1) X1 X2 π̂n(X1|X2) X1 X2 π̂nl (X1, X2) π̂n(X1, X2)
x11 0.75 x11 x21 1 x11 x21 0.75 1
x12 1 x11 x22 0.33 x11 x22 0.25 0.33
x13 0.5 x12 x21 1 x12 x21 1 1

x12 x22 1 x12 x22 1 1
x13 x21 1 x13 x21 0.5 0.66
x13 x22 0.5 x13 x22 0.25 0.33

Table 5: Example of learning possibilistic networks parameters

By analogy to Bayesian networks, learning methods
could be categorized into three families: constraint-
based, score-based and hybrid methods.

4.1. Constraint-based methods

All constraint-based methods are based on detect-
ing conditional independence relations from data.
In the possibilistic case, as far as we know, only one
attempt has been made to measure conditional in-
dependence in order to learn possibilistic networks
[14]. In this work, authors have proposed an inde-
pendence measure, denoted by Dep(Xi, Xj , α), and
is expressed as follows:

Dep(Xi, Xj , α) = 1−
∑

xjl∈Dj

π(xjl)∑
xik∈α−set

|π(xik)− π(xik|xjl)|
(8)

where α-set = {xik ∈ Di s.t. |π(xik)−π′(xik)| ≥ α}
and α ∈ [0, 1].

This measure is proportional toXi values that are
close to a difference of α in their possibility values.

4.2. Score-based methods

4.2.1. Generalities

Score-based methods traverse heuristically DAGs
space trying to optimize an objective function char-
acterizing the fit between the model and data. In

practice, used scores should be decomposable lo-
cally, i.e. expressed as the sum of local scores at
each node. Such as the case of parameters learning,
it seems natural to link possibilistic scores to speci-
ficity. Possibilistic networks non-specificity, denoted
by nsp(G), has been proposed by Sangüesa et al.
[14] and is expressed by:

nsp(G) =
∑
Xi∈V

nsp(π(Xi|Pa(Xi))) (9)

where nsp(π(Xi|Pa(Xi))) = nsp(π(Xi, Pa(Xi))) −
nsp(π(Pa(Xi))) and nsp(π(Xi|Pa(Xi))) =
nsp(π(Xi)) si Pa(Xi) = ∅.
Note that the non-specificity has not been di-

rectly defined on conditional possibility distribu-
tions but on families {Xi, Pa(Xi)}. Therefore, we
can show that nsp(G) is decomposable w.r.t the
non-specificity of the possibility distribution of ev-
ery clique in the graph

In what follows, we classify methods according to
the used score nature: global or local. First works
propose global scores and following works are based
on local scores.

4.2.2. Global score-based methods

Borgelt et al. [12] have proposed weighted sum of
possibility degrees. Given an imprecise dataset D
and a DAG G learned from D, weighted sum of pos-
sibility degrees, denoted by Q(G,D), is expressed as
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follows:

Q(G,D) =
∑

{x1k,...,xnl}∈D

N(x1k, ..., xnl)π̂nn(x1k, ..., xnl)

(10)
π̂nn(x1k, ..., xnl) is computed locally combining
π̂nn(Xi|Pa(Xi)) computed by Equation 5.

This score is close to log-likelihood used
to learn Bayesian networks, expressed by∑
{x1k,...,xnl}∈D

N(x1k, ..., xnl)log p(x1k, ..., xnl).

The possibilistic adaptation [12] sees disappearing
log by proposing weighted sum of possibility
degrees without justification.

4.2.3. Local score-based methods

Borgelt et al. have proposed two methods han-
dling imprecise data [12], possibilistic versions of
two learning methods initially proposed to Bayesian
networks, K2 and maximum weight spanning tree.
Proposed local scores are [12]:

• Specificity gain: This measure is the ancestor
of several scores such as specificity gain ratios,
symmetric specificity gain, etc.
• Possibilistic mutual information
• Possibilistic χ2 measure

4.3. Hybrid methods

These methods combine advantages of the two pre-
vious families. In fact, hybrid methods use informa-
tion captured from conditional independence tests
to guide search in DAGs space optimizing a score.
Sangüesa et al. [14] have proposed two hybrid learn-
ing methods from precise data: the first one learns
trees and the second one learns DAGs. The two
methods use the independence measure defined by
Equation 8. This method learns undirected graphs
detecting relations between each node and its par-
ents and children. Then, it combines obtained sub-
graphs and orient edges using DAG non-specificity
expressed by Equation 9. This method uses three
probability possibility transformations to learn pa-
rameters.

4.4. Discussion

In this section, we give a global vision concerning
structure learning methods detailing limits of each
one. For global score-based methods, they do not
apply directly non-specificity as described by Equa-
tion 9. Possibilistic networks structures learned us-
ing K2 and maximum weight spanning tree (see sec-
tion 4.2.3) are evaluated using weighted sum of pos-
sibility degrees expressed by Equation 10. We note
a mismatch between global and local scores defini-
tions. In fact, weighted sum of possibility degrees
is not decomposable on any local score.
Concerning the hybrid method (Section 4.3), the

main problem residing in its conditional indepen-
dence measure is that it is based on a similarity

measure for which we find several contradictory for-
mulations in several works proposed by the same
authors [14, 36]. The second problem is the lack
of an automatic computation of threshold to decide
between the two hypothesis, threshold computed us-
ing type I error (such as the case of statistical tests).
Moreover, this method could fail to return a DAG
since it does not take into account acyclicity prop-
erty during the learning process. To estimate pos-
sibility distributions, this hybrid method uses three
transformations [16, 17, 18] that could not be ap-
plied to possibilistic networks (see Section 3.2).

Despite the multitude of works proposed to learn
possibilistic networks, none of these works is the-
oretically sound. In fact, every score or measure
lacks an explanation of its use and its contributions
regarding the others.

5. Evaluating possibilistic networks learning
algorithms

Evaluating learning methods dedicated to graph-
ical models, in particular, Bayesian networks are
tested using randomly generated models or refer-
ence benchmarks. Assessing the quality of learning
algorithms consists in comparing an initial graphi-
cal model with the learned one. In the probabilistic
case, we can always rely on the following approach
which consists in selecting an arbitrary Bayesian
network either randomly generated or constructed
by an expert and generating a dataset using For-
ward Sampling [37]. Then, we try to recover the
initial network using a learning algorithm. By anal-
ogy to Bayesian networks, we propose this evalu-
ation process for possibilistic networks learning al-
gorithms: 1) Generate randomly a possibilistic net-
work, 2) Sample this possibilistic network to con-
struct a precise or imprecise dataset, 3) Learn a new
possibilistic network from this dataset, 4) Compare
the initial and the learned networks. As far as we
know, there is no work in this context and all pos-
sibilistic learning algorithms propose unconvincing
evaluation.

Random generation of a possibilistic network:
Generating a random possibilistic network consists
in generating its two components. Concerning the
graphical component, we could use any method pro-
posed in the context of Bayesian networks such as
[38]. For the numerical component, we propose to
generate random values from [0,1] for each distribu-
tion satisfying normalization property, i.e. one of
states degrees is equal to 1.

Sampling possibilistic networks: Once the possi-
bilistic network is randomly generated, we generate
a dataset relative to possibility distributions repre-
sented by this network. In the possibilistic case,
there is no possibilistic networks sampling method.
However, variable sampling methods (described in
Section 2.1.4) could be generalizable to possibilistic
networks.
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Evaluation measures: An evaluation measure as-
sesses learned possibilistic networks quality and the
efficiency of the learning method. We could com-
pare the initial and the learned possibilistic net-
works structures using evaluation measures pro-
posed in the context of Bayesian networks, e.g.
edition distance, sensitivity, specificity (for more
details, see [39, 40]). Moreover, by analogy to
Bayesian networks, we could compare the initial
network and the learned one numerically using
a possibilistic dissimilarity measure between joint
possibility distribution of the theoretical model and
the learned as done by Kullback-Leibler divergence
in the probabilistic case. Such a measure has been
proposed to compare two possibility distributions π
and π′ defined in Di s.t. π(xik) ≥ π′(xik)∀xik ∈ Di

[12]. This hypothesis is restrictive for comparing
two possibilistic networks.

6. Conclusion and perspectives

In this paper, we gave an overview of learning quan-
titative possibilistic networks learning algorithms.
Concerning parameters learning, we have tested
possibility distributions estimation methods and we
have shown that they yield to incoherent results,
i.e. combining learned local parameters does not re-
cover the joint possibility distribution learned from
the same dataset. Therefore, parameters learning
problem remain an open research area.

Concerning quantitative possibilistic networks
structure learning, existing works are limited and
theoretically unsound. Consequently, study the co-
herence between existing scores regarding the speci-
ficity and study conditional independence measures
basing in advances developed in the context of pos-
sibilistic networks as independence model seems to
be an interesting topic.

In the final part of this paper, we discuss eval-
uation learning algorithms problem. We have pro-
posed an evaluation strategy using possibilistic net-
works sampling. It will be interesting to study a
dissimilarity measure between two possibility dis-
tributions in order to evaluate possibilistic networks
learned using different learning methods.

Whatever the studied task, we have shown that
learning quantitative possibilistic networks is a
problem that is not well studied. The direct adap-
tation of Bayesian networks methods by replacing
probability distributions by possibility distributions
is not satisfactory. Some of the existing works pre-
sented in this survey deal with possibilistic networks
learning from precise data. Recent works show that
credal networks [29] are a more pertinent alterna-
tive when imprecision is due to limited number of
data.
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