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Abstract. This paper proposes a new evaluation strategy for product-

based possibilistic networks learning algorithms. The proposed strategy
is mainly based on sampling a possibilistic networks in order to construct
an imprecise data set representative of their underlying joint distribution.
Experimental results showing the e�ciency of the proposed method in
comparing existing possibilistic networks learning algorithms is also pre-
sented.

1 Introduction

Researches devoted to graphical models handle a classical form of data which
consists in precise information and at most handle missing data. This is due
to the fact that most of these works are de�ned in the probabilistic framework
which represents a well-founded normative framework for knowledge represen-
tation and reasoning with uncertain but precise data. However, in real world
applications, we are often faced to more sophisticated imperfect data. In such
situation, probability theory does not remain the adequate framework, hence,
the birth of several other uncertainty theories such as the case of possibility
theory [1]. Consequently, alternative graphical models have been proposed to
reason with this form of imperfect data such as possibilistic networks. Despite
the multitude of research endeavors concerning propagation in possibilistic net-
works, e.g. [2, 3], the problem of learning such networks from data remains very
limited. Moreover, existing methods [4, 5, 6] do not propose a convincing evalu-
ation process since most of them has been limited by the lack of an accurate and
standard validation procedure. This paper proposes a new evaluation strategy
for product-based possibilistic networks learning algorithms based on sampling.
Such an approach is commonly used for probabilistic graphical models and espe-
cially in the evaluation of Bayesian networks learning algorithms, but, it raises
several di�culties when applied to possibilistic networks as it will be detailed in
this paper. This paper is organized as follows: Section 2 gives a brief introduction
to possibility theory. Section 3 de�nes possibilistic networks and discusses their
learning from data. Section 4 details our proposed evaluation strategy to possi-
bilistic networks learning algorithms. Section 5 is dedicated to the experimental
results.



2 Brief recall on possibility theory

This section recalls elementary notions of possibilisty theory [7] and points out
the notion of possibility distribution estimation. Let V = {X1, ..., Xn} be a set
of variables such that D1, ..., Dn are their respective domains and let xik be
an instance of Xi, i.e. each xik ∈ Di corresponds to a state (a possible value)
of Xi. The agents knowledge (state set) of Xi can be encoded by a possibility
distribution π(Xi) corresponding to a mapping from the universe of discourse
Di to the unit interval [0,1]. For any state xik ∈ Di, π(xik) = 1 means that
xik realization is totally possible π(xik) = 0 means that xik is an impossible
state. It is generally assumed that at least one state xik is totally possible and
π is then said to be normalized. Extreme cases of knowledge are presented by
complete knowledge, i.e. ∃xik ∈ Di s.t. π(xik) = 1 and ∀xij ∈ Di s.t. xij 6=
xik, π(xij) = 0 and total ignorance, i.e. ∀xik ∈ Di, π(xik) = 1 (all values in Di

are possible). The de�nition of a possibility distribution could be generalized
to a set of variables V de�ned on the universe of discourse Ω = D1 × ... × Dn

encoded by π. π corresponds to a mapping from Ω to the unit interval [0,1]. ω
is called interpretation or event and is denoted by a tuple (x1k, ..., xnl). ω[Xi] is
the value of Xi in ω.

Possibility theory is based on minimum non-speci�city principle. More pre-
cisely, let π and π′ be two possibility distributions, π is said to be more speci�c
(more informative) than π′ i� ∀xik ∈ Di, π(xik) ≤ π′(xik). Given a possibility
distribution π, we can de�ne for any subset A ⊆ Di two dual measures: possi-
bility measure Π(A) = max

xik∈A
π(xik) and necessity measure N(A) = 1 − Π(Ā)

where Π assesses at what level A is consistent with our knowledge represented
by π whereas N evaluates at what level Ā is impossible.

The particularity of the possibilistic scale is that it can be interpreted in
two-fold. First, it can be interpreted in an ordinal manner which means that
possibility degrees re�ect only a speci�c order between possible values. Second,
the possibilistic scale can be interpreted in a numerical way meaning that possi-
bility degrees make sense in the ranking scale. These two interpretations induce
two de�nitions of possibilistic conditioning which consists in reviewing a possi-
bility distribution by a new certain information φ, an interpretation of Φ ⊆ V .
The product-based conditioning is de�ned by:

π(ω|∗φ) =

{
π(ω)
Π(φ) if ω[Φ] = φ

0 otherwise.
(1)

While the min-based conditioning is de�ned by:

π(ω |min φ) =

1 if π(ω) = Π(φ) and ω[Φ] = φ
π(ω) if π(ω) < Π(φ) and ω[Φ] = φ
0 otherwise.

(2)

One crucial notion when sampling networks, is the estimation of possibility
distribution from generated data sets. In the numerical interpretation, Joslyn



[8] has proposed a possibility distribution estimation method from imprecise
data using possibilistic histograms. Moreover, he discusses the non-speci�city of
obtained possibility distributions in some particular cases such as certain and

consistent data sets (for more details see [8]). Let Di = {d(l)i } be a dataset

relative to a variable Xi, d
(l)
i ∈ Di (resp. d

(l)
i ⊆ Di) if data are precise (resp.

imprecise). The number of occurrences of each xik ∈ Di, denoted by Nik, is the
number of times xik appears in Di: Nik = N({xik} ∈ Di). The non-normalized
estimation π̂nn(xik) is expressed as follows:

π̂nn(xik) =
Nik
N

(3)

where N is the number of observations in Di. N is equal (resp. lower or equal)
to the sum of Nik if data are precise (resp. imprecise). Equation 3 could be
de�ned as a set of variablesXi, Xj , ...Xw. In this case, Nik becomes Nik,jl,...,wp =
N({xikxjl...xwp} ⊆ Dijw).

3 Learning possibilistic networks

3.1 De�nition of possibilistic networks

Possibilistic networks [9] represent the possibilistic counterpart of Bayesian net-
works [10] having similarly two components: a graphical component composed of
a DAG which encodes a set of independence relations (i.e. each variableXi ∈ V is
conditionally independent of its non-descendent given its parents) and a numer-
ical component corresponding to the set of conditional possibility distributions
relative to each nodeXi ∈ V in the context of its parents, denoted by Pa(Xi), i.e.
π(Xi|Pa(Xi)). The two de�nitions of the possibilistic conditioning lead naturally
to two di�erent ways to de�ne possibilistic networks: product-based possibilis-
tic networks based on the product-based conditioning expressed by Equation 1.
These models are theoretically and algorithmically close to Bayesian networks.
In fact, these two models share the graphical component, i.e. the DAG and the
product operator in the computational process. This is not the case of qualitative
based on min-based conditioning de�ned by Equation 2 that represents a di�er-
ent semantic. In both cases, possibilistic networks are a compact representation
of possibility distributions. More precisely, the joint possibility distribution could
be computed by the possibilistic chain rule expressed as follows:

π⊗(X1, ..., Xn) = ⊗i=1..nπ(Xi |⊗ Pa(Xi)) (4)

where ⊗ corresponds to the product operator (*) for quantitative possibilistic
networks and to the minimum operator (min) for qualitative possibilistic net-
works. In the remaining, we focus on product-based possibilistic networks. Figure
1 represents an example of a product-based possibilistic network with four ternary
variables.



X2 X3

X4

Π(X3 |X1) x31 x32 x33
x11 0.4 1 0.1

x12 1 0.3 0.5

x13 0.8 1 0.6

Π(X4|X2X3) x41 x42 x43 Π(X4|X2X3) x41 x42 x43 Π(X4|X2X3) x41 x42 x43
x21x31 1 0.3 0.4 x22x31 0.2 0.1 1 x23x31 0.6 1 0.5

x21x32 0.5 1 0.1 x22x32 1 0.5 0.5 x23x32 1 0.8 0.4

x21x33 1 0.2 0.8 x22x33 0.1 0.2 1 x23x33 1 0.7 0.3

X1

Π(X2 |X1) x21 x22 x23
x11 0.5 0.2 1

x12 1 0.8 1

x13 1 0.7 0.6

Π(X1) x11 x12 x13
0.4 1 0.1

Fig. 1. Example of a product-based possibilistic network

3.2 Possibilistic networks structure learning

By analogy to Bayesian networks, structure learning methods could be catego-
rized into three families: constraint-based, score-based and hybrid methods. In
the possibilistic case, Gebhardt and Kruse have proposed a score-based method
handling imprecise data [5]. Borgelt et al. [4] have proposed possibilistic ver-
sions of two learning methods initially proposed to Bayesian networks: K2 and
maximum weight spanning tree handling, also, imprecise data. Sangüesa et al. [6]
have proposed two hybrid learning methods from precise data: the �rst one learns
trees and the second one learns the more general structure of DAGs. Most of
attempts to learn possibilistic networks are direct adaptations of learning meth-
ods initially proposed for Bayesian networks ignoring also parameters learning
problem. Moreover, all these works have been proposed before advances made
concerning possibilistic networks as independence models leading to use contrary
hypothesis (* in the conditioning and min in the conditional independence).

3.3 Possibilistic networks parameters learning

Parameters learning of Bayesian networks is performed satisfying maximum en-
tropy principle [11]. The possibilistic analog of the latter corresponds to min-
imum non-speci�city. By analogy to Bayesian networks, learning possibilistic
networks parameters consists in estimating possibility distributions according to
minimum non-speci�city principle [12], i.e. estimating the most speci�c possibil-
ity distributions. As far as we know, parameters learning has not been studied
yet and existing learning methods compute possibility distributions using either
Equation 3 as done in [4] and [5] or probability possibility transformations [13]
as done in [6].

4 Evaluating learning algorithms

Probabilistic graphical models learning methods, in particular Bayesian net-
works, are tested using randomly generated networks (synthetic) or networks
that have been used in real systems, so that the structure of the network is
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Fig. 2. Evaluation process of possibilistic networks learning algorithms

known and can serve as a rigorous gold standard e.g. Asia and Insurance net-
works. In the probabilistic case, evaluating learning algorithm is ensured using
the following process: we select an arbitrary Bayesian network either a synthetic
one or a gold standard from which we generate a data set using Forward Sam-
pling algorithm [14]. Then, we try to recover the initial network using a learning
algorithm and we compare the initial network with the learned one.

None of the existing possibilistic networks learning methods has proposed a
formal evaluation strategy and each existing work has proposed its evaluation
measure whose values are di�cult to interpret. In the following, we propose
to transpose the evaluation strategy proposed in the probabilistic case to the
possibilistic one in order to evaluate a possibilistic networks learning algorithm
as shown by Figure 2.

4.1 Generating possibilistic networks

In the possibilisic case, there are currently no publicly available possibilistic net-
works used in real systems and could be used as gold standard. We propose either
to generate randomly a possibilistic network or to transform a gold Bayesian net-
work to a possibilistic one. Generating a random possibilistic network consists in
generating its two components. Concerning the graphical component, we could
use any method proposed in the context of Bayesian networks such as [15]. For
the numerical component, we propose to generate random values from [0,1] for
each distribution satisfying normalization property, i.e. at least one of states
degrees is equal to 1. We can, also, transform a Bayesian network to a possi-
bilistic one retaining the same structure and performing a probability possibility
transformation on its distributions, e.g. [13], on its probability distributions.

4.2 Sampling possibilistic networks

Once the possibilistic network is generated, we want to generate an impre-
cise dataset representative of its possibility distributions. To the best of our
knowledge, there is no possibilistic networks sampling method. However, two
approaches have been proposed [16, 17] to sample one variable and are based
on α-cut notion: α-cutXi = {xik ∈ Di s.t. π(xik) ≥ α} where α is randomly
generated from [0,1]. The epistemic sampling method proposed by Guyonnet et
al. in [17] focuses on the generation of imprecise data by returning all values



of α-cutXi for any variable Xi. In fact, it returns a nested random set which
represents the state of knowledge about the sampled variable Xi. Chanas and
Nowakowski proposed another method in [16] which is dedicated to the gener-
ation of precise data from the pignistic probability distribution by returning a
single value uniformly chosen from α-cutXi .

In this paper, we propose to generalize the variable sampling method pro-
posed in [17] to possibilistic networks. This choice is justi�ed by the fact that this
method generates a more generic form of imperfect data i.e. imprecise data. The
sampling process constructs a database of N (prede�ned) observations by instan-
tiating all variables in V w.r.t. their possibility distributions. Obviously, variables
are most easily processed w.r.t. a topological order, since this ensures that all
parents are instantiated. Instantiating a parentless variable corresponds to com-
puting its α-cut. Instantiating a conditioned variable corresponds to computing
also its α-cut but given its sampled parents values. This could not be directly ap-
plied to conditional possibility distribution since it is composed of more than one
distribution depending on the number of the values of its sampled parents. For
conditional possibility distributions, we propose to use the product-based pos-
sibilistic counterpart of Je�rey's rule which satis�es possibilistic Je�rey's rule
kinematics properties [18] to revise it before the sampling operation. The revi-
sion based on the possibilistic counterpart of Je�rey's rule in the product-based
framework has been formalized as follows [18]:

De�nition 1. Let π(Xi) be a possibility distribution and (λ1, σ1),...,(λh, σh) be
a set of exhaustive and mutually exclusive events where the uncertainty is of the
form π′(λi) = σi (meaning that after the revision operation, the possibility of
each event λi is equal to σi). The revised possibility degree of any arbitrary event
ψ ⊆ Di is computed as follows:

∀ψ ⊆ Di, π
′(ψ) = max

λi
(σi ∗

π(ψ, λi)

Π(λi)
) (5)

Example 1. Let us consider the possibilistic network in Figure 1. The topological order
is X1, X2, X3, X4. Applying the described sampling process we obtain:

1. X1: α = 0.3, α-cutX1 = {x11, x12}.
2. X2: α = 0.9

(a) π′(x21) = max(0.4 ∗ 0.5, 1 ∗ 1) = 1, π′(x22) = max(0.4 ∗ 0.2, 1 ∗ 0.8) = 0.8,
π′(x23) = max(0.4 ∗ 1, 1 ∗ 1) = 1.

(b) α-cutX2 = {x21, x23}.
3. X3: α = 0.7

(a) π′(x31) = max(0.4 ∗ 0.4, 1 ∗ 1) = 1, π′(x32) = max(0.4 ∗ 1, 1 ∗ 0.3) = 0.4,
π′(x33) = max(0.4 ∗ 0.1, 1 ∗ 0.5) = 0.5.

(b) α-cutX3 = {x31}.
4. X4: α = 0.2

(a) π′(x41) = max(1 ∗ 1 ∗ 1, 1 ∗ 1 ∗ 0.6) = 1, π′(x32) = max(1 ∗ 1 ∗ 0.3, 1 ∗ 1 ∗ 1) = 1,
π′(x33) = max(1 ∗ 1 ∗ 0.4, 1 ∗ 1 ∗ 0.5) = 0.5.

(b) α-cutX4 = {x41, x42, x43}.

The obtained observation is then ({x11, x12}, {x21, x23}, {x31}, {x41, x42, x43}). We re-
peat the process to obtain N samples.



4.3 Evaluation measures

An evaluation measure assesses learned possibilistic networks quality and quan-
tify the e�ciency of the learning method graphically or numerically. We could
evaluate learning algorithms graphically by comparing the initial and the learned
possibilistic networks structures using graphical evaluation measures proposed
in the context of Bayesian networks, e.g. sensitivity (ratio of edges correctly
identi�ed in the learned network), speci�city (ratio of edges correctly identi�ed
as not belonging in the learned network) and editing distance (number of op-
erations required to transform a learned possibilistic network structure into the
initial one. For more details, see [19, 20]. Note that, it is necessary to take into
account Markov equivalence properties when computing these measures. In fact,
we should compute editing distance between equivalence class representatives
and sensitivity and speci�city of DAGs skeletons i.e. without edges orientation
or DAGs v-structure (in the form Xi −→ Xj ←− Xk).

Learning algorithms could be evaluated numerically by comparing the initial
network and the learned one using a possibilistic dissimilarity measure between
their joint possibility distribution as done by KL divergence in the probabilistic
case. Such a measure has been proposed to compare two possibility distributions
π and π′ de�ned in Di s.t. π(xik) ≥ π′(xik)∀xik ∈ Di [4]. This hypothesis is
restrictive for comparing two possibilistic networks. However, we can use the
possibilistic similarity measure proposed in [21] which is expressed by:

Aff(π0, πl) = 1− κ ∗ d(π0, πl) + λ ∗ Inc(π0, πl)
κ+ λ

(6)

Information a�nity is based on two quantities: inconsistency degree Inc(π0, πl) =
1−max

ωi∈Ω
{π0(ωi)∧πl(ωi)} (∧ can be taken as min or product operator3) and Man-

hattan distance i.e. d(π0, πl) =

m∑
l=1

|π0(ωi)−πl(ωi)|

m , where κ > 0 and λ > 0.
KL divergence and information a�nity involve heavy computing if the num-

ber of variables increases. This can be explained by the fact that they involve
all ω ∈ Ω. For KL divergence, we can compute an approximation to it, but, for
information a�nity, such approximation has not been studied yet.

5 Experimental study

This section proposes an experimental study having two main purposes. The �rst
set of experiments evaluates the e�ciency of the proposed sampling method to
generate an imprecise data set representative of a given possibilistic network. The
second set of experiments illustrates the whole proposed evaluation strategy on
main existing possibilistic learning algorithms in literature. These experiments
were ran on the following platform: 2.30 GHz Intel(R) Core (TM) i5-2410M with
8 Go of memory.

3 using the min operator instead of the product means that we give less importance
to the inconsistency degree.
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Fig. 3. Information a�nity between π0 and πl w.r.t the number of data (average over
100 experiments)

5.1 Evaluation of the proposed sampling method

The �rst set of experiments evaluates the e�ciency of our sampling method.
We study the convergence of the joint possibility distribution computed from
generated data using Equation 3, denoted by π0, to the theoretical one, i.e.
computed using Equation 4, denoted by π0. Speci�cally, we generate synthetic
data sets containing 100, 1000, 5000 and 10000 observations from 100 randomly
generated possibilistic networks composed of nb nodes where nb is randomly
generated in [5,10]. In order to compare π0 and πl, we measure the similarity
between the two possibility distributions using Information A�nity (Equation
6) and we take λ = κ = 1 and ∧ is the min operator. Figure 3 presents infor-
mation a�nity values between π0 and πl. Each value is the average of results of
the 100 experiments carried out with a standard deviation around 0.04. Figure
3 shows that the information a�nity grows relatively smoothly with the number
of observations, as expected. This is an obvious result because when we increase
the number of observations, the data set becomes more informative and repre-
sentative of the joint possibility distribution, i.e. most possible ωi appears more
frequently, less possible appears less frequently and so on until reaching the least
possible ωi or impossible ωi. Consequently, we de�ate considerably the gap be-
tween the initial possibility distribution and the learned one. Note that in all
experiments if π0(ωi) = 1, then, πl(ωi) = 1, i.e. the proposed sampling method
conserves the most possible interpretation.

5.2 Illustration of the evaluation strategy

In the second set of experiments, we generate 100 data sets of 100, 1000, 5000
and 10000 observations from the famous Asia network [22] (8 nodes and 8 edges).
This network is a probabilistuc one, so in order to adapt it to our possibilistic
context, we apply optimal probability possibility transformation [13] on its con-
ditional possibility distributions. Then, we apply existing possibilistic learning
structure algorithms which handle imprecise data, i.e. the possibilistic adap-
tation of k2 (πK2), maximum weight spanning tree (πMWST) [4] and greedy
search (πGS) [5]. In the current work, πK2 [4] and πMWST are tested using two
scores, namely, possibilistic mutual information (dmi) and possibilistic χ2 mea-
sure (dχ2) and πK2 treats variables in a prede�ned order (we generate 5 orders
in each experiment and we retain the best structure). πGS uses expected non
speci�city as score and begins with the class of all directed graphs w.r.t V that



Editing distance
N 100 1000 5000 10000
πGS 17,23+/-1,2 17,3+/-1,3 17,22+/-1,4 17,28+/-1,2

πMWST+dχ2 12,65 +/- 0,8 11,81 +/- 1,2 11,97 +/- 1 11,98 +/- 1

πMWST+ dmi 12,97 +/- 0,3 11,84 +/- 1,4 10,09 +/- 0,5 10 +/- 0
πK2+dχ2 9,75 +/- 1,3 10,89 +/- 1,4 10,52 +/- 1,2 10,52 +/- 1,1

πK2+ dmi 8,12 +/- 0,3 9,52 +/- 1,4 10,55 +/- 1,3 10,65 +/- 1,3

Speci�city
N 100 1000 5000 10000
πGS 0,35+/-0,03 0,34+/-0,03 0,35+/-0,03 0,34+/-0,03

πMWST+dχ2 0,8 +/- 0,03 0,84 +/- 0,04 0,83 +/- 0,02 0,83 +/- 0,02

πMWST+ dmi 0,79 +/- 0,01 0,83 +/- 0,05 0,9 +/- 0,01 0,9 +/- 0,01
πK2+dχ2 0,89 +/- 0,07 0,81 +/- 0,04 0,82 +/- 0,04 0,82 +/- 0,04

πK2+ dmi 0,98 +/- 0,02 0,9 +/- 0,07 0,84 +/- 0,05 0,83 +/- 0,05

Sensitivity
N 100 1000 5000 10000
πGS 0,68+/-0,09 0,69+/-0,08 0,7+/-0,09 0,7+/-0,08

πMWST+dχ2 0,27 +/- 0,06 0,34 +/- 0,1 0,32 +/- 0,06 0,31 +/- 0,06

πMWST+ dmi 0,25 +/- 0,02 0,35 +/- 0,1 0,49 +/- 0,04 0,5 +/- 0
πK2+dχ2 0,06 +/- 0,02 0,16 +/- 0,08 0,19 +/- 0,06 0,18 +/- 0,06

πK2+ dmi 0,01 +/- 0,03 0,08 +/- 0,03 0,12 +/- 0,07 0,13 +/- 0,06

Table 1. Editing distance, speci�city and sensitivity of learned structures

satisfy the condition |Pa(Xi)|≤ 1 for all Xi ∈ V and we, also, ran it �ve times
retaining the best learned structure. Then, we compute editing distance between
equivalence class representatives, skeleton sensitivity and speci�city between the
learned and the initial structures. Table 1 shows the average of obtained results.
We can see that πGS scoring function seems to be less interesting than the ones
used by πK2 and πMWST which has not been previously established. Such a
result clearly deserves more investigations but it is not the purpose of the present
paper.

6 Conclusion

Despite the similarities between Bayesian networks and possibilistic ones and es-
pecially those based on the product operator (since they share the same graphical
component and even same computations in the propagation process), working
with possibility distributions highlights several di�culties when dealing with the
learning task. This paper proposes a new evaluation strategy for product-based
possibilistic networks learning algorithms. The proposed method provides several
means to assess learned networks quality, i.e. we could use two families of evalu-
ation measures: graphical ones to compare networks structures and information
a�nity to compute similarity between learned and initial distributions.

The proposed evaluation strategy presents a clear experimental framework.
Thereby, it will be interesting to realize now a comparative and intensive study
of existing possibilistic networks algorithms to evaluate score functions quality,
learned networks quality and execution time. Future work concerns an approxi-
mation of the numerical evaluation measure information a�nity in order to make
its use possible in complex domains involving a huge number of variables.
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