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Introduction

Researches devoted to graphical models handle a classical form of data which consists in precise information and at most handle missing data. This is due to the fact that most of these works are dened in the probabilistic framework which represents a well-founded normative framework for knowledge representation and reasoning with uncertain but precise data. However, in real world applications, we are often faced to more sophisticated imperfect data. In such situation, probability theory does not remain the adequate framework, hence, the birth of several other uncertainty theories such as the case of possibility theory [START_REF] Dubois | Possibility theory and statistical reasoning[END_REF]. Consequently, alternative graphical models have been proposed to reason with this form of imperfect data such as possibilistic networks. Despite the multitude of research endeavors concerning propagation in possibilistic networks, e.g. [START_REF] Benferhat | Hybrid possibilistic networks[END_REF][START_REF] Ayachi | A generic framework for a compilation-based inference in probabilistic and possibilistic networks[END_REF], the problem of learning such networks from data remains very limited. Moreover, existing methods [START_REF] Borgelt | Graphical models: representations for learning, reasoning and data mining[END_REF][START_REF] Gebhardt | Learning possibilistic networks from data[END_REF][START_REF] Sangüesa | Possibilistic conditional independence: A similarity-based measure and its application to causal network learning[END_REF] do not propose a convincing evaluation process since most of them has been limited by the lack of an accurate and standard validation procedure. This paper proposes a new evaluation strategy for product-based possibilistic networks learning algorithms based on sampling. Such an approach is commonly used for probabilistic graphical models and especially in the evaluation of Bayesian networks learning algorithms, but, it raises several diculties when applied to possibilistic networks as it will be detailed in this paper. This paper is organized as follows: Section 2 gives a brief introduction to possibility theory. Section 3 denes possibilistic networks and discusses their learning from data. Section 4 details our proposed evaluation strategy to possibilistic networks learning algorithms. Section 5 is dedicated to the experimental results.

This section recalls elementary notions of possibilisty theory [START_REF] Dubois | Possibility theory: qualitative and quantitative aspects[END_REF] and points out the notion of possibility distribution estimation. Let V = {X 1 , ..., X n } be a set of variables such that D 1 , ..., D n are their respective domains and let x ik be an instance of X i , i.e. each x ik ∈ D i corresponds to a state (a possible value) of X i . The agents knowledge (state set) of X i can be encoded by a possibility distribution π(X i ) corresponding to a mapping from the universe of discourse D i to the unit interval [0,1]. For any state x ik ∈ D i , π(x ik ) = 1 means that x ik realization is totally possible π(x ik ) = 0 means that x ik is an impossible state. It is generally assumed that at least one state x ik is totally possible and π is then said to be normalized. Extreme cases of knowledge are presented by complete knowledge, i.e.

∃x ik ∈ D i s.t. π(x ik ) = 1 and ∀x ij ∈ D i s.t. x ij =
x ik , π(x ij ) = 0 and total ignorance, i.e. ∀x ik ∈ D i , π(x ik ) = 1 (all values in D i are possible). The denition of a possibility distribution could be generalized to a set of variables V dened on the universe of discourse Ω = D 1 × ... × D n encoded by π. π corresponds to a mapping from Ω to the unit interval [0,1]. ω is called interpretation or event and is denoted by a tuple (x 1k , ...,

x nl ). ω[X i ] is the value of X i in ω.
Possibility theory is based on minimum non-specicity principle. More precisely, let π and π be two possibility distributions, π is said to be more specic (more informative) than π i ∀x ik ∈ D i , π(x ik ) ≤ π (x ik ). Given a possibility distribution π, we can dene for any subset A ⊆ D i two dual measures: possibility measure Π(A) = max

x ik ∈A π(x ik ) and necessity measure N (A) = 1 -Π( Ā)
where Π assesses at what level A is consistent with our knowledge represented by π whereas N evaluates at what level Ā is impossible.

The particularity of the possibilistic scale is that it can be interpreted in two-fold. First, it can be interpreted in an ordinal manner which means that possibility degrees reect only a specic order between possible values. Second, the possibilistic scale can be interpreted in a numerical way meaning that possibility degrees make sense in the ranking scale. These two interpretations induce two denitions of possibilistic conditioning which consists in reviewing a possibility distribution by a new certain information φ, an interpretation of Φ ⊆ V . The product-based conditioning is dened by:

π(ω| * φ) = π(ω) Π(φ) if ω[Φ] = φ 0 otherwise. (1) 
While the min-based conditioning is dened by:

π(ω | min φ) =    1 if π(ω) = Π(φ) and ω[Φ] = φ π(ω) if π(ω) < Π(φ) and ω[Φ] = φ 0 otherwise. (2) 
One crucial notion when sampling networks, is the estimation of possibility distribution from generated data sets. In the numerical interpretation, Joslyn [START_REF] Joslyn | Towards an empirical semantics of possibility through maximum uncertainty[END_REF] has proposed a possibility distribution estimation method from imprecise data using possibilistic histograms. Moreover, he discusses the non-specicity of obtained possibility distributions in some particular cases such as certain and consistent data sets (for more details see [START_REF] Joslyn | Towards an empirical semantics of possibility through maximum uncertainty[END_REF]). Let D i = {d (l) i } be a dataset relative to a variable X i , d (l) i ∈ D i (resp. d (l) i ⊆ D i ) if data are precise (resp. imprecise). The number of occurrences of each x ik ∈ D i , denoted by N ik , is the number of times x ik appears in D i : N ik = N ({x ik } ∈ D i ). The non-normalized estimation πnn (x ik ) is expressed as follows:

πnn (x ik ) = N ik N ( 3 
)
where N is the number of observations in D i . N is equal (resp. lower or equal) to the sum of N ik if data are precise (resp. imprecise). Equation 3 could be dened as a set of variables X i , X j , ...X w . In this case, N ik becomes N ik,jl,...,wp = N ({x ik x jl ...x wp } ⊆ D ijw ).

3 Learning possibilistic networks

Denition of possibilistic networks

Possibilistic networks [START_REF] Fonck | Propagating uncertainty in a directed acyclic graph[END_REF] represent the possibilistic counterpart of Bayesian networks [START_REF] Pearl | Probabilistic reasoning in intelligent systems: networks of plausible inference[END_REF] having similarly two components: a graphical component composed of a DAG which encodes a set of independence relations (i.e. each variable X i ∈ V is conditionally independent of its non-descendent given its parents) and a numerical component corresponding to the set of conditional possibility distributions relative to each node X i ∈ V in the context of its parents, denoted by P a(X i ), i.e. π(X i |P a(X i )). The two denitions of the possibilistic conditioning lead naturally to two dierent ways to dene possibilistic networks: product-based possibilistic networks based on the product-based conditioning expressed by Equation 1. These models are theoretically and algorithmically close to Bayesian networks. In fact, these two models share the graphical component, i.e. the DAG and the product operator in the computational process. This is not the case of qualitative based on min-based conditioning dened by Equation 2 that represents a dierent semantic. In both cases, possibilistic networks are a compact representation of possibility distributions. More precisely, the joint possibility distribution could be computed by the possibilistic chain rule expressed as follows:

π ⊗ (X 1 , ..., X n ) = ⊗ i=1..n π(X i | ⊗ P a(X i )) (4) 
where ⊗ corresponds to the product operator (*) for quantitative possibilistic networks and to the minimum operator (min) for qualitative possibilistic networks. In the remaining, we focus on product-based possibilistic networks. Figure 1 represents an example of a product-based possibilistic network with four ternary variables. [START_REF] Gebhardt | Learning possibilistic networks from data[END_REF]. Borgelt et al. [START_REF] Borgelt | Graphical models: representations for learning, reasoning and data mining[END_REF] have proposed possibilistic versions of two learning methods initially proposed to Bayesian networks: K2 and maximum weight spanning tree handling, also, imprecise data. Sangüesa et al. [START_REF] Sangüesa | Possibilistic conditional independence: A similarity-based measure and its application to causal network learning[END_REF] have proposed two hybrid learning methods from precise data: the rst one learns trees and the second one learns the more general structure of DAGs. Most of attempts to learn possibilistic networks are direct adaptations of learning methods initially proposed for Bayesian networks ignoring also parameters learning problem. Moreover, all these works have been proposed before advances made concerning possibilistic networks as independence models leading to use contrary hypothesis (* in the conditioning and min in the conditional independence).
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Possibilistic networks parameters learning

Parameters learning of Bayesian networks is performed satisfying maximum entropy principle [START_REF] Herskovits | An entropy-driven system for construction of probabilistic expert systems from databases[END_REF]. The possibilistic analog of the latter corresponds to minimum non-specicity. By analogy to Bayesian networks, learning possibilistic networks parameters consists in estimating possibility distributions according to minimum non-specicity principle [START_REF] Klir | Uncertainty and information: foundations of generalized information theory[END_REF], i.e. estimating the most specic possibility distributions. As far as we know, parameters learning has not been studied yet and existing learning methods compute possibility distributions using either Equation 3 as done in [START_REF] Borgelt | Graphical models: representations for learning, reasoning and data mining[END_REF] and [START_REF] Gebhardt | Learning possibilistic networks from data[END_REF] or probability possibility transformations [START_REF] Dubois | On possibility/probability transformations[END_REF] as done in [START_REF] Sangüesa | Possibilistic conditional independence: A similarity-based measure and its application to causal network learning[END_REF].

Evaluating learning algorithms

Probabilistic graphical models learning methods, in particular Bayesian networks, are tested using randomly generated networks (synthetic) or networks that have been used in real systems, so that the structure of the network is
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Fig. 2. Evaluation process of possibilistic networks learning algorithms known and can serve as a rigorous gold standard e.g. Asia and Insurance networks. In the probabilistic case, evaluating learning algorithm is ensured using the following process: we select an arbitrary Bayesian network either a synthetic one or a gold standard from which we generate a data set using Forward Sampling algorithm [START_REF] Henrion | Propagating uncertainty in Bayesian networks by probabilistic logic sampling[END_REF]. Then, we try to recover the initial network using a learning algorithm and we compare the initial network with the learned one. None of the existing possibilistic networks learning methods has proposed a formal evaluation strategy and each existing work has proposed its evaluation measure whose values are dicult to interpret. In the following, we propose to transpose the evaluation strategy proposed in the probabilistic case to the possibilistic one in order to evaluate a possibilistic networks learning algorithm as shown by Figure 2.

Generating possibilistic networks

In the possibilisic case, there are currently no publicly available possibilistic networks used in real systems and could be used as gold standard. We propose either to generate randomly a possibilistic network or to transform a gold Bayesian network to a possibilistic one. Generating a random possibilistic network consists in generating its two components. Concerning the graphical component, we could use any method proposed in the context of Bayesian networks such as [START_REF] Xiang | A well-behaved algorithm for simulating dependence structures of Bayesian networks[END_REF]. For the numerical component, we propose to generate random values from [0,1] for each distribution satisfying normalization property, i.e. at least one of states degrees is equal to 1. We can, also, transform a Bayesian network to a possibilistic one retaining the same structure and performing a probability possibility transformation on its distributions, e.g. [START_REF] Dubois | On possibility/probability transformations[END_REF], on its probability distributions.

Sampling possibilistic networks

Once the possibilistic network is generated, we want to generate an imprecise dataset representative of its possibility distributions. To the best of our knowledge, there is no possibilistic networks sampling method. However, two approaches have been proposed [START_REF] Chanas | Single value simulation of fuzzy variable[END_REF][START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF] to sample one variable and are based on α-cut notion: α-cut Xi = {x ik ∈ D i s.t. π(x ik ) ≥ α} where α is randomly generated from [0,1]. The epistemic sampling method proposed by Guyonnet et al. in [START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF] focuses on the generation of imprecise data by returning all values of α-cut Xi for any variable X i . In fact, it returns a nested random set which represents the state of knowledge about the sampled variable X i . Chanas and Nowakowski proposed another method in [START_REF] Chanas | Single value simulation of fuzzy variable[END_REF] which is dedicated to the generation of precise data from the pignistic probability distribution by returning a single value uniformly chosen from α-cut Xi .

In this paper, we propose to generalize the variable sampling method proposed in [START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF] to possibilistic networks. This choice is justied by the fact that this method generates a more generic form of imperfect data i.e. imprecise data. The sampling process constructs a database of N (predened) observations by instantiating all variables in V w.r.t. their possibility distributions. Obviously, variables are most easily processed w.r.t. a topological order, since this ensures that all parents are instantiated. Instantiating a parentless variable corresponds to computing its α-cut. Instantiating a conditioned variable corresponds to computing also its α-cut but given its sampled parents values. This could not be directly applied to conditional possibility distribution since it is composed of more than one distribution depending on the number of the values of its sampled parents. For conditional possibility distributions, we propose to use the product-based possibilistic counterpart of Jerey's rule which satises possibilistic Jerey's rule kinematics properties [START_REF] Benferhat | Jerey's rule of conditioning in a possibilistic framework[END_REF] to revise it before the sampling operation. The revision based on the possibilistic counterpart of Jerey's rule in the product-based framework has been formalized as follows [START_REF] Benferhat | Jerey's rule of conditioning in a possibilistic framework[END_REF]: Denition 1. Let π(X i ) be a possibility distribution and (λ 1 , σ 1 ),...,(λ h , σ h ) be a set of exhaustive and mutually exclusive events where the uncertainty is of the form π (λ i ) = σ i (meaning that after the revision operation, the possibility of each event λ i is equal to σ i ). The revised possibility degree of any arbitrary event ψ ⊆ D i is computed as follows:

∀ψ ⊆ D i , π (ψ) = max λi (σ i * π(ψ, λ i ) Π(λ i ) ) (5) 
Example 1. Let us consider the possibilistic network in Figure 1. The topological order is X1, X2, X3, X4. Applying the described sampling process we obtain:

1. X1: α = 0.3, α-cutX 1 = {x11, x12}. 2. X2: α = 0.9 (a) π (x21) = max(0.4 * 0.5, 1 * 1) = 1, π (x22) = max(0.4 * 0.2, 1 * 0.8) = 0.8, π (x23) = max(0.4 * 1, 1 * 1) = 1. (b) α-cutX 2 = {x21, x23}. 3. X3: α = 0.7 (a) π (x31) = max(0.4 * 0.4, 1 * 1) = 1, π (x32) = max(0.4 * 1, 1 * 0.3) = 0.4, π (x33) = max(0.4 * 0.1, 1 * 0.5) = 0.5. (b) α-cutX 3 = {x31}. 4. X4: α = 0.2 (a) π (x41) = max(1 * 1 * 1, 1 * 1 * 0.6) = 1, π (x32) = max(1 * 1 * 0.3, 1 * 1 * 1) = 1, π (x33) = max(1 * 1 * 0.4, 1 * 1 * 0.5) = 0.5. (b) α-cutX 4 = {x41, x42, x43}.
The obtained observation is then ({x11, x12}, {x21, x23}, {x31}, {x41, x42, x43}). We repeat the process to obtain N samples.

Evaluation measures

An evaluation measure assesses learned possibilistic networks quality and quantify the eciency of the learning method graphically or numerically. We could evaluate learning algorithms graphically by comparing the initial and the learned possibilistic networks structures using graphical evaluation measures proposed in the context of Bayesian networks, e.g. sensitivity (ratio of edges correctly identied in the learned network), specicity (ratio of edges correctly identied as not belonging in the learned network) and editing distance (number of operations required to transform a learned possibilistic network structure into the initial one. For more details, see [START_REF] Tsamardinos | The max-min hill-climbing Bayesian network structure learning algorithm[END_REF][START_REF] Shapiro | A metric for comparing relational descriptions[END_REF]. Note that, it is necessary to take into account Markov equivalence properties when computing these measures. In fact, we should compute editing distance between equivalence class representatives and sensitivity and specicity of DAGs skeletons i.e. without edges orientation or DAGs v-structure (in the form

X i -→ X j ←-X k ).
Learning algorithms could be evaluated numerically by comparing the initial network and the learned one using a possibilistic dissimilarity measure between their joint possibility distribution as done by KL divergence in the probabilistic case. Such a measure has been proposed to compare two possibility distributions π and π dened in

D i s.t. π(x ik ) ≥ π (x ik )∀x ik ∈ D i [4]
. This hypothesis is restrictive for comparing two possibilistic networks. However, we can use the possibilistic similarity measure proposed in [START_REF] Jenhani | Decision trees as possibilistic classiers[END_REF] which is expressed by:

Af f (π 0 , π l ) = 1 - κ * d(π 0 , π l ) + λ * Inc(π 0 , π l ) κ + λ (6) 
Information anity is based on two quantities: inconsistency degree Inc(π 0 , π l ) = 1-max ωi∈Ω {π 0 (ω i )∧π l (ω i )} (∧ can be taken as min or product operator 3 ) and Man-

hattan distance i.e. d(π 0 , π l ) = m l=1 |π0(ωi)-π l (ωi)| m
, where κ > 0 and λ > 0. KL divergence and information anity involve heavy computing if the number of variables increases. This can be explained by the fact that they involve all ω ∈ Ω. For KL divergence, we can compute an approximation to it, but, for information anity, such approximation has not been studied yet.

Experimental study

This section proposes an experimental study having two main purposes. The rst set of experiments evaluates the eciency of the proposed sampling method to generate an imprecise data set representative of a given possibilistic network. The second set of experiments illustrates the whole proposed evaluation strategy on main existing possibilistic learning algorithms in literature. These experiments were ran on the following platform: 2.30 GHz Intel(R) Core (TM) i5-2410M with 8 Go of memory. The rst set of experiments evaluates the eciency of our sampling method.

We study the convergence of the joint possibility distribution computed from generated data using Equation 3, denoted by π 0 , to the theoretical one, i.e. computed using Equation 4, denoted by π 0 . Specically, we generate synthetic data sets containing 100, 1000, 5000 and 10000 observations from 100 randomly generated possibilistic networks composed of nb nodes where nb is randomly generated in [START_REF] Gebhardt | Learning possibilistic networks from data[END_REF][START_REF] Pearl | Probabilistic reasoning in intelligent systems: networks of plausible inference[END_REF]. In order to compare π 0 and π l , we measure the similarity between the two possibility distributions using Information Anity (Equation 6) and we take λ = κ = 1 and ∧ is the min operator. Figure 3 presents information anity values between π 0 and π l . Each value is the average of results of the 100 experiments carried out with a standard deviation around 0.04. Figure 3 shows that the information anity grows relatively smoothly with the number of observations, as expected. This is an obvious result because when we increase the number of observations, the data set becomes more informative and representative of the joint possibility distribution, i.e. most possible ω i appears more frequently, less possible appears less frequently and so on until reaching the least possible ω i or impossible ω i . Consequently, we deate considerably the gap between the initial possibility distribution and the learned one. Note that in all experiments if π 0 (ω i ) = 1, then, π l (ω i ) = 1, i.e. the proposed sampling method conserves the most possible interpretation.

Illustration of the evaluation strategy

In the second set of experiments, we generate 100 data sets of 100, 1000, 5000 and 10000 observations from the famous Asia network [START_REF] Lauritzen | Local computations with probabilities on graphical structures and their application to expert systems[END_REF] (8 nodes and 8 edges). This network is a probabilistuc one, so in order to adapt it to our possibilistic context, we apply optimal probability possibility transformation [START_REF] Dubois | On possibility/probability transformations[END_REF] on its conditional possibility distributions. Then, we apply existing possibilistic learning structure algorithms which handle imprecise data, i.e. the possibilistic adaptation of k2 (πK2), maximum weight spanning tree (πMWST) [START_REF] Borgelt | Graphical models: representations for learning, reasoning and data mining[END_REF] and greedy search (πGS) [START_REF] Gebhardt | Learning possibilistic networks from data[END_REF]. In the current work, πK2 [START_REF] Borgelt | Graphical models: representations for learning, reasoning and data mining[END_REF] 0,8 +/-0,03 0,84 +/-0,04 0,83 +/-0,02 0,83 +/-0,02 πMWST+ dmi 0,79 +/-0,01 0,83 +/-0,05 0,9 +/-0,01 0,9 +/-0,01 πK2+d χ 2 0,89 +/-0,07 0,81 +/-0,04 0,82 +/-0,04 0,82 +/-0,04 πK2+ dmi 0,98 +/-0,02 0,9 +/-0,07 0,84 +/-0,05 0,83 +/-0,05 Sensitivity N 100 1000 5000 10000 πGS 0,68+/-0,09 0,69+/-0,08 0,7+/-0,09 0,7+/-0,08 πMWST+d χ 2 0,27 +/-0,06 0,34 +/-0,1 0,32 +/-0,06 0,31 +/-0,06 πMWST+ dmi 0,25 +/-0,02 0,35 +/-0,1 0,49 +/-0,04 0,5 +/-0 πK2+d χ 2 0,06 +/-0,02 0,16 +/-0,08 0,19 +/-0,06 0,18 +/-0,06 πK2+ dmi 0,01 +/-0,03 0,08 +/-0,03 0,12 +/-0,07 0,13 +/-0,06 satisfy the condition |P a(X i )|≤ 1 for all X i ∈ V and we, also, ran it ve times retaining the best learned structure. Then, we compute editing distance between equivalence class representatives, skeleton sensitivity and specicity between the learned and the initial structures. Table 1 shows the average of obtained results. We can see that πGS scoring function seems to be less interesting than the ones used by πK2 and πMWST which has not been previously established. Such a result clearly deserves more investigations but it is not the purpose of the present paper.

Conclusion

Despite the similarities between Bayesian networks and possibilistic ones and especially those based on the product operator (since they share the same graphical component and even same computations in the propagation process), working with possibility distributions highlights several diculties when dealing with the learning task. This paper proposes a new evaluation strategy for product-based possibilistic networks learning algorithms. The proposed method provides several means to assess learned networks quality, i.e. we could use two families of evaluation measures: graphical ones to compare networks structures and information anity to compute similarity between learned and initial distributions. The proposed evaluation strategy presents a clear experimental framework. Thereby, it will be interesting to realize now a comparative and intensive study of existing possibilistic networks algorithms to evaluate score functions quality, learned networks quality and execution time. Future work concerns an approximation of the numerical evaluation measure information anity in order to make its use possible in complex domains involving a huge number of variables.
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				X 1	Π(X 1 ) x 11 x 12 x 13 0.4 1 0.1
	Π(X 2 |X 1 ) x 21 x 22 x 23				x 31 x 32 x 33
	x 11	0.5 0.2 1				x 11	0.4 1 0.1
	x 12	1 0.8 1				x 12	1 0.3 0.5
	x 13	1 0.7 0.6				x 13	0.8 1 0.6
	x 21 x 31	1 0.3 0.4	x 22 x 31 0.2 0.1 1	x 23 x 31 0.6 1 0.5
	x 21 x 32 0.5 1 0.1 x 22 x 32	1 0.5 0.5	x 23 x 32	1 0.8 0.4
	x 21 x 33	1 0.2 0.8	x 22 x 33 0.1 0.2 1	x 23 x 33	1 0.7 0.3
	Fig. 1. Example of a product-based possibilistic network
	3.2 Possibilistic networks structure learning

By analogy to Bayesian networks, structure learning methods could be categorized into three families: constraint-based, score-based and hybrid methods. In the possibilistic case, Gebhardt and Kruse have proposed a score-based method handling imprecise data

  and πMWST are tested using two scores, namely, possibilistic mutual information (d mi ) and possibilistic χ 2 measure (d χ 2 ) and πK2 treats variables in a predened order (we generate 5 orders in each experiment and we retain the best structure). πGS uses expected non specicity as score and begins with the class of all directed graphs w.r.t V that

	N πGS πMWST+d χ 2 πMWST+ dmi πK2+d χ 2 πK2+ dmi	Editing distance 1000 5000 17,3+/-1,3 17,22+/-1,4 12,65 +/-0,8 11,81 +/-1,2 100 17,23+/-1,2 11,97 +/-1 12,97 +/-0,3 11,84 +/-1,4 10,09 +/-0,5 9,75 +/-1,3 10,89 +/-1,4 10,52 +/-1,2 10,52 +/-1,1 10000 17,28+/-1,2 11,98 +/-1 10 +/-0 8,12 +/-0,3 9,52 +/-1,4 10,55 +/-1,3 10,65 +/-1,3
	N πGS	100 0,35+/-0,03	Specicity 0,34+/-0,03 1000 0,35+/-0,03 5000	10000 0,34+/-0,03
	πMWST+d χ 2			

Table 1 .

 1 Editing distance, specicity and sensitivity of learned structures

using the min operator instead of the product means that we give less importance to the inconsistency degree.