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Abstract

Probabilistic relational models (PRMs) extend Bayesian networks
(BNs) to a relational data mining context. Even though a panoply of
works have focused, separately, on Bayesian networks and relational
databases random generation, no work has been identified for PRMs
on that track. This paper provides an algorithmic approach allowing
to generate random PRMs from scratch to cover the absence of gen-
eration process. The proposed method allows to generate PRMs as
well as synthetic relational data from a randomly generated relational
schema and a random set of probabilistic dependencies. This can be
of interest for machine learning researchers to evaluate their proposals
in a common framework, as for databases designers to evaluate the
effectiveness of the components of a database management system.

1 Introduction

Data mining is the central step in knowledge discovery in databases. It
relies on several research areas, notably, statistics, databases and machine
learning. Several basic machine learning models have been involved includ-
ing Bayesian networks (BNs) [28]. These methods have been developed for
data in the traditional matrix form. However, due to the developments of
communications and storage technologies, data about the real world is sel-
dom of this form. The data can present a very large number of dimensions,
with several different types of entities. Recently, there has been growing
interest in extracting patterns from such data representation. Statistical
relational learning (SRL) is an emerging area of machine learning that en-
ables effective and robust reasoning about relational data structures [19].
Through this paper, we are particularly interested in probabilistic relational
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models (PRMs)1 [23, 29] which represent a relational extension of Bayesian
networks [28], where the probability model specification concerns classes of
objects rather than simple attributes.

PRMs have prove their applicability in several areas (e.g., risk analysis,
web page classification, recommender systems) [6, 13, 32] as they allow to
minimize data preprocessing and the loss of significant information [30]. The
use of PRMs implies their construction either by an expert or by applying
learning algorithms in order to learn the model from some existing observa-
tional relational data. PRMs learning implies finding a graphical structure
as well as a set of conditional probability distributions that fit the best way
to the relational training data. The evaluation of the learning approaches is
usually done using randomly generated data coming from either real known
networks or randomly generated ones. However, neither the first nor the
second are available in the literature.

Moreover, there is a growing interest from the database community to
produce database benchmarks allowing to support and illustrate decision
support systems (DSSs). For real-world business tasks, uncertainty is an
unmissable aspect. So, benchmarks designed to support DSSs should con-
sider this task.

In this paper, we propose an algorithmic approach allowing to generate
random PRMs from scratch, then populate a database instance. The orig-
inality of this process is that it allows to generate synthetic relational data
from a randomly generated relational schema and a random set of proba-
bilistic dependencies. Since PRMs bring together two neighboring subfields
of computer science, namely machine learning and database management,
our process can be useful for both domains. It is imperative for statistical
relational learning researchers to evaluate the effectiveness of their learning
approaches. On the other hand, it can be of interest for database design-
ers to evaluate the effectiveness of a database management system (DBMS)
components. It allows to generate various relational schemas, from simple to
complex ones, and to populate database tables with huge number of tuples
derived from underlying probability distributions defined by the generated
PRMs.

This paper presents an extend version of a preliminary work published
in [2]. We give a detailed presentation of the proposed process. Then,
we approve our implementation via a practical application by applying our
generation process to evaluate PRM structure learning algorithms.

The remainder of this paper is structured as follows. Section 2 presents
some useful theoretical concepts and definitions. Section 3 explains the prin-

1Neville and Jensen [27] use the term relational Bayesian network to refer to Bayesian
networks that have been extended to model relational databases [23, 29] and use PRM
in its more general sense to distinguish the family of probabilistic graphical models that
are interested in extracting statistical patterns from relational models. In this paper we
preserve the term PRM as used by [23, 29].
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ciple of our contribution and details it. Section 4 provides a toy example
that illustrates all the steps of our process from the random generation of
PRM and database to their population. Section 5 goes through the im-
plementation strategy. Section 6 concerns the application of our proposal
to PRM structure learning. Finally, Section 7 concludes and outlines some
perspectives.

2 Background

This section first provides a brief recall on Bayesian networks and relational
model, then introduces PRMs.

2.1 Bayesian networks

Bayesian networks (BNs) [28] are directed acyclic graphs allowing to effi-
ciently encode and manipulate probability distributions over high-dimensional
spaces. Formally, they are defined as follows:

Definition 1 A Bayesian network B = 〈G,Θ〉 is defined by:

1) A graphical component (structure): a directed acyclic graph (DAG) G =
(V,E), where V is the set of vertices representing n discrete random vari-
ables A = {A1, . . . , An}, and E is the set of directed edges corresponding
to conditional dependence relationships among these variables.

2) A numerical component (parameters): Θ = {Θ1, . . . ,Θn} where each
Θi = P (Ai|Pa (Ai)) denotes the conditional probability distribution (CPD)
of each node Ai given its parents in G denoted by Pa (Ai).

Several approaches have been proposed to learn BNs from data [9]. The
evaluation of these learning algorithms requires either the use of known net-
works or the use of a random generation process. The former allows to
sample data and perform learning using this data in order to recover the
initial gold standard net. The latter allows to generate synthetic BNs and
data in order to provide a large number of possible models and to carry out
experimentation while varying models from simple to complex ones.

Random Bayesian networks generation comes to provide a graph
structure and parameters. Statnikov et al. [33] proposed an algorithmic ap-
proach to generate arbitrarily large BNs by tiling smaller real-world known
networks. The complexity of the final model is controlled by the number of
tiling and a connectivity parameter which determines the maximum number
of connections between one node and the next tile. Some works have been
devoted to the generation of synthetic networks but without guarantees
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of that every allowed graph is produced with the same uniform probabil-
ity [22]. In [21] the authors have proposed an approach allowing to generate
uniformly distributed Bayesian networks using Markov chains, known as the
PMMixed algorithm. Using this algorithm, constraints on generated nets
can be added with relative ease such as constraints on nodes degree, maxi-
mum number of dependencies in the graph, etc. Once the DAG structure is
generated, it is easy to construct a complete Bayesian network by randomly
generating associated probability distributions by sampling either Uniform
or Dirichlet distributions. Having the final BN, standard sampling method
can be used to generate observational data such as forward sampling [20].

2.2 Relational model

The manner how the data is organized in a database depends on the cho-
sen database model. The relational model is the most commonly used one
and it represents the basis for the most large scale knowledge representa-
tion systems [12]. Formally, the relational representation can be defined as
follows:

Definition 2 The relational representation consists of

• A set of relations (or tables or classes) X = {X1, . . . , Xn}. Each
relation Xi consists of two parts:

– The heading (relation schema) consists of a fixed set of attributes
A(X) = {A1, . . . , Ak}. Each attribute Ai is characterized by a
name and a domain denoted Di.

– The body consists of a set of tuples (or records). Each tuple asso-
ciates for each attribute Ai in the heading a value from its domain
Di.

• Each relation has a key (i.e., a unique identifier, a subset of the head-
ing of a relation Xi.) and, eventually, a set of foreign key attributes
(or reference slots ρ). A foreign key attribute is a field that points
to a key field in another relation, called the referenced relation. The
associated constraint is a referential constraint. A chain of such
constraints constitutes a referential path. If a referential path from
some relation to itself is found then it is called a referential cy-
cle. Relation headings and constraints are described by a relational
schema R.

Database designs involving referential cycles are usually contraindicated [10].
Let’s note that when working in the conceptual level (i.e., entity-relationship

model), relationships with cardinalities many to many values are allowed.
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These latter disappear when creating the relational model and are substi-
tuted with many to one ones with the emergence of a new table (relation)
substituting the relationship.

Usually the interaction with a relational database is ensured by specify-
ing queries using structured language (SQL), which on their part use some
specific operators to extract significant meaning such as aggregators. An
aggregation function γ takes a multi-set of values of some ground type, and
returns a summary of it. Some requests need to cross long reference paths,
with some possible back and forth. They use composed slots to define func-
tions from some objects to other ones to which they are indirectly related.
We call this composition of slots a slot chain K. We call a slot chain single-
valued when all the crossed reference slots end with a cardinality equal to 1.
A slot chain is multi-valued if it contains at least one reference slot ending
with cardinality equal to many. Multi-valued slot chains imply the use of
aggregators.

Generally, database benchmarks are used to measure the performance of
a database system. They still remains trendy [8, 1, 11] because of hardware
and software development and also the huge amount of data provided due
to the developments of communication technologies and the need of storage
it and manage it in such a manner it can be used later. A database bench-
mark consists of several subtasks (e.g., generating the transaction workload,
defining transaction logic, generating the database) [17].

Random database generation consists on creating the database schema,
determining data distribution, generating it and loading all these compo-
nents to the database system under test. Several propositions have been
developed in this context. The main issue was how to provide a large num-
ber of records using some known distributions in order to be able to evaluate
the system results. [4, 5]. In some research, known benchmarks 2 are used
and the ultimate goal is only to generate a large dataset [18]. Nowadays,
several software tools are available (e.g. DbSchema 3, DataFiller 4). They
allow to populate database instances knowing the relational schema struc-
ture. Records are then generated on the basis of this input by considering
that the attributes are probabilistically independent which is not relevant
when these benchmarks are used to evaluate decision support systems. The
Transaction Processing Performance Council (TPC)5 organization provides
the TPC-DS6 benchmark which has been designed to be suitable with real-
world business tasks which are characterized by the analysis of huge amount
of data. The TPC-DS schema models the sales and sales returns process for

2http://www.tpc.org
3http://www.dbschema.com/
4https://www.cri.ensmp.fr/people/coelho/datafiller.html
5http://www.tpc.org
6http://www.tpc.org/tpcds
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an organization. TPC-DS provides tools to generate either the the data sets
or the query sets for the benchmark. Nevertheless, uncertainty management
stays a prominent challenge to provide better rational decision making.

2.3 Probabilistic relational models

Probabilistic relational models [16, 23, 29] are an extension of BNs in the
relational context. They bring together the strengths of probabilistic graph-
ical models and the relational presentation. Formally, they are defined as
follows [16]:

Definition 3 A Probabilistic Relational Model Π for a relational schema R
is defined by:

1) A qualitative dependency structure S : for each class (relation) X ∈
X and each descriptive attribute A ∈ A(X), there is a set of parents
Pa(X.A) = {U1, . . . , Ul} that describes probabilistic dependencies. Each
Ui has the form X.B if it is a simple attribute in the same relation or
γ(X.K.B), where K is a slot chain and γ is an aggregation function.

2) A quantitative component, a set of conditional probability distributions
(CPDs), representing P (X.A|Pa(X.A)).

The PRM Π is a meta-model used to describe the overall behavior of a
system. To perform probabilistic inference this model has to be instantiated.
A PRM instance contains for each class of Π the set of objects involved by the
system and relations that hold between them (i.e., tuples from the database
instance which are interlinked). This structure is known as a relational
skeleton σr [16].

Definition 4 A relational skeleton σr of a relational schema is a partial
specification of an instance of the schema. It specifies the set of objects
σr(Xi) for each class and the relations that hold between the objects. How-
ever, it leaves the values of the attributes unspecified.

Given a relational skeleton, the PRM Π defines a distribution over the
possible worlds consistent with σr through a ground Bayesian network [16].

Definition 5 A Ground Bayesian Network (GBN) is defined given a PRM
Π together with a relational skeleton σr. A GBN consists of:

1) A qualitative component:

• A node for every attribute of every object x ∈ σr(X), x.A.
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Figure 1: An example of relational schema

• Each x.A depends probabilistically on a set of parents Pa(x.A) =
u1, . . . ul of the form x.B or x.K.B, where each ui is an instance
of the Ui defined in the PRM. If K is not single-valued, then the
parent is an aggregate computed from the set of random variables
{y|y ∈ x.K}, γ(x.K.B).

2) A quantitative component, the CPD for x.A is P (X.A|Pa(X.A)) .

Example 1 An example of a relational schema is depicted in Figure 1, with
three classes X = {Movie, V ote, User}. The relation V ote has a descriptive
attribute V ote.Rating and two reference slots V ote.User and V ote.Movie.
V ote.User relates the objects of class V ote with the objects of class User.
Dotted links presents reference slots. An example of a slot chain would
be V ote.User.User−1.Movie which could be interpreted as all the votes of
movies shown by a particular user.
V ote.Movie.genre → V ote.rating is an example of a probabilistic depen-
dency derived from a slot chain of length 1 where V ote.Movie.genre is the
parent and V ote.rating is the child as shown by Figure 2. Also, vary-
ing the slot chain length may give rise to other dependencies. For in-
stance, using a slot chain of length 3, we can have a probabilistic depen-
dency from γ(V ote.User.User−1.Movie.genre) to V ote.rating. In this case,
V ote.rating depends probabilistically on an aggregate value of all the genres
of movies voted by a particular user.

Figure 3 is an example of a relational skeleton of the relational schema
of Figure 1. This relational skeleton contains 3 users, 5 movies and 9 votes.
Also it specifies the relations between these objects, e.g., the user U1 voted
for two movies m1 and m2.

Figure 4 presents the ground Bayesian network constructed from the re-
lational skeleton of Figure 3 and the PRM of Figure 2. It resumes the same
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Figure 2: An example of probabilistic relational model
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Figure 4: An example of a ground Bayesian network

dependencies as well as CPDs of the PRM at the level of objects. Here we
omit to reproduce the CPDs to not overload the figure.

PRM structure learning has not been well studied in the literature.
Only few works have been proposed to learn PRMs [14] or almost similar
models [24, 25] from relational data.

Friedman et al. [14] proposed the Relational Greedy Hill-Climbing Search
(RGS) algorithm. They used a greedy search procedure to explore the space
of PRM structures while allowing increasingly large slot chains. PRM struc-
tures are generated using the add edge, delete edge and reverse edge op-
erators and aggregation functions if needed (cf. Section 2.3). As score
function, they used a relational extension of the Bayesian Dirichlet (BD) [7]
score expressed as follows:

RBDscore =
∑
i

∑
A∈A(Xi)

∑
u∈V (Pa(Xi.A))

log[DM({CXi.A[v, u]}, {αXi.A[v, u]})]

−
∑
i

∑
A∈A(Xi)

∑
u∈V (Pa(Xi.A))

lengthK(Xi.A, Pa(Xi.A)) (1)

Where

DM({CXi.A[v, u]}, {αXi.A[v, u]}) =
Γ(

∑
v α[v])

Γ(
∑

v(α[v] + C[v]))

∏
v

Γ(α[v] + C[v])

Γ(α[v])
,
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and

Γ(x) =

∫ ∞
0

tx−1e−tdt

is the Gamma function.

As for standard BNs, evaluating the effectiveness of the proposed ap-
proaches is needed. However neither relational benchmarks nor general ran-
dom generation process are available.

Random probabilistic relational models generation has to be es-
tablished in order to evaluate proposed learning approaches in a common
framework. [25] used a predefined schema and have only generated a num-
ber of dependencies varying from 5 to 15 and the conditional probability
tables for attributes from a Dirichlet distribution. In [24] the authors have
generated relational synthetic data to perform experimentation. Their gen-
eration process is based only on a particular family of relational schemas,
with N classes (nodes) and N − 1 referential constraints (edges). Refer-
ential constraints are then expressed using relationship classes witch gives
rise to a final relational schema containing 2N − 1 relations. Whereas in
real world cases, relational schemas may have more than N − 1 referential
constraints. If the schema is fully connected (as described in [26]), it will
follows a tree structure. Torti et al. [34] proposed a slightly different repre-
sentation of PRMs, developed in the basis of the object-oriented framework
and expert knowledge. Their main issue is probabilistic inference rather
than learning. In their experimental studies [35], they have randomly gen-
erated PRMs using the layer pattern. The use of this architecture pattern
imposes a particular order when searching for connections between classes,
generating reference slots of the relational schema and also when creating
the relational skeleton. No indication has been made about the generation
of probabilistic dependencies between attributes. In addition, they are not
interested neither in populating a relational database nor in communicating
with a database management system.

3 PRM Benchmark Generation

Due to the lack of famous PRMs in the literature, this paper proposes a syn-
thetic approach to randomly generate probabilistic relational models from
scratch and to randomly instantiate them and populate relational databases.
To the best of our knowledge, this has not yet been addressed.

3.1 Principle

As we are working with a relational variety of Bayesian networks, then
our generation process will be inspired from classical methods of random
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Algorithm 1: RandomizePRM-DB

Input: N : the number of relations, Kmax : The maximum slot chain
length allowed

Output: Π :< R,S, CPD >, DB Instance

begin
Step 1: Generate the PRM

Π.R ← Generate Relational Schema(N)

Π.S ← Generate Dependency Structure(Π.R)

Π.S ← Determinate Slot Chains(Π.R,Π.S,Kmax)

Π.CPD ← Generate CPD(Π.S)

Step 2: Instantiate the PRM

σr ← Generate Relational Skeleton(Π.R)

GBN ← Create GBN(Π, σr)

Step 3: Database population

DB Instance← Sampling(GBN)

generation of BNs while respecting the relational domain representation.
The overall process is outlined in Algorithm 1. Roughly, the proposed

generation process is divided into three main steps:

• The first step generates both the relational schema and the graph de-
pendency structure using Generate Relational Schema, Generate
Dependency Structure and Determinate Slot Chains functions re-
spectively (Sections 3.2 and 3.3). Then the conditional probability
tables are generated by the Generate CPD function in the same way
than Bayesian networks (cf. Section 2.1).

• The second step instantiates the model generated in the first step by
generating the relational skeleton using theGenerate Relational Skeleton
function (Section 3.4). The Create GBN function creates the GBN,
from both the generated PRM and the generated relational skeleton,
following the steps described in Section 2.3.

• The third step presents the Sampling function. It consists on database
instance population and it may be performed using a standard sam-
pling method over the GBN (Section 3.5).
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Algorithm 2: Generate Relational Schema

Input: N : the number of classes
Output: R : The generated relational schema

begin
repeat
G ← Generate DAG(Policy)

until G is a connected DAG ;

for each relation Xi ∈ R do
Pk Xi ← Genenerate Primary Key(Xi)

A(Xi)← Genenerate Attributes(Policy)

V(Xi.A)← Genenerate States(Policy)

for each ni → nj ∈ G do

Fk Xi ← Generate Foreign Key(Xi, Xj , Pk Xj)

3.2 Relational schema random generation

The relational schema generation process is depicted by Algorithm 2. Our
aim is to generate, for a given number of classes (relations) N , a relational
schema, with respect to the relational model definition presented in sec-
tion 2.2 and where generated constraints allow to avoid referential cycles.
We apply elements from the graph theory for random schema generation.
We associate this issue to a DAG structure generation process, where nodes
represent relations and edges represent Referential constraints definition.
Xi → Xj means that Xi is the referencing relation and Xj is the referenced
one. Besides, we aim to construct schemas where ∀Xi, Xi ∈ X there exist a
referential path from Xi to Xj . This assumption allows to browse all classes
in order to discover probabilistic dependencies later and it is traduced by
searching DAG structures containing a single connected component (i.e.,
connected DAG).

Having a fixed number of relations N , the Generate DAG function
constructs a DAG structure G with N nodes, where each node ni ∈ G
corresponds to a relation Xi ∈ R following various possible implementa-
tion policies (cf. Section 5.2). For each class we generate a primary key
attribute using the Genenerate Primary Key function. Then, we ran-
domly generate the number of attributes and their associated domains using
the Genenerate Attributes and Genenerate States functions respectively.
Note that the generated domains do not take into account possible proba-
bilistic dependencies between attributes. For each ni → nj ∈ G, we generate
a foreign key attribute in Xi using the Generate Foreign Key function.

12



3.3 PRM random generation

Generated schemas are not sufficient to generate databases where the at-
tributes are not independent. We need to randomly generate probabilistic
dependencies between the attributes of the schema classes. These depen-
dencies have to provide the DAG of the dependency structure S and a set
of CPDs which define a PRM (cf. definition 3).

We especially focus on the random generation of the dependency struc-
ture. Once this latter is identified, conditional probability distributions may
be sampled in a similar way as standard BNs parameter generation.

The dependency structure S should be a DAG to guarantee that each
generated ground network is also a DAG [15]. S has the specificity that one
descriptive attribute may be connected to another with different possible slot
chains. Theoretically, the number of slot chains may be infinite. In practice
a user-defined maximum slot chain length Kmax, is specified to identify the
horizon of all possible slot chains. In addition, the Kmax value should be at
least equal to N − 1 in order to not neglect potential dependencies between
attributes of classes connected via a long path. Each edge in the DAG has to
be annotated to express from which slot chain this dependency is detected.
We add dependencies following two steps. First we add oriented edges to
the dependency structure while keeping a DAG structure. Then we identify
the variable from which the dependency has been drawn by a random choice
of a legal slot chain related to this dependency.

3.3.1 Constructing the DAG structure

The DAG structure identification is depicted by Algorithm 3. The idea here
is to find for each node X.A a set of parents from the same class or from
further classes while promoting intra-class dependencies in order to control
the final model complexity as discussed in [15]. This condition promotes the
discovery of intraclass dependencies or those coming from short slot chains.
More the chain slot is long, less a probabilistic dependency through this slot
chain may be found. To follow this condition, having N classes, we propose
to construct N separated sub-DAGs, each of which is built over attributes
of its corresponding class using the Generate Sub DAG function. Then, we
construct a super-DAG over all the previously constructed sub-DAGs. At
this stage, the super-DAG contains N disconnected components: The idea
is to add inter-classes dependencies in such a manner that we connect these
disconnected components while keeping a global DAG structure.

To add inter-class dependencies we constrain the choice of adding depen-
dencies among only variables that do not belong to the same class. For an
attribute X.A, the Generate Super DAG function chooses randomly and
an attribute Y.B, where X 6= Y , then verifies whether the super-DAG struc-
ture augmented by a new dependency from X.A to Y.B remains a DAG. If

13



Algorithm 3: Generate Dependency Structure

Input: R : The relational schema
Output: S : The generated relational dependency structure

begin
for each class Xi ∈ R do
Gi ← Generate Sub DAG(Policy)

S ←
⋃
Gi

S ← Generate Super DAG(Policy)

Algorithm 4: Determinate Slot Chains

Input: R : The relational schema, S : The dependency structure,
Kmax : The maximum slot chain length

Output: S : The generated relational dependency structure with
generated slot chains

begin
Kmax ← max(Kmax, card(XR)− 1)

for each X.A→ Y.B ∈ S do
Pot Slot Chains List←
Generate Potential Slot chains(X,Y,R,Kmax)

for each slot Chain ∈ Pot Slot Chains List do

l← length(slot Chain)

W [i]← exp
−l

nb Occ(l,Pot Slot Chains List)

Slot Chain∗ ← Draw(Pot Slot Chains List,W )

if Needs Aggregator(Slot Chain∗) then
γ ← Random Choice Agg(list Aggregators)

if Slot Chain∗ = 0 then
S.Pa(X.A)← S.Pa(X.A) ∪ Y.B % here X = Y

else
S.Pa(X.A)← S.Pa(X.A) ∪ γ(Y.Slot Chain∗.B)

yes it keeps the dependency otherwise it rejects it and searches for a new
one. Used policies are discussed in Section 5.2.

3.3.2 Determining slot chains

During this step, we have to take into consideration that one variable may
be reached through different slot chains and the dependency between two

14



descriptive attributes will depend on the chosen one. The choice has to be
made randomly while penalizing long slot chains. We penalize long indirect
slot chains, by having the probability of occurrence of a probabilistic depen-
dence from a slot chain length l proportional to exp−l [15]. Having a de-
pendency X.A→ Y.B between two descriptive attributes X.A and Y.B, we
start by generating the list of all possible slot chains (Pot Slot Chains List)
of length ≤ Kmax from which X can reach Y in the relational schema us-
ing the Generate Potential Slot chains function. Then, we create a vector
W of the probability of occurrence for each of the found slot chains, with
log(W [i]) ∝ −l

nb Occ(l,Pot Slot Chains List) , where l is the slot chain length and
nb Occ is the number of slot chains of length l ∈ Pot Slot Chains List.
This value will rapidly decrease when the value of l increases which allows
to reduce the probability of selecting long slot chains. We then sample a slot
chain from Pot Slot Chains List following W using the Draw function. If
the chosen slot chain implies an aggregator, then we choose it randomly
from the list of existing ones using the Random Choice Agg function. The
slot chain determination is depicted by Algorithm 4.

Following our approach, database population requires the instantiation
of the previously generated PRM. Both steps are detailed below.

3.4 GBN generation

The generated schema together with the added probabilistic dependencies
and generated parameters give rise to the probabilistic relational model. To
instantiate this latter we need to generate a relational skeleton by generating
a random number of objects per class, then adding links between objects.
This step is strongly related to the reference slot notion. That is, all refer-
encing classes have their generated objects related to objects from referenced
classes. In Algorithm 5, we start by generating the number of objects of ref-
erencing and referenced classes using the Draw Objects function. Then we
generate the objects by randomly instantiating their corresponding classes
using the Generate Objects function. We specify the number of related
ones using the Draw Objects function and finally, we relate them using the
Add Links function. Used policies are discussed in Section 5.2.

The GBN is fully determined with this relational skeleton and the CPDs
already present at the meta-level.

3.5 Database population

This process is equivalent to generating data from a Bayesian network. We
can generate as many relational database instances as needed by sampling
from the constructed GBN. The specificity of the generated tuples is that
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Algorithm 5: Generate Relational Skeleton

Input: R : The relational schema
Output: σr : The generated relational skeleton

begin
for each class ρ ∈ R do

nb Objectsρ.referencing ← Draw Objects(policy)

nb Objectsρ.referenced ← Draw Objects(policy)
Oρ.referenced ←
Generate Objects(nb Objectsρ.referenced, ρ.referenced)

Oρ.referencing ←
Generate Objects(nb Objectsρ.referencing, ρ.referencing)

nb Related← Draw Objects(policy)

σr ← Add Links(Oρ.referenced,Oρ.referencing, nb Related)

they are sampled not only from functional dependencies but also from prob-
abilistic dependencies provided by the randomly generated PRM.

4 Toy example

In this section, we illustrate our proposal through toy example.
Relational schema generation. Figure 5 presents the result of run-

ning Algorithm 2, with N = 4 classes. For each class, a primary key has
been added (clazz0id, clazz1id, clazz2id and clazz3id). Then a number
of attributes has been generated randomly together with a set of possible
states for each attribute using the policies described in Section 5.2 (e.g.,
clazz0 has 3 descriptive attribues att0, att1 and att2. att0 is a binary vari-
able). Finally, foreign key attributes have been specified following the DAG
structure of the graph G (e.g., clazz2 references class clazz1 using foreign
key attribute clazz1fkatt12).

PRM generation. We recall that this process consists of two steps:
randomly generate the dependency structure S (Algorithm 3), then ran-
domly generate the conditional probability distributions which is similar to
parameter generation of a standard BN. The random generation of the S
is performed in two phases. We start by constructing the DAG structure,
the result of this phase is in Figure 6. Then, we fix a maximum slot chain
length Kmax to randomly determinate from which slot chain the dependency
has been detected. We use Kmax = 3, the result of this phase gives rise to
the graph dependency structure of Figure 7. S contains 5 intra-class and 5
inter-class probabilistic dependencies.
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Figure 5: Relational schema generation steps
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Figure 6: Graph dependency structure generation

Three of the inter-class dependencies have been generated from slot chains
of length 1:
Clazz0.clazz1fkatt10.att1→ Clazz0.att2;
MODE(Calzz2.clazz2fkatt23−1.att0)→ Clazz2.att3 and;
Clazz2.clazz1fkatt12.att1→ Clazz2.att3
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Figure 7: Example of a generated relational schema where the dotted lines
represent referential constraints and the generated PRM dependency struc-
ture where the arrows represent probabilistic dependencies. we omit to
specify slot chains to not overload the figure. Details about slot chains from
which probabilistic dependencies have been detected are given in Paragraph
PRM generation.

One from slot chain of length 2:
MODE(Clazz2.clazz1fkatt12.clazz1fkatt12−1.Clazz2.att0)→ Clazz2.att3
One from slot chain of length 3:
MODE(Calzz2.clazz2fkatt23−1.claszz1fkatt13.clazz1fkatt10−1)→ Clazz2.att3

GBN creation. Once the PRM is generated, we follow the two steps
presented in Section 3.4 to create a GBN and to populate the DB instance.
We have generated an average number of 1000 tuple per class. The database
has been stored using PostgreSQL 7 RDBMS. Figure 8 presents a graphical
representation of the generated relational schema using SchemaSpy8 soft-
ware tool and some table records viewed from PostgreSQL interface.

5 Implementation

This section explains the implementation strategy of our generator, identifies
the chosen policies and discusses the complexity of the algorithms.

7http://www.postgresql.org/
8http://schemaspy.sourceforge.net/
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Figure 8: Visual graph representation of the generated relational schema
and table records by using SchemaSpy and PostgreSQL software tools.

5.1 Software implementation

We implemented all the proposed algorithms into our local C++ PILGRIM
API which is under development to provide an efficient tool to deal with
several probabilistic graphical models (e.g., BNs, Dynamic BNs, PRMs).
We use the Boost graph library9 to manage graphs, the ProBT API10 to
manipulate BNs objects and the dtl library11 to communicate with the Post-
greSQL12 RDBMS.

There is currently no formalization of PRMs, so we propose an enhanced
version of the XML syntax of the ProbModelXMLspecification13 to serialize
our generated models. We added new tags to specify notions related to rela-
tional schema definition and we used the standard 〈AdditionalProperties〉
tags to add further notions related to PRMs (e.g., aggregators associated
with dependencies, classes associated with nodes).

9http://www.boost.org/
10http://www.probayes.com/fr/Bayesian-Programming-Book/downloads/
11http://dtemplatelib.sourceforge.net/dtl introduction.htm
12http://www.postgresql.org/
13http://www.cisiad.uned.es/techreports/ProbModelXML.pdf
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5.2 Implemented policies

Policy for generating the relational schema DAG structure. To
randomly generate the relational schema DAG structure, we use the PM-
Mixed algorithm (cf. Section 2.1). This latter leads to generate uniformly
distributed DAGs in the DAGs space. Consequently the generated structure
may be a disconnected graph yet, we are in need of a DAG structure con-
taining a single connected component. To preserve this condition together
with the interest of generating uniformly distributed examples, we follow the
rejection sampling technique. The idea is to generate a DAG following the
PMMixed principle, if this DAG contains just one connected component,
then it is accepted, otherwise it is rejected. We repeat these steps until
generating a DAG structure satisfying our condition.

Policies for generating attributes and their cardinalities. Having
the graphical structure, we continue by generating, for each relation R, a pri-
mary key attribute, a set of attributes A, where card(A)−1 ∼ Poisson(λ =
1), to avoid empty sets, and for each attribute A ∈ A, we specify a set of
possible states V(A), where card(V(A))− 2 ∼ Poisson(λ = 1).

Policies for generating the dependency structure. We follow the
PMMixed algorithm principle to construct a DAG structure inside each
class. Then, in order to add inter-class dependencies, we use a modified
version of the PMMixed algorithm where we constrain the choice of adding
dependencies among only variables that do not belong to the same class.

Policy for generating the relational skeleton. The number of gen-
erated objects either for the referenced or the referencing classes follows a
Poisson(λ = N1) distribution and the number of interlinked objects follows
a Poisson(λ = N2) distribution. N1 and N2 are user-defined.

5.3 Complexity of the generation process

We have reported this work to this stage as it is closely related to the choice
of the implementation policies. Let N be the number of relations (classes),
we report the average complexity of each step of the generation process.

Complexity of the relational schema generation process. Al-
gorithm 2 is structured of three loops. Namely, the most expensive one
is the first loop dedicated for the DAG structure construction and uses
the PMMixed algorithm. Time complexity of the PMMixed algorithm is
O(N ∗ lgN). This algorithm is called until reaching the stop condition (i.e.,
a connected DAG). Let T be the average number of calls of the PMMixed
algorithm. T is the ratio of the number of all connected DAG constructed
from N nodes [31] to the number of all DAGs constructed from N nodes [3].
Time complexity of Algorithm 2 is is O(T ∗N ∗ lgN).

Complexity of the dependency structure generation process.
As for Algorithm 2, the most expensive operation of Algorithm 3 is the
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generation of the DAG structure inside each class Xi∈{1...N} ∈ X . Through
Algorithm 2, a set of attributes A(Xi) has been generated for each Xi. As
card(A(Xi))− 1 ∼ Poisson(λ = 1), following Section 5.2, Then the average
number of generated attributes for each class is lambda = 1 + 1 = 2. Then
time complexity of the algorithm is O(N ∗ 2 ∗ lg 2).

Complexity of the slot chains determination process. The most
expensive operation of Algorithm 4 is the Generate Potential Slot chains
method. This latter explore recursively the relational schema graph in or-
der to find all paths (i.e., slot chains) of length k ∈ {0 . . .Kmax}. Time
complexity of this method is O(NKmax).

Complexity of the relational skeleton generation process. In
Algorithm 5, the generate Objects method allows to generate a random
number of objects per class. The average number of generated objects per
class ∼ Poisson(λ = N1) = N1. The average number of attributes for each
object is equal to the average number of attributes at the class level which
is equal to 2. Let E be the number of ρ ∈ R, then time complexity of this
method is O(N1 ∗ 2 ∗ E).

6 Application to PRM structure learning

As we said previously (cf. Section 2.3), only few works have been proposed
to learn PRMs from data. In this section, we illustrate the utility of our
contribution by applying it to evaluate the quality of a structure learning
algorithm.

Network # classes # variables # edges #states Min-Max #parents Min-Max

PRM1 1 3 2 2-2 1-1

PRM2 2 5 4 2-2 1-2

PRM3 3 8 6 2-3 1-1

PRM4 4 8 7 2-3 1-2

PRM5 5 11 7 2-4 1-2

Table 1: Probabilistic relational models used in the evaluation study

6.1 Benchmarks

We have used our generation process to generate a set of theoretical PRMs
(i.e., gold models), from which we have sampled a set of complete relational
observational datasets. We have varied the number of classes N from 1
(i.e., the particular case where the PRM collapse to a standard Bayesian
network) to 5. The maximum slot chain length is Kmax = N . Details
about all networks included in the study are given in Table 1. For each
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of the described networks, we have randomly sampled 5 relational obser-
vational complete datasets with 100, 500, 1000, 2000 and 3000 instances
as an average number of objects per class for each. Generated PRMs as
well as datasets are available via this link https://drive.google.com/

folderview?id=0B160ZHpTs0CfUGI0Tmc3VXdJX1U&usp=sharing.

6.2 Learning algorithm

We have re-implemented the Relational Greedy Hill-Climbing Search algo-
rithm in our experimental platform using the RBD score (cf. Section2.3).
During the learning process, the maximum slot chain length is fixed to
Kmax = N , where N is the number of classes.

6.3 Evaluation metrics

To evaluate the results of the learning process, we used the only metrics
used in this context found in [24], namely, the Precision, Recall and F-score
measures detailed below.

Precision: The ratio of the number of relevant dependencies retrieved
to the total number of relevant and irrelevant dependencies retrieved in the
learned PRM dependency structure SLearned. Relevant dependencies are
those that are present in the true model.

Precision =
Number of relevant dependencies retrieved in SLearned

Number of dependencies in SLearned
(2)

Recall: The ratio of the number of relevant dependencies retrieved to
the total number of relevant dependencies int the true PRM dependency
structure STrue, which is generated using the random generation process.

Recall =
Number of relevant dependencies retrieved SLearned

Number of dependencies in STrue
(3)

F-score: Theoretically, a perfect structure learning algorithm should
provide a precision and a recall of value one, whereas, usually, these two
requirements are often contradictory: A learning approach that returns the
list of all possible dependencies will provide a 100% recall. Alternatively,
we can have a high value of the precision, not because of the good quality
of the learning approach but because it provides a few number of learned
dependencies. For instance a learning approach that is able to provide only
one learned dependency given a true model with 10 dependencies will have
a 100% precision, if this learned dependency is relevant, against a very low
recall. Their harmonic mean, the F-measure, is then used to provide a
weighted average of both precision and recall.
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Network Sample size Precision Recall F-Measure

PRM1 100 0.60 0.60 0.60

PRM1 500 0.70 0.70 0.70

PRM1 1000 0.80 0.80 0.80

PRM1 2000 0.60 0.60 0.60

PRM1 3000 0.60 0.60 0.60

PRM2 100 0.83 0.35 0.48

PRM2 500 0.52 0.50 0.51

PRM2 1000 0.55 0.55 0.55

PRM2 2000 0.75 0.75 0.75

PRM2 3000 0.70 0.70 0.70

PRM3 100 0.77 0.43 0.56

PRM3 500 0.72 0.60 0.65

PRM3 1000 0.51 0.60 0.55

PRM3 2000 0.65 0.83 0.73

PRM3 3000 0.58 0.72 0.64

PRM4 100 0.68 0.48 0.57

PRM4 500 0.88 0.91 0.89

PRM4 1000 0.65 0.74 0.69

PRM4 2000 0.69 0.83 0.75

PRM4 3000 0.66 0.83 0.74

PRM5 100 0.62 0.59 0.60

PRM5 500 0.90 0.87 0.88

PRM5 1000 0.72 0.70 0.71

PRM5 2000 0.75 0.82 0.78

PRM5 3000 0.71 0.74 0.72

Table 2: Evaluation results in term of Precision, Recall and F-score for RGS
algorithm. Reported values are averages over 5 runs of the RGS algorithm,
on 5 generated DB instances, for each RBN from Table 1 and each sample
size.

F-score =
2 * Precision * Recall

Precision + Recall
(4)

6.4 Results and interpretation

A summary of the Precision, Recall and F-score results is presented in
Table 2. We report the averages over 5 runs of the RGS algorithm on 5
generated DB instances, from the distribution of the networks of Table 1,
for each sample size.

We note that the structure learning algorithm applied to our generated
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relational training datasets provides high values of both precision and recall.
Precision is between 51% and 88% regardless of the size of the true model
generated and the size of the training set. Recall is between 35% and 91%
and is less than 50% only for three values where the training set is of small
size. the F-score is also high as it presents the average of both precision and
recall.

This experimental study shows the utility of our contribution and its
significance when evaluating the quality of any PRM structure learning al-
gorithm. The RGS evaluation process has been made using several generated
theoretical PRMs and various relational observational database instances,
of different sizes, sampled from those PRMs. Achieving these results was
not possible without our benchmark generation process.

7 Conclusion and perspectives

We have developed a process allowing to randomly generate probabilistic re-
lational models and instantiate them to populate a relational database. The
generated relational data is sampled from not only the functional depen-
dencies of a relational schema but also from the probabilistic dependencies
present in the PRM.

We have made our generated PRMs as well as data available to re-
searchers who are working in this area (cf. Section 6.1). As we lack of PRM
benchmarks, we believe that this can be a useful tool for evaluating new
proposals related to PRMs learning from relational data. We are also about
to distribute our software into GPL license.

In our ongoing work we are establishing a new approach to learn PRMs
structure. We aim, particularly, to prove the effectiveness of our proposal by
comparing it with already existing PRM learning approaches, in a common
framework, using our random generation process.

Our process can more generally be used by other data mining methods
as a probabilistic generative model allowing to randomly generated rela-
tional data. Moreover, it can be enriched by a test queries component to
help database designers to evaluate the effectiveness of their RDBMS com-
ponents.
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