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Abstract. Many papers pointed out the interest of (co-)clustering both
data and features in a dataset to obtain better performances than meth-
ods focused on data only. In addition, recent work have shown that data
and features lie in low dimensional manifolds embedded into the original
space and this information has been introduced as regularization terms in
clustering objectives. Very popular and recent examples are regularized
NMF algorithms. However, these techniques have difficulties to avoid lo-
cal optima and require high computation times, making them inadequate
for large scale data. In this paper, we show that NMF with manifolds
regularization on a binary matrix is mathematically equivalent to an edge-
cut partitioning in a graph augmented with manifolds information in the
case of hard co-clustering. Based on these results, we explore experimen-
tally the efficiency of regularized graph partitioning methods for hard co-
clustering on more relaxed datasets and show that regularized multi-level
graph partitioning is much faster and often find better clustering results
than regularized NMF, and other well-known algorithms.

1 Introduction

Non-negative Matrix factorization (NMF) methods are very popular methods
which aim at finding a low-rank approximation of a bigger matrix, in order to
compress, or cluster data. While many of these techniques make no assumption
about the shape of data to find the factored information, recent work [1] have
shown that datasets actually lie in a low dimensional manifold embedded in the
higher dimensional feature space. Embedding this natural neighborhood rela-
tionship between data points has been proposed in recent publications [1, 2] to
improve factorizations results. Considering data and features as two indepen-
dent individual sets, called ”modes” of our data, manifold information is encoded
as similarity matrices between individuals of same mode, and regularization is
done by adding a penalization term involving the Laplacian of these manifolds
in the objective function. A common use of NMF is to perform relational clus-
tering between two modes, by factoring the weighted affinity matrix between the
two modes sets. Unfortunately, NMF techniques, including the regularized ones,
suffer from their scalability and sensitivity to initialization.

Relational clustering can be tackled with different techniques than NMF.
We can indeed cast the problem of relational clustering by the one of graph
partitioning on the graph induced by the adjacency matrix previously defined.
Very efficient and scalable algorithms have been designed for graph partitioning
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[3], especially multi-level graph partitioning methods (like METIS [4] and GR-
ACLUS [5]). They consist in first coarsening the graph before clustering it, and
then uncoarsening data doing local optimization at each step.

In this paper, we show a mathematical equivalence between NMF with man-
ifold regularization for hard clustering of a binary matrix and edge-cut parti-
tioning in the graph built from the union of a relational graph (described by the
original matrix) and a set of manifolds graphs (described by similarity matrices).
We then explore regularized graph partitioning of less constrained matrices and
compare it with several clustering methods, including a state of the art regu-
larized NMF one, and show that regularized multi-level graph partitioning can
perform better with a lower computation time than these methods. With the in-
creasing availability of large complex bipartite datasets, our contribution allows
relational clustering to scale better with manifolds regularization.

This paper is organized as follows. Section 2 formally describes the problem
of relational clustering and demonstrates the equivalence of NMF with manifolds
regularization and regularized edge-cut minimization, under hard clustering as-
sumptions. Then, section 3 empirically validates our graph partitioning method
over several other clustering algorithms, on 8 UCI datasets.

2 Regularized NMF and regularized graph partitioning

Given two modes, noted > and ⊥ and two clusters sets C> and C⊥, relational
clustering aims at finding two partition functions P> : > → C> and P⊥ defined
in a similar way, such that individuals in ci ∈ C> have close connection pattern
with individuals in ⊥ for all 0 ≤ i ≤ |C>| and vice versa. Whenever we also have
some extra information on individuals in each set, we can use this information in
order to improve the clustering. This is then a regularized relational clustering.
In the following, we note W> and W⊥ the similarity matrices between individuals
of each mode. Similarity matrices can be filled for example by setting 1 between
two individuals which are in the k-nearest neighbors set of one another, else 0.

Given a |>|×|⊥| matrix A, NMF techniques aims at finding a condensed rep-
resentation of this original data, by finding low rank matrices G> and G⊥, such
that G>G

t
⊥ is a good reconstruction of A, i.e. we have a minimal d(A,G>G

t
⊥)

for some divergence or distance d. In order to increase the size of the solutions
space, and to allow different clusters sets for the two modes, a third factor ma-
trix S is often introduced and the objective is then to find the three matrices
such that their product G>SG

t
⊥ is a good reconstruction of A. A common dis-

tance function is the squared Frobenius norm of the difference between A and
its reconstruction. Thus, the common objective function of 3-factors NMF is:

Φ = ||A−G>SGt
⊥||2F , s.t. Gt

>G> = I,Gt
⊥G⊥ = I, S > 0 (1)

Note that in a clustering context, G> and G⊥ represent the assignation of each
individual in the corresponding mode to its clusters set, and that in NMF with
two reconstruction matrices, we assume C> = C⊥.
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In the context where we also have extra information between individuals of
each mode, under the form of similarity matrices W> and W⊥, we can also add
some regularization terms in the objective function. We then have:

Φr = ||A−G>SGt
⊥||2F + λ>tr(G

t
>L>G>) + λ⊥tr(G

t
⊥L⊥G⊥) (2)

where Li is the Laplacian of Wi and λi controls the importance of Li.
Given a graph G(V,E), graph partitioning aims at finding a partition of V

such that the edge cut is minimal. Denoting by (Vi)0≤i≤k a partition of V , we
can define the total cut as

∑
i<j

w(Eij) where Eij ⊆ E is the set of edges having one

end in Vi and the other in Vj , and w is the function giving the sum of weights of
a set of edges. That is, we minimize the weight of edges lying between clusters.

Next, we show that minimizing Φr under hard clustering assumption on a
binary original matrix is equivalent to performing graph partitioning on the
graph G(>∪⊥, Er ∪E>∪E⊥), where Er ⊆ >×⊥ (resp. E> ⊆ >×> and E⊥ ⊆
⊥×⊥), are the inter(resp. intra)-mode sets, with edges weights adjustments.

Theorem 1. Let > and ⊥ be two set of entities and A be the |>| × |⊥| affinity
matrix between these two sets, with ∀(i, j)Aij ∈ {0, 1}. Let also consider intra-
modes similarity matrices W> and W⊥, their Laplacian L> and L⊥ and some
non-negative regularization parameters λ> and λ⊥. Assuming we want to find
a hard co-clustering of both modes in the same clusters set, then minimizing (2)
is equivalent to the edge cut minimization problem in the graph defined by:

X =

[
λ>W> A
At λ⊥W⊥

]
.

Proof. Considering the NMF objective previously defined, we can write it as:

Φr = tr(AtA+G⊥S
tGt

>G>SG
t
⊥ −G>SG

t
⊥A

t −G⊥S
tGt

>A)+
∑

i∈{>,⊥}

λitr(G
t
iLiGi)

Since AtA is a constant, it has no impact on the objective minimization. In
addition, using properties of sum and transposes traces, we can write:

arg min Φr = arg min tr(G⊥S
tGt

>G>SG
t
⊥)− 2tr(G>SG

t
⊥A

t) +
∑

i∈{>,⊥}

λitr(G
t
iLiGi)

The first term, tr(G⊥S
tGt
>G>SG

t
⊥) = tr((G>SG

t
⊥)t(G>SG

t
⊥)) is the recon-

struction matrix norm ||G>SGt
⊥||2F . Thus, the optimization function tends to

lower the overall reconstruction matrix values, privileging sparse factors. The
two last regularization terms can also be slightly updated by incorporating the
regularization parameters into the Laplacian matrices. Thus, we have:

arg min Φr = arg min ||G>SG
t
⊥||2F − 2tr(G>SG

t
⊥A

t) +
∑

i∈{>,⊥}

tr(Gt
iλiLiGi)

In the case of hard clustering, when Gi matrices describe hard clustering
assignments for both modes, the clusters set C> and C⊥ have the same car-
dinalities and S describes a hard assignation of clusters in C> to clusters in
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C⊥ (S is thus a permutation matrix), defining G̃⊥ = G⊥S
t, we can rewrite the

objective function in a more compact way:

arg min Φr = arg min ||G>G̃
t
⊥||2F + tr

([
Gt

> G̃t
⊥

] [λ>L> −A
−At λ⊥L⊥

] [
G>

G̃⊥

])
(3)

The equivalence holds because we have:

tr(Gt
⊥L⊥G⊥) = tr(G̃t

⊥L⊥G̃⊥) = tr(SGt
⊥L⊥G⊥S

t)

where S is a permutation matrix. The second term in (3) is close to a Laplacian
matrix, the only difference being in the diagonal, since the regularization Lapla-
cian matrices only involve the intra-mode degrees. However, since the inter-mode
degrees are constant given A, the minimization problem does not change when
adding the inter-mode degrees term. Finally, we can write:

arg min Φr = arg min ||G>G̃
t
⊥||2F + tr

([
Gt

> G̃t
⊥

]
(D −X)

[
G>

G̃⊥

])
with D the degree matrix of X, and D−X the Laplacian L of X. The objective is
thus equivalent to an edge cut minimization in X, plus an extra term privileging
sparse solutions, under our assumptions, which concludes the proof.

3 Experiments

Note that even if objective functions have been proved equivalent in last section
under our assumptions, the obtained results in practice are sensitive to the al-
gorithms heuristics, which are different. Thus, it may not be possible to observe
a strict equivalence in practice, even if we strictly reproduce our assumptions.

We use our theoretical results as a start to explore the efficiency of regular-
ized graph partitioning for relational clustering. In practice, the binary matrix,
permutation matrix S and same clusters sets assumptions are not always re-
alistic, thus we make our experiment in a relaxed context. More precisely, we
compare the performances and running times of six algorithms, including two
graph partitioning ones, on 8 UCI [6] datasets: Glass (214 data, 9 features, 6
clusters to find), Heart (270, 13, 2), Semeion (1593, 256, 10), Soybean (47, 35,
4), SPECTF (267, 45, 2), Vehicle (846, 19, 4), Wine (198, 33, 2).

Compared algorithms are: 1) k-means; 2) projected gradient NMF [7]; 3)
normalized cut (NCut) [8], using a nearest-neighbors approach for the affin-
ity matrix (only the data manifold is considered); 4) graph dual regularization
non-negative matrix tri-factorization (DNMTF) [2], a state of the art algorithm
for regularized NMF, where the manifolds matrices are built using the nearest-
neighbors approach; 5) METIS graph partitioning with manifolds regulariza-
tion (rMETIS); 6) GRACLUS graph partitioning with manifolds regularization
(rGRACLUS). Following results of section 2, we expect the regularized graph
partitioning algorithms to perform closely to DNMTF, with lower running times.

Every algorithm concerned by manifold regularization (i.e. NCut, DNMTF,
rMETIS, rGRACLUS) defines its similarity (or affinity for NClust) matrices W>
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Data Eval. K-means NMF NCut DNMTF rMET rGRA

Glass
NMI 340±4 270±60 339±2 335±21 407±0 395±0
ACC 536±15 514±36 625±2 592±25 696±0 696±0
Time 10±0 850±170 70±0 90±20 50±0 30±0

Heart
NMI 217±96 70±18 100±0 217±39 323±0 234±0
ACC 753±80 654±16 652±0 754±34 819±0 778±0
Time 0±0 140±50 160±10 570±0 30±0 30±0

Semeion
NMI 540±10 334±11 604±5 377±6 664±0 709±0
ACC 627±10 409±16 636±0 458±25 747±0 788±0
Time 390±120 3560±1130 1910±100 53560±460 290±10 190±10

Soybean
NMI 879±110 888±33 1000±0 954±59 1000±0 1000±0
ACC 915±81 940±28 1000±0 974±34 1000±0 1000±0
Time 0±0 180±80 30±0 120±30 40±0 30±0

SPECTF
NMI 78±7 94±20 117±0 92±14 165±0 173±0
ACC 794±0 794±0 794±0 795±1 794±0 794±0
Time 0±0 140±30 70±10 900±0 40±0 50±0

Vehicle
NMI 101±0 33±10 159±0 136±24 245±0 250±0
ACC 405±1 330±13 447±0 429±34 515±0 508±0
Time 20±10 430±70 170±0 4000±930 50±0 50±0

Wine
NMI 837±27 697±25 907±0 722±31 895±0 921±0
ACC 951±11 892±20 978±0 908±14 966±0 978±0
Time 0±0 100±10 30±0 280±160 40±0 30±10

Wpbc
NMI 19±6 23±4 31±1 47±8 60±0 57±0
ACC 763±0 763±0 763±0 771±5 763±0 768±0
Time 0±0 70±10 40±0 590±0 40±10 30±0

Table 1: NMI and ACC best mean evaluations + standard deviations (×10−3).
Corresponding running times are given (in ms.).

and W⊥ by choosing a number n> of nearest neighbors for each data individual,
and n⊥ for each feature vector, and assigning a 1 to every element of the matrices
relating nearest neighbors to each other, else 0. Remind that the two graph
partitioning methods are performed on an augmented graph adding intra-mode
edges weighted by these similarities. n> and n⊥ are each taken in the grid
{1, 2, 3, 4, 5, 6, 7, 9, 11} and regularization parameters λ> and λ⊥ are each taken
in the grid {1, 10, 100, 500}. Every parameters combination is computed 5 times.

Algorithms are evaluated by their Normalized Mutual Information (NMI)
and clustering accuracy (ACC) mean over the 5 iterations, on every dataset
normalized by column, given the right number of clusters. Best means, corre-
sponding standard deviations and running times are given in Table 1 for every
(dataset, algorithm, evaluation measure) triple.

We can see that regularized METIS and GRACLUS achieves good perfor-
mances. Surprisingly, they mainly succeed in achieving the best performances,
both for NMI and ACC. This can be explained by the high variance of DN-
MTF, even given a set of parameters, since we evaluate the best mean over
several folds for these criteria. In some other cases whenever DNMTF achieves
the best performances, graph partitioning algorithms are still close. We can

535

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



also see that performances of NCut are good but most often below ones of reg-
ularized partitioning methods. This is interesting, since NCut only uses one
mode neighborhood information. Thus, it seems that the use of both manifolds
regularization and the relational data is profitable.

In terms of execution times, DNMTF is significantly more time consuming
than graph partitioning algorithms, and its performances grow significantly with
matrix size. As an example, the average time on Semeion dataset is around 50
sec. for DNMTF, against 0.33 sec. for GRACLUS and METIS.

4 Conclusion

In this paper, we first have demonstrated that NMF with manifolds regulariza-
tion on a binary matrix is mathematically equivalent to an edge-cut partitioning
in a manifold augmented graph, for hard co-clustering task. We have then shown
experimentally the efficiency of regularized graph partitioning methods for hard
co-clustering, both on binary and more relaxed datasets, in terms of clustering
performance and time. Perspectives for this work include the exploration of more
theoretical aspects for the equivalence between regularized NMF and regularized
graph partitioning, especially when relaxing our assumptions. In addition, other
regularizations have to be investigated, like similarities from attributes values.
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