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Abstract. Context specific independence (CSI) is an efficient means
to capture independencies that hold only in certain contexts. Inference
algorithms based on CSI are capable to learn the Conditional Probability
Distribution (CPD) tree relative to a target variable. We model motifs as
specific contexts that are recurrently observed in data. These motifs can
thus constitute a domain knowledge which can be incorporated into a
learning procedure. We show that the integration of this prior knowledge
provides better learning performances and facilitates the interpretation
of local structure.
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1 Introduction

Our work falls within the framework of context-specific independence (CSI) [1].
It has been shown that the identification of context-specific relationships within
probabilistic relational models constitutes a powerful tool to discover local struc-
tures, i.e. interactions that hold on the studied domain. In many applications,
conditional independence relationships are true only in specific contexts. A con-
text is a partial configuration of variables that alone induces an effect on a target
variable.

In diagnosis for instance, in spite of the variety of human symptoms, a small
subset of them may suffice to infer a disease. This restrained set of symptoms
forms an example of context. Contexts are valuable pieces of information that
can be collected as background knowledge. Recurrent contexts observed over
distinct datasets form motifs that can be exploited to discover unexpected as-
sociations between previous studies and a new experiment. This is specially the
case when the same causes induce different effects (i.e. the same motif affects
distinct target variables; for example, a symptom set is shared over previously
unrelated diseases).

The problem of learning local structure has already been addressed, notably
in [2]. This paper outlines the use of prior domain knowledge for inferring local
structures. From a general point of view, incorporating prior domain knowledge
into learning algorithms can greatly enhance their performances. Another ad-
vantage is that this strategy enables the user to identify recurrent motifs in his
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own dataset.

We discuss in section 2 some related works for incorporating knowledge into
learning procedures. Section 3 introduces some basic concepts associated to do-
main knowledge and local structure. In section 4, we propose a method for
learning local structure from previously acquired motifs. This strategy is eval-
uated through experimental results that are presented in section 5. Concluding
remarks and future work are given in Section 6.

2 Related work

The identification of CSI in Bayesian networks [1] provides compact data struc-
tures for representing probabilistic information. In [2], the authors have pro-
posed CPD trees to express context independencies. Other alternative models
have been suggested, such as Recursive Probability Trees (RPTs) [3]. RPTs are
a generalization of probability trees that can hold potentials in a factorized way.
Factorization yields a more compact representation, but the flexibility of RPTs
makes the discovery of motifs more complex. CPD trees have then been adopted
for this preliminary work.

The incorporation of prior knowledge in BN learning algorithms has already
been investigated. In [4], the authors exploit an ontology by translating con-
cepts and relations into a BN structure. Ontology-based construction of BNs
requires the existence of a formal representation of a specific domain, which is
not guaranteed. Rather than a global formal approach, we suggest to infer lo-
cal structure from a collection of motifs, from which a small subset is expected
to be consistent with the investigated data. Our strategy, which rather consists
in assembling fragmented pieces of information, has also been tackled in [5].
Contrary to our work, this study mainly focus on the reuse of BN fragments,
using object-oriented formalism and building blocks called idioms. This work is
more an attempt to represent general types of reasoning and does not exploit
CSIs. Other approaches address the issue of updating a knowledge base (KB)
according to new evidences. In [6], a cyclic approach has been proposed, which
incorporates causal discoveries and ontology evolution. Some authors suggest to
tune a KB when conflicts have been detected [7]. In [8], the model is capable
to evolve, depending of its current state. Contrary to these works, our paper
assumes the existence of a well-formed KB of motifs and examines the impact of
its incorporation into learning algorithms. Motif discovery has been extensively
studied in data mining [9]. Some authors [10] have proposed to reveal interest-
ing attribute sets using BN as background knowledge. If one models motifs as
itemsets, this approach shares some similarities with our work, since it combines
BN and itemsets. However, it differs in the fact that we guide BN construction
using motifs rather than the opposite.
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3 Concepts related to the notion of local structure

3.1 Context-specific independence

A variable assignment (VA) is a couple (X,x), noted (X = x), where X is
a random variable and x the value taken by X. A context c generalizes this
concept to a set of variables C = {C1, . . . , Cn}. A context will be represented
in extension as follows: c = (C1 = c1, . . . , Cn = cn). The notion of context is
generally used to define a set of conditions reducing the interaction between a
variable and its parents. For instance, a meteorological context including wind,
heavy rain and storms will strongly affect the probability that a tennis match
will be played.
As pointed out in [2], the notion of context provides an explicit representation of
the local structure. Contexts also yield a simpler encoding of the real complexity
of the underlying interactions. To capture this local structure, we introduce a
formal foundation for the concept of context. Following definition of context-
specific independence (CSI) due to [1], let X,Y,Z,C be four disjoint sets of
variables. X and Y are independent given Z in context C = c if

P (X|Z, c,Y) = P (X|Z, c) whenever P (Y,Z, c) > 0.

3.2 Conditional Probability Distribution Tree

The conventional representation of conditional probability distribution (CPD)
takes the form of a table indexed by all possible values of the set of parents.
Consequently, a CPD table has 2|S| rows, where |S| is the number of parents. As
explained in [2], such tabular representation is locally exponential and largely
overestimates the actual complexity of the involved interactions. An alternative
representation exploiting the concept of context defined above is the CPD tree.
This notion designates a tree whose leaves represent the distribution of the target
variable and whose internal nodes represent the parents branching over their
values. A tree path is an ordered list of VAs corresponding to the path from the
root towards a given node. A path will be denoted as follows: [X1 = x1, . . . , Xn =
xn]. Note that we use brackets for ordered lists and parenthesis for unordered
lists such as contexts and motifs. Inducing a CPD tree from a dataset can be
performed using learning procedures such as greedy hill climbing [2], using an
approach that has been designed for learning decision trees.

4 Learning local structures from motifs

Our objective is to build a CPD tree from a list of motifs collected in a KB={mk}
where mk = (Xk

1 = xk1 , . . . , X
k
nk

= xknk
). A motif is a context that is considered

as relevant. The interestingness of a motif can be explicitly stated by experts
or be related to its recurring nature over different datasets. In this latter case,
the same motif has been observed in many situations, but not necessarily over
the same target variable: in the previous example of meteorological context, the
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same causes may affect different outdoor games, such as baseball. Due to their
similarity, the same notation will be used for contexts and motifs.

In this section, we first propose an extended version of the concept of CPD
tree. Then, we present a learning algorithm from data, using an existing KB and
based on two phases: the first one constructs a maximally expanded CPD tree
and the second one trims this candidate tree. These two steps are described, as
well as a Tabu search extracting an optimal subset of motifs from a given KB.

4.1 Extended definitions for CPD tree learning

We propose to extend the concept of CPD tree by introducing a categorization
of its leaves. A leaf represents a CPD associated to a particular configuration
(assignment of a variable set). Two situations may arise: either this configuration
reveals an remarkable context impacting the target variable, or it is only the con-
sequence of the construction of alternative paths. We call M-leaf a leaf associated
to a specific context. The prefix M indicates that this leaf may be the evidence
for a motif. A M-leaf is graphically represented by symbol 4. The second type
is called a D-leaf and is represented by symbol �. This type corresponds to a
default probability distribution shared by all the D-leaves. We introduce this
category to express the absence of a particular context. It presents two advan-
tages: simplification of the encoding of the local structure (all default leaves share
the same distribution parameters); better identification of specific interactions
(paths leading to a M-leaf). To illustrate these concepts, let consider a volun-
tary simplified example of a network dedicated to medical diagnosis. Our target
variable is associated to heart rate measurement (denoted H), in association
with a restricted list of symptoms: chest pain (P ), cough (C), indigestion(I) and
fatigue (F ). The parent set of H is S = {P,C, I, F}. All the members of S are
random variables that can take two values: 0(false) and 1(true). In our example,
heart rate depends only on a reduced number of symptoms related to a spe-
cific disease. Figure 1 shows an example of extended CPD tree that could have
be learned from an actual dataset. Note that this tree presents five leaves, but
only reveals two interesting features: 41 (bradycardia due to hypothyroidism);
42 (tachycardia due to pulmonary embolism). In our oversimplified example,
D-leaves (�1,�2,�3) reflect the fact that patients which are not suffering from
either hypothyroidism or pulmonary embolism tend to have a normal heart rate.
While a CPD table would require 16 rows for variable H, a CPD tree can be
summarized into two paths and three parameters (distribution related to brady-
cardia, tachycardia, and normal heart rate).

We state that a motif is retrieved in an inferred CPD tree T if there exist at
most one path π of T for which the two following conditions are met : (i) π leads
to a M-leaf; (ii ) π contains p, that is every V A in p exists in π. Finally, one
needs to introduce the concept of consistency. A motif p is said to be consistent
with a path π if the following rule applies: for any V A = (X = x) in π such as
X exists in p, then its assignment in p is x. Similarly, two motifs are said to be
consistent if all their common variables also share the same assignment.
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Fig. 1. Example of an extended CPD tree

4.2 Inference of CPD trees

The proposed method for inferring CPD trees follows the standard approach of
heuristic search. This procedure considers a dataset D as well as a knowledge
base KB. It starts with an initial tree T consisting in a unique node, labeled as
D-leaf. This initialization assumes that D does not contain any motif.

procedure learnCPDtree(T ,D,KB)
1. hasChanged=false
2. Leaves=getAllLeaves(T )
3. For each leaf L in Leaves do
4. UKB=update(KB,L)
5. if UKB 6= ∅ then
6. T =grow(T ,L,D,UKB)
7. hasChanged=true
8. end
9. end
10. if hasChanged then learnCPDtree(T ,D,KB)

end.

Procedure learnCPDtree first collects all the leaves of T (line 2 ). These nodes
represent potential locations for growing the CPD tree, using the internal method
grow. The update function (line 4 ) returns an updated version of KB that con-
tains the remaining constraints that apply when node L has been reached. To
illustrate this point, let us return to the example of Figure 1 and suppose that
our initial KB is {(C = 1, P = 1), (I = 1, F = 1)}. The update of KB for a
current node consists into two actions:

– removal of all the motifs from KB that are not consistent with the actual
path. For instance, if this latter is [P = 0] (node marked I in Figure 1), then
motif (C = 1, P = 1) has to be removed.

– removal of all V As that have already met the conditions expressed by a
motif. For instance path [P = 0, I = 1] (node marked F ) contains a V A
(I = 1) that has already been visited. Then, motif (I = 1, F = 1) must be
updated into (F = 1).

If UKB is not empty, function grow is called (line 6 ). The aim of grow is to
replace a current leaf L by a new node. Finally, the procedure learnCPDtree is
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recursively called as long as the tree can been expanded (line 10 ).

function grow((T ,L,D,KB)
1. pbest=bestPattern(L,D,KB)
2. vabest=bestVariableAssignment(L,D,pbest)
3. T ′=addNode(T ,L,vabest)
4. return T ′

end.

Function grow is the core of the tree building. Firstly, it searches for the motif
pbest that achieves the local maximum score when placed at node L (line 1 ). We
estimated that growing the tree node by node is a better approach than replacing
a leaf by a branch (i.e. a whole motif). This strategy yields a more accurate node
assignment and provides a more compact tree representation. This is the rea-
son why we select from pbest the variable assignment vabest = (vbest = ibest)
that achieves the highest score (line 2 ). L is replaced by a new node N de-
noted by vbest (line 3 ). By nature, any interior node of a CPD tree possesses
a set of outgoing arcs to its children, each one associated with a unique vari-
able assignment. Therefore, a child is added to N for the arc corresponding to
assignment ibest. This particular child is a M-leaf; the remaining children are
labeled as D-leaves. Since learnCPDtree replaces leaves by interior nodes, these
labels are updated as long as the tree grows. Note that multiple and possibly
interleaved motifs may appear in the same path π, as long as they are consistent.

This algorithm generates a maximally expanded tree, in order to circumvent
the problem of local maxima (see [11] for a justification). In a second phase,
the tree is trimmed in a bottom-up fashion, using procedure trimCPDtree. This
method is based on a selection of the node to be pruned (line 1 ). Function cut
then replaces the node by a leaf L and creates a new tree T ′ (line 3 ). The type
of L, either M-leaf or D-leaf, is determined by testing the score of T ′ for both
options and by selecting the option achieving the highest score. This new tree
is then compared to T . If the trimmed tree obtains a better score, it is retained
(line 4 ). Finally, this procedure is recursively called as long as a pruning node
is available (line 5 ).

procedure trimCPDtree(T ,D,KB)
1. node=selectNode(T )
2. if node 6= NIL then
3. T’=cut(T ,node)
4. if score(T ′,D)¿score(T ,D ) then T =T ′

5. trimCPDtree(T ,D,KB)
end.

end.

Procedure selectNode defines the best location for pruning T . This selection
can only be performed if a set of candidate nodes has already been determined.
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For this purpose, during the previous growing phase, all the nodes have been
marked by an additional boolean label prune indicating if it can be pruned or
not. The following rules were applied:

– a branch can be removed at node N if it corresponds to the beginning of a
new motif. This property can be easily detected by comparing an original
motif m to its updated version. If motif m starts at N , then prune(N ) =
true,

– a node N that has been created as D-leaf is labeled as prune(N ) = true,
– a node N that does not meet the two previous conditions is labeled as
prune(N ) = false.

Function selectNode returns the node which is the most appropriate cutting
point in T . As previously said, the trimming strategy operates in a bottom-up
manner. Therefore, our method searches for the nodes N verifying prune(N )
and retains the node having the maximal depth in the tree (in case of ex-aequo,
one candidate node is chosen at random). The label prune of this node is set to
false, in order to reduce the candidate list. When no more candidates remain,
selectNode returns NIL.

4.3 Motif selection using Tabu search

The inference method presented above is capable to reconstruct a CPD tree
from the exact list of motifs that are effectively concealed in a dataset D. From
a practical point of view, one can only assume that some motifs in a knowledge
base may be effectively retrieved in D. The existence of false positives degrades
the performances of our learning procedure. In fact, even if our trimming method
reduces the presence of false positives in inferred CPD trees, it cannot eliminate
all of them. For instance, the first motif selected in the growing phase cannot
be trimmed without the removal of all the motifs that follows it. Therefore, we
adopted a Tabu method [12] that models a solution as a boolean vector of size
n, where n is the number of motifs in KB. The ith motif is retained if its boolean
value is set to true. The optimization algorithm starts with an initial empty
solution, assuming that D does no contain any motifs. Neighbors of the current
candidate are then generated to find a more adequate solution based on the same
list of motifs, except some random mutations (in our implementation, a neighbor
contains 1 to 5 boolean changes in relation to the current solution). The fitness
of a candidate is defined by the score achieved by the inference algorithm, when
applying its motifs. Note that the trimming procedure is still needed, since Tabu
search only defines the optimal motif list, but does not prevent a given motif to
be present in multiple occurrences in the inferred tree.

5 Experimental results

To evaluate the relevance of using a knowledge base for inferring local struc-
ture, we performed multiple experiments with various settings. We simulated
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datasets encompassing a certain number of motifs of different sizes. For compar-
ison purpose, we adopted two methods. The first one (further referred as standard
method) discovered new motifs without any a priori knowledge. This learning
procedure was based on the method described in [2]. The second one (further
referred as motif-based method) was our technique exploiting a knowledge base
of motifs.

5.1 Experimental setup

Our experiments were carried out using the following methodology:

– Generation of a golden reference which is a random extended CPD tree
containing motifs of different sizes. The total number of variables has been
set to 100 for all experiments. We controlled the complexity of the golden
reference by defining two random parameters: the number n of motifs; the
size sm of each motif (number of variables composing the motif m). Both n
and sm followed a uniform law on a predefined interval. Three ranges have
been fixed for n: [1, 3], [4, 6] and [7, 10]. Similarly, we specified three ranges
for sm: [2, 4], [5, 7] and [8, 10]. The combination of these intervals defined
nine complexity groups. For each of these groups, 20 random extended CPD
tree were generated.

– Extraction of a list LT of true positive motifs from the generated CPD tree.
– Generation of a random dataset using LT . All the generated datasets contain

the same number of instances set to 20,000. One third of instances followed
a default normal distribution (µ = 0, σ = 1). Remaining instances were
randomly and uniformly associated to one of the n motifs. The distribution
assigned to the ith motif was a normal law (µi = 3 + i, σi = 0.1).

– Creation of a KB of motifs belonging to the golden reference as well as false
motifs. The proportion of false motifs issued from LT has been set to 90%.
False motifs have been randomly generated from the initial list of variables,
so that (i) they observed a comparable complexity (i.e. motif size) in relation
to the true motifs; (ii) they were not a subset of any true motif.

– Inference of CPD trees using standard as well as motif-based methods.
– Performance comparison based on precision and recall of the extracted mo-

tifs, as well as the compactness of the learned CPD trees.

5.2 Results

Both standard and motif-based methods are capable to retrieve relevant motifs.
These method achieve a precision of 1 in respectively 91.5% and 95.1 % of the
cases. These good results may be chiefly attributed to the high separability of
the original motif distributions. Conversely, the sensitivity was generally more
contrasted: a recall of 1 was obtained in only 26.3% of the cases for the standard
method, compared to 62.7% for our method. Likewise, recall scores were lower
for the first method (mean=0.49), compared to the second one (mean=0.90).
Figure 2 details the influence of data complexity on the sensitivity. The number of
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motifs impacts on the recall performance for both methods, but more specifically
on the standard one. As expected, motif-based method is also more robust with
regards to motif size. Another advantage of our method is that it strongly reduces
the complexity of the inferred trees. Our procedure induces a tree complexity
(number of nodes) that is comparable to that of the golden reference (t-test p-
value of 0.32). This is clearly not the case for the standard approach which tends
to build large trees (mean relative increase of 34%), making the interpretation
of the inferred motifs much more difficult.

●

●●

●●●

●

A

0
0.

5
1

●

●●

●●●●●

●

●●●●

B

●

●

●●●●●●●●●●

C

D

0
0.

5
1

●

E

●

●

F

●●●

●●

G

0
0.

5
1

●

●

●

●●●●

●

●

●●●

●●●

●●

●

●

●

●●●●

H

●
●

●

●●●

●

●

●

●●

●●

●

●●●●●●●●●●

I

Fig. 2. Recall performances. Rows correspond to the followings ranges of n: [1, 3] (top),
[4, 6] (middle) and [7, 10](bottom). Columns correspond to the following ranges of sp:
[2, 4](left), [5, 7](middle) and [8, 10](right). For each figure, left (resp. right) box plot
corresponds to the standard (resp. motif-based) method.

6 Conclusion and future work

In this paper,we have proposed a new approach to discover local structure using
a priori knowledge defined by a set of ”interesting” motifs. We have shown that
the incorporation of such motifs greatly improves learning procedures aiming
at inferring CPD trees, leading to better performances and tree compactness.
The same concept also provides an efficient means to interpret new datasets.
Recurrent trends could thus be revealed, allowing experts to investigate new
connections and to infer some common causes for previously unassociated phe-
nomenons. There is room for substantial improvement in the current implemen-
tation. If the proposed strategy has proven to be efficient for retrieving known
motifs, it is not capable in its current form to discover new motifs that are not
a mere combination of predefined ones. To address this shortcoming, a hybrid
approach could be investigated, that would associate discovery of new motifs
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and discrimination between known and new motifs. Another line of future work
concerns the definition and the consistency of our knowledge base. We have only
considered the information relative to motifs, assuming that the variable do-
main is stable during the motif acquisition process. In many situations, datasets
may contain distinct sets of variables, due to incomplete or incremental exper-
imental designs. Therefore, a context must be associated with its background,
that is the variable set in which the context independency has been observed.
Finally, we intend to apply our prototype to real-world problems. Functional
genomics is a research field that is particularly well adapted for that purpose:
public databases gather a vast amount of gene-related data collected from vari-
ous sources. This information needs to be analyzed in a systematic way and we
believe that motif-based approaches would help biologists to make unexpected
links between separate studies.
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