
HAL Id: hal-01150615
https://hal.science/hal-01150615v1

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deadlock and temporal properties analysis in mixed
reality applications

Raymond Devillers, Jean-Yves Didier, Hanna Klaudel, Johan Arcile,

To cite this version:
Raymond Devillers, Jean-Yves Didier, Hanna Klaudel, Johan Arcile,. Deadlock and temporal prop-
erties analysis in mixed reality applications. 25th IEEE International Symposium on Software Re-
liability Engineering (ISSRE 2014), Nov 2014, Naples, Italy. pp.55–65, �10.1109/ISSRE.2014.33�.
�hal-01150615�

https://hal.science/hal-01150615v1
https://hal.archives-ouvertes.fr


Deadlock and temporal properties analysis
in mixed reality applications

Raymond Devillers
Département d’Informatique

Université Libre de Bruxelles, Belgium
Email: rdevil@ulb.ac.be

Jean-Yves Didier, Hanna Klaudel and Johan Arcile
Laboratoire IBISC

Université d’Evry-val d’Essonne, France
Emails: {jean-yves.didier,hanna.klaudel}@ibisc.fr, johan.arcile@ens.univ-evry.fr

Abstract—Mixed reality systems overlay real data with virtual
information in order to assist users in their current task; they
are used in many fields (surgery, maintenance, entertainment,...).
Such systems generally combine several hardware components
operating at different time scales, and software that has to cope
with these timing constraints. MIRELA, for MIxed REality
LAnguage, is a framework aimed at modelling, analysing and
implementing systems composed of sensors, processing units,
shared memories and rendering loops, communicating in a well-
defined manner and submitted to timing constraints. The paper
describes how harmful software behaviour, which may result in
possible hardware deterioration or revert the system’s primary
goal from user assistance to user impediment, may be detected
such as (global and local) deadlocks or starvation features. This
also includes a study of temporal properties resulting in a finer
understanding of the software timing behaviour, in order to fix
it if needed.

Keywords—Mixed reality; timed automata; deadlocks; temporal
properties;

I. INTRODUCTION

The primary goal of a mixed reality (MR) system is to pro-
duce an environment where virtual and digital objects coexist
and interact in real time. In order to get the global environment
and its virtual or physical objects we need specific data, for
which we shall use sensors (like cameras, microphones, haptic
arms. . . ). But gathering data is not sufficient as we want to
see the result in our mixed environment; we then implement a
rendering loop that will read the data and express the result in
some way that a human can interpret (using senses like sight,
hearing, touch). To communicate between those two types of
components (sensors and renderers), shared memory units are
used to store the data, and processing units process the data
received from sensors or processing units, and write them into
shared memories or other processing units. As usual, in order
to keep the system consistent we observe a rule that will not
allow to write and read concurrently a same memory cell. An
example of the decomposition schema of an MR application,
together with the flow of information, is shown in Figure 1.

Since a few years, the MIRELA framework (for MIxed
REality LAnguage [8], [7], [16], [9]) is developed aiming at
supporting the development process of applications made of
components which have to react within a fixed delay when
some events occur inside or outside the considered area. This
is the case in mixed reality applications which are evolving in
an environment full of devices that compute and communicate
with their surrounding context [6]. Mixed reality set-ups are

prone to various issues related to time that are needed to
be solved since they use sensors to acquire knowledge from
the real world, process acquired data and then display the
results to the system’s operator using rendering loops. All these
devices are possibly running with different time constraints
and often relying on multi-threading techniques in order to
optimise the available computational power. In such a context,
it is difficult to keep control of the end-to-end latency and
to minimise it. Classically, mixed reality software frameworks
like those cited in [5], [19], [13], [18], [14], [10] do not rely
on formal methods in order to validate the behaviour of the
developed applications. Some of them emphasise the use of
formal descriptions of components inside applications in order
to enforce a modular decomposition, possibly with tool chains
to produce the final application [20], [15], and ease future
extensions [17] or substitutions of one module by another,
like InTML [12], [11]. Such frameworks do not deal with
software failure issues related to time. On the contrary, this
is the main focus of the MIRELA framework which proposes
to use formal methods and automatic tools to analyse and
understand time related issues.

Camera C GUI G

Priority Pr

Memory M

Rendering R

sensor’s level

processing unit’s level

shared memory’s level

rendering loop’s level

Fig. 1. Decomposition schema of an MR architecture (Example 1).

Nowadays, in order to cope with time constraints when
developing MR applications, practitioners rely mostly on fast
response and high performance hardware, even if this does
not ascertain that critical constraints will always be respected.
Also, being super-fast may be non-necessary and contradictory
with other aspects, like cost or energy saving. Validating
the application before testing it on the actual hardware, by
modelling it and applying formal method techniques to prove
its robustness, appears as a particularly interesting approach.
Actually, it may avoid catastrophic situations and unnecessary
hardware deterioration costs, by allowing to identify design
errors in an early stage, and to correct them in due time.



The MIRELA framework [7] proposes a methodology
that consists of three phases: In the first phase, a formal
specification of the system in the form of a network of timed
automata [1] is built. It may be obtained by a translation from
a high level description made of connected components, and
represents an ideal world, for which some properties consid-
ered important may be checked. The second phase concerns
the analysis of the system: it essentially consists in model-
checking a set of desired properties. It may be performed
using existing verification tools like UPPAAL [21]. In the
third phase, such a checked specification is used to produce an
implementation skeleton, in the form of a looping controller
parametrised with a sampling period and possibly executing
several actions in the same period, aiming at preserving
those properties. Such a prototype is ‘sandwiched’ between
the original specification and an auxiliary over-approximating
model, on which one may verify if the expected properties are
still satisfied.

In this paper, we revisit the first two phases of the
MIRELA framework: in the first phase, we introduce a formal
notation for MR time related specifications together with an
automatic translation into a network of timed automata (Sec-
tions II–IV). In the second phase (Section V), we focus on the
analysis of properties of such specifications such as deadlocks,
starvation of components, and temporal properties such as
minimum response time. In particular, we show that in some
cases local and global deadlocks may be found or excluded by
an essentially syntactic analysis of the specification. In the case
of an existing deadlock, we provide a guideline for removing
it while preserving as much as possible the desired intuitive
behaviour (Section VI).

II. MIRELA SYNTAX AND EXAMPLES

A MIRELA specification is a list of components of the
form:

SpecName:
id = Comp→TList ; . . . ; id = Comp→TList .

where a component Comp is either a sensor Sensor , a process-
ing unit PUnit , a shared memory unit MUnit or a rendering
loop RLoop. A TList is an optional comma separated list of
identifiers indicating to which (target) components information
is sent, and in which order. Each component also indicates
from which (source) components data are expected. A target t
of a component c must have c as a source; it is not requested
that a source s of a component c has c as an explicit target:
missing targets will be implicitly added at the end of the target
list, in the order of their occurrence in the specification list.
We assume that all the sources of a component are different,
and that all the targets of a component are also different1.

Components are specified following the syntax:

Sensor ::= Periodic(min_start ,max_start)[min,max ] |
Aperiodic(min_event)

PUnit ::= First(SList) |
Both(id, id)[min,max ] |
Priority(id[min,max ], id[min,max ])

MUnit ::= Memory(SList)
RLoop ::= Rendering(min_rg ,max_rg)(id[min,max ]),

1The target list is allowed to be empty; this defines in general a degenerate
specification, which may be interesting for technical and practical reasons.

where SList is a non empty list of comma separated source
identifiers of the form id [min,max ], indicating that the pro-
cessing time of data coming from source id takes between min
and max time units.

We consider two kinds of sensors (without source, with
processing or memory units as targets):

• Periodic ones (e.g., cameras) that need some time
for being started (at least min_start and at most
max_start time units), and then capture data peri-
odically, taking between min and at most max time
units for that, and

• Aperiodic ones (e.g., haptic arms or graphical user
interfaces) that collect data when an event occurs, the
parameter min_event indicating the minimal delay
between taking two successive events into account.

Processing units (PU) process data coming from possibly
several different sources of data. It is also possible to combine
them (in a hierarchy but also in loops) to get more inputs and
outputs. Hence the sources are either sensors or processing
units, and targets are either memories or processing units.
There are the following categories of processing units:

• First: may have one or more inputs (sources) and
starts processing when data are received from one of
them; the order is irrelevant; if SList contains only
one element, First is considered as a unary processing
unit;

• Both: has exactly two inputs and starts processing
when both input data are received, the processing time
being between min and max ;

• Priority: has two inputs (master and slave) and starts
processing when the master input is ready, possibly
using the slave input if it is available before the
master one; the duration of processing is in the first
time interval [min,max ] if the master input is alone
available, and in the second time interval [min,max ]
if both the slave and the master inputs are captured; in
figures, the slave input is indicated by a dashed arrow.

A memory access is performed by a rendering loop, a
sensor or a processing unit by locking the memory before
executing the corresponding task (reading or writing) followed
by an unlocking of the memory. A rendering component
accesses the memory at a period between min_rg and max_rg
time units, and the processing of data has a duration in the
interval [min,max ].

This language has been carefully tailored in order to
capture exactly the needed features of MR applications. To
illustrate our methodology, we shall use the following simple
but rather realistic examples.

Example 1: A classical setup for an MR application: The
components are two sensors: a periodic sensor (camera C)
and an aperiodic sensor (graphical user interface G), a shared
memory M , a priority processing unit Pr and a rendering
loop R. Its textual representation is given below while its
component architecture is sketched in Figure 1.



Ex1 :
C = Periodic(200, 300)[350, 450];
G = Aperiodic(20);
Pr = Priority(C[250, 350], G[250, 350]);
M = Memory(Pr[20, 30]);
R = Rendering(50, 75)(M [21, 31]).

Example 2: A cascade of processing units:
Ex2:

C = Periodic(2000, 3000)[3500, 4500];
I = Periodic(400, 600)[900, 1000];
U = First(C[2000, 3000])→(B,M);
B = Both(I, U)[50, 75];
M = Memory(B[200, 300], U [300, 400]);
G = Rendering(500, 750)(M [210, 310]).

The corresponding scheme is given in Fig. 2. Notice that
processing unit First U sends data to B (which processes it
and sends the result to M ) and also directly to M :

Inertial I Camera C

Both B

First U

Memory M

Rendering G

Fig. 2. Scheme of Example 2.

Example 3: An application containing a cycle of process-
ing units:

Ex3 :
C = Periodic(2000, 3000)[3500, 4500];
I = Periodic(400, 600)[900, 1000];
U = First(C[7000, 9000])→(M,L);
F = First(L[40, 60], I[40, 60]);
L = First(F [20, 30], U [20, 30])→(M,F );
M = Memory(U [300, 400], L[10, 20]);
G = Rendering(500, 750)(M [310, 420])
H = Rendering(80, 120)(M [20, 30]).

The corresponding scheme is represented in Fig. 3.

III. TIMED AUTOMATA WITH SYNCHRONISED TASKS

Since their introduction in [1], [2], [3] timed automata have
been widely used to model complex real time systems and to
check their temporal properties. Since then many variants have
been considered [22]. In order to get a compositional aspect,
UPPAAL starts from a network of timed automata from which
a synchronised product may be constructed to get a more
classical timed automaton. We shall not need the full generality
of the timed automata allowed by UPPAAL however, but
a subset called Timed Automata with Synchronised Tasks
(TASTs) in order to cope with implementability issues (see
[7] for more details).

Inertial ICamera C

First F

First U First L

Memory M

Rendering H Rendering G

Fig. 3. Scheme of Example 3.

A. TAST’s features

Syntactically, a timed automaton is an annotated directed
(and connected) graph, with an initial node, provided with a
finite set of non-negative real variables called clocks, initially
0, increasing with time and reset when needed; we shall not
allow to share clocks between automata. The nodes (called
locations) are annotated with invariants (predicates allowing
to enter or stay in a location). Since we aim at describing
systems of sensors and actuators, we shall distinguish the
locations associated with an internal activity and the locations
where one waits for some event or contextual condition. The
arcs are annotated with guards (predicates allowing to perform
a move) or communication actions, and possibly with some
clock resets. For an activity location, all output arcs have a
guard of the form x ≥ e′, all input arcs reset x and the invariant
is either of the form x < e or empty (= true = x <∞), with
0 < e′ < e. For a waiting location, all the output arcs have
a communication action k! (output) or k? (input), allowing to
glue together the various automata composing a system, since
they must occur by input-output pairs. In order to structurally
avoid Zeno evolutions (i.e., infinite histories taking no time or
a finite time), we shall finally assume that each loop in the
graph of the automaton presents (at least) a constraint x≥e in
a guard (recall that e is strictly positive) and a reset of x for
some clock x, or contains only input channels (k?).

In figures, locations will be represented by round nodes, the
initial one having a double boundary, and activity locations are
indicated by light blue background colour.

IV. TAST COMPONENTS FOR MIRELA

General TAST representations of MIRELA components
are assembled in Figure 4. Synchronisations with memories are
performed by lock/unlock pairs (one for each memory unit),
while the other synchronisations are performed by channels k
(one for each pair of communicating components).

A periodic sensor is illustrated in Figure 4(a). It first
performs the initial task2, which lasts between e1 and e′1
time units. Then it starts a loop composed of a periodic data
acquisition represented by a task at location T , which lasts
between e2 and e′2 time units, and which is followed by a series

2which may correspond to the initialisation of sensor parameters



of synchronisations with target PUs in order to communicate
the observed data. These synchronisations are performed in
the order specified by the target list (or by the components
declaration order for those that are not in the target list). Notice
that it may happen that the cycle of a periodic sensor has
an unbounded duration due to an impossibility to synchronise
with some target PU.

An aperiodic sensor (see Figure 4(b)) has a similar shape,
except that it does not have a separate initialisation phase. The
guard ascertains that there is a minimal delay of e time units
between two events.

A First processing unit may have one or more inputs,
coming from sensors or processing units. It starts processing
when data are received on one of its inputs. Figure 4(c) depicts
a TAST model of First(k1[e1, e

′
1], k2[e2, e

′
2]) → (M1,M2)

that inputs data from components k1 or k2 and processes them
in the time intervals [e1, e

′
1] in location P1 and [e2, e

′
2] in

location P2, respectively, and writes data to memory M1 with
a processing interval [e3, e

′
3] in location T1, and to memory

M2 with processing [e4, e
′
4] in location T2. Figure 4(d) depicts

a similar First PU, simplified when the processings of data
from k1 and k2 are the same.

A Both processing unit has two inputs and starts processing
when both input data are received (in either order). Figure 4(e)
depicts a TAST model of Both(k1, k2)[e1, e

′
1] → (M1) that

awaits data from k1 and k2, and starts when both are available.
The processing duration is in time interval [e1, e′1] in location
P , after which data is written into memory M1 in location T ,
taking a delay in [e2, e

′
2].

A Priority processing unit proposes a choice between two
behaviours: if the input from km (master) comes first, then a
processing with a duration in time interval [e1, e′1] is launched
in location P , otherwise ks (slave) comes first, awaits km
and start a processing with duration in [e2, e

′
2] launched in

location Ps. If both km and ks are present at the same time,
the choice is made non-deterministically. A TAST model of
Priority(k1[e1, e

′
1], k2[e2, e

′
2])→ (k) is depicted in Figure 4(f).

Again, like for a First processing unit, the schema may be
simplified when the timing of the processing of the read data
is the same with or without the slave input.

A shared Memory unit is a simple lock/unlock loop, as
illustrated in Figure 4(g) (the time intervals indicated in the
source list are managed in the automata of the sources).

A Rendering loop is a cycling TAST reading a memory,
processing the read data within some time interval, and produc-
ing a rendering, which takes again some time: this is illustrated
in Figure 4(h).

Notice that there are two kinds of communications: All the
communications with a memory unit use a pair of lock/unlock
(with a processing in the processing unit or rendering loop
using the memory unit). On the contrary, each communication
to a processing unit uses a separate channel.

It may be observed that those models do not use auxiliary
clocks. We left them as a possibility in the TAST syntax
however, because it could happen that additional components
are introduced in MIRELA at some point, where for example
an activity is split into two sub-activities, with a constraint on

E T S

x < e′1 x < e′2

x := 0

x ≥ e1 x ≥ e2

x := 0

k!

(a) A periodic sensor with (only one)
output k

T S
x ≥ e

x := 0

k!

(b) An aperiodic sen-
sor with output k

W

P1

P2 T1

T2

x < e′1

x < e′2

x < e′3

x < e′4

x := 0

k1?

k2?

x := 0

x ≥ e1

x ≥ e2 lock1!

x := 0

x ≥ e3

unlock1!lock2!

x := 0

x ≥ e4

unlock2!

(c) A First PU with inputs k1 and k2, writing to memories M1 and M2

W P T1

T2

x < e′1

x < e′2

x < e′3

x := 0

k1?

k2?

x := 0

x ≥ e1 lock1!

x := 0

x ≥ e2

unlock1!lock2!

x := 0

x ≥ e3

unlock2!

(d) A First PU with the same processing for inputs k1 and k2

W P

T

x < e′1

x < e′2

k1?

x := 0

k2?

k2? k1?

x := 0

x ≥ e1

lock1!

x := 0

x ≥ e2

unlock1!

(e) A Both PU with inputs k1 and k2, writing to
memory M1

W P

Ws Ps

x < e′1

x < e′2ks?

km?

x := 0

x ≥ e2

km?

x := 0

x ≥ e1

k!

(f) A Priority PU with inputs km (master)
and ks (slave), and a single output k

W

lock1?

unlock1?

(g) Memory M1

W M R

x < e′1

x < e′2
lock1!

x := 0

x ≥ e1 unlock1!

x := 0

x ≥ e2

(h) A Rendering loop reading from memory M1

Fig. 4. TAST models of MIRELA components.



the sum of the times spent for them. Moreover, some clocks
may later be added to measure the time taken to travel between
two locations.

The MIRELA to UPPAAL gateway has been automated
by developing a compiler using a parametric approach [4].
For Examples 1, 2 and 3, this leads to the models illustrated
in Figures 5, 6 and 7, respectively.

Let us detail the behaviour of Example 1 modelled in
Figure 5. One may observe first the difference between the
behaviour of aperiodic and periodic sensors, respectively G
and C. The former is modelled by a simple loop without
any invariant, which does not guarantee that it will eventually
leave locality G, while the latter is modelled by an initialised
loop with invariant at location C ensuring that location C will
be left before at most 450 time units. Data from sensors is
communicated to Pr through the synchronisations on channels
kC and kG. In order to travel from location W to P , Pr must
synchronise on kC while the synchronisation on kG is optional.
In both cases, the duration of the task at P is assumed to be
the same (between 250 and 350 time units). Then, Pr makes a
lock on memory M by synchronising on channel lock, writes
data while at location M (between 20 and 30 time units) and
releases memory by synchronising on unlock. Rendering R
accesses the memory in the same way using lock/unlock pairs
while competing with Pr. As a consequence the durations of
cycles in Pr and R (but also in C and G) depend on this
competition.

E C S

xC < 300 xC < 450

xC := 0

xC ≥ 200 xC ≥ 350

xC := 0

kC !

Camera C

G S′
xG ≥ 20

xG := 0

kG!

Graphical User Interface G

W

A

P B

MC

xP < 350

xP < 30

kG?

kC?

xP := 0

kC?

xP := 0

unlock!

xP ≥ 250

lock! xP := 0

xP ≥ 20

Priority Pr

L

lock?

unlock?

Memory M

W ′ M ′

R

xR < 31

xR < 75

lock!

xR := 0

xR ≥ 21

unlock!

xR := 0

xR ≥ 50

Rendering R

Fig. 5. TAST specification A for Example 1.

V. ANALYSIS

A. Bad behaviours

Various kinds of deadlocks, or other usually considered
highly harmful behaviours, may be distinguished for timed

E C S

xC < 3000 xC < 4500

xC := 0

xC ≥ 2000 xC ≥ 3500

xC := 0

kC !

Camera C

E I S

xI < 600 xI < 1000

xI := 0

xI ≥ 400 xI ≥ 900

xI := 0

kI !

Inertial I

F P A

BTC

xF < 3000

xF < 400

kC?

xF := 0

xF ≥ 2000

kU !

lock!

xF := 0

xF ≥ 300

unlock!

First U

W P

TC

xB < 75

xB < 300

kI?

xB := 0

kU?

kU? kI?

xB := 0

xB ≥ 50

lock!

xB := 0

xB ≥ 200

unlock!

Both B

L

lock?

unlock?

Memory M

G M

R

xG < 310

xG < 750

lock!

xG := 0

xG ≥ 210

unlock!

xG := 0

xG ≥ 500

Graphical Rendering G

Fig. 6. TAST representations for Example 2.

automata:

• a complete blocking occurs if a state is reached where
nothing can happen: no location change is nor will be
allowed (because no arc with a true guard is available
or the only ones available lead to locations with a non-
valid invariant) and the time is blocked (because the
invariant of the present location is made false by time
passing);

• a global deadlock occurs when only time passing
is ever allowed: no location change is nor will be
possible;

• a strong Zeno situation occurs when infinitely many
location changes may be done without time passing;

• a weak Zeno situation occurs if infinitely many loca-
tion changes may occur in a finite time delay.

A weaker but potentially disagreeable situation occurs
when a location change is available after some time but this
waiting time is unbounded. Moreover, for a network of timed
automata (hence for TAST systems) we can distinguish:

• a local deadlock that occurs if no location change is
available for some component while other components
may evolve normally;



E C S

xC < 3000 xC < 4500

xC := 0

xC ≥ 2000 xC ≥ 3500

xC := 0

kC !

Camera C

E I S

xI < 600 xI < 1000

xI := 0

xI ≥ 400 xI ≥ 900

xI := 0

kI !

Inertial I

U P A

WBC

xU < 9000

xU < 400

kC?

xU := 0

xU ≥ 7000

lock!

xU ≥ 300unlock!

kU !

First U

F P A

xF < 60

xF := 0

kI?

kL?

xF := 0

xF ≥ 40

kF !
First F

F P A

TBC

xL < 30

xL < 20

xL := 0

kU?

kF ?

xL := 0

xL ≥ 20

lock! xL := 0

xL ≥ 10unlock!

kL!

First L

L

lock?

unlock?Memory M

G M

R

xG < 420

xG < 750

lock!

xG := 0

xG ≥ 310

unlock!

xG := 0

xG ≥ 500

Graphical Rendering G

H M

R

xH < 30

xH < 120

lock!

xH := 0

xH ≥ 20

unlock!

xH := 0

xH ≥ 80

Haptical Rendering H

Fig. 7. TAST representations for Example 3.

• a local unbounded waiting that occurs if a component
may evolve but the time before a change is unbounded
(usually called a starvation situation). Notice however
that this phenomenon is not always to be avoided,
for instance if the component corresponds to a failure
handling.

B. Deadlocks in MIRELA

We may first observe that:

Proposition 1: No (strong or weak) Zeno situation may
happen in a MIRELA system.

Proof: The property holds since each loop in a component:

• either contains an arc with a guard x ≥ e (with e > 0)
and a reset on some clock x, so that it is impossible to
complete it in a null time; as a consequence the loop
may be completed only a finite number of times in a
finite delay;

• or contains only arcs with input communications (such
as in a memory cell for instance); as a consequence it
may only progress indefinitely while communicating
with a loop of the previous kind.

1

Concerning deadlocks, we may first observe the following:

Proposition 2: Let MS be a MIRELA system and TA its
corresponding network of timed automata.

1) a component may only deadlock in a waiting location;
2) a memory unit may only deadlock if all its users

deadlock elsewhere;
3) a rendering loop may not deadlock;
4) a system with a rendering loop may not have a global

deadlock.

Proof:

1) If MS is well-formed, i.e., all components are cor-
rectly specified and in each min −max pair, min <
max , in TA each activity location has an invariant
of the kind x < max (or empty), x is reset in each
incoming arc, and the unique output arc has a guard
x ≥ min . Hence, when x reaches min , the transition
may occur since the guard of the next location may
not be false. If the transition does not occur at that
time, it remains enabled until x reaches max if the
latter is finite, in which case it must occur.

2) In a memory unit, if a lock is performed by a
component, it is certain from the semantics of the
component that the unlock will be performed after
some (bounded) time. Hence it may only be blocked
if no user is able to perform the lock, i.e., if they are
all deadlocked at a waiting location (see the previous
point) different from a memory access request.

3) In a rendering loop the only waiting locations corre-
spond to a memory access, and the property results
from the previous point.

4) This is a direct corollary of the previous point.

2

From the previous results, a global deadlock may not occur
in a complete system, i.e., having at least one memory unit and
an associated rendering loop, while a starvation may occur if
the memory is continually used by other units, and no fairness
strategy is applied. Moreover, local deadlocks may occur. Let
us consider for instance the (simplified, without memory and
rendering) system illustrated in Figure 8(a): after receiving a



signal from (periodic) sensor S, the processing unit B waits
for a signal from processing unit F , but the latter waits for a
signal coming from B. We thus have a deadlock of type R
(for reception), where a group of processing units are each
waiting for a signal reception but this signal may only be
emitted by another processing unit of the group. Such a group
may be decomposed in one or more cycles of "reception from
a unit in reception state". Once such a deadlock occurs, more
components may enter a local deadlock state: for instance, in
the deadlock of type R occurring in Figure 8(a), the sensor S
will soon join the set of deadlocked components since its next
emission will not be absorbed by the deadlocked processing
unit B.

Sensor S

Both B

First F

(a) Deadlock 1

Sensor S

First F1

First F2

(b) Deadlock 2

Fig. 8. Examples of (local) deadlocks. Renderings and memories are omitted.

Another (symmetrical) kind of local deadlock is illustrated
in Figure 8(b): when sensor S emits signals to processing units
F1 and F2, they both process it, then each one tries to emit
a signal to the other one, which cannot succeed since they are
waiting for emission and may not perform a reception. This
is a deadlock of type E (for emission), where processing units
in a group are each waiting to emit a signal, but that signal
may only be received by another processing unit of the group,
thus forming one or more loops of "emission to a unit in an
emission state". Again, once such a deadlock occurs, more
components may enter a deadlock state: for instance, in the
deadlock of type E occurring in Figure 8(b), the sensor S will
join the set of deadlocked components since its next emission
will not be absorbed by the deadlocked processing unit F1 (or
F2, depending on to which unit its signals are first sent).

These two kinds of local deadlocks are intimately con-
nected to the fact that processing units alternate two very
distinct phases: first, some signals are received (reception
phase), then some signals are emitted (emission phase) in a
row (together with some synchronisations with memory units),
and then the reception phase is resumed.

But there are also deadlocks of a mixed nature, combining
components in emission and reception phases, like the situation
illustrated in Figure 9: assume that, first, sensor S1 sends a
signal to F1, which accepts it and sends a signal to B which
also accepts it; then S1 sends a new signal to F1, which
accepts it and sends another signal to B, which cannot accept
it at this stage since the latter waits for a signal from F2;
now, if Sensor S2 sends a signal to F2, which accepts it and
the latter tries to send a signal to F1 (before trying to send
a signal to B): F2 is blocked since F1 waits for its second
signal to B to be accepted, but B itself waits for a signal from
F2, which cannot happen since the latter is presently waiting
for its signal to F1 be accepted. Note that the same happens

if the emissions by F2 are produced in the reverse order, but
the trace leading to a blocking situation is a bit longer.

A similar but even more intricate situation occurs if we
use in the same example a Priority processing unit instead
of Both B. Actually, if the input from F2 is considered as
master in B, then the system presents a deadlock, which
is not the case if the input from F1 to B is a master.
More importantly, these deadlocks do not involve a cycle
of communicating (sensor or processing) units, unlike what
happened in the E orR cases. This is due to the fact that, when
a component deadlocks in its reception phase, the waiting
condition corresponds to one or two arcs going in the reverse
direction with respect to the flow of information. Hence, a
cycle of control may correspond (when there are both emitting
and receiving deadlocked components) to a non cyclic flow of
information.

Sensor S1 Sensor S2

First F1 First F2

Both B

Fig. 9. Example of a (local) deadlock without a loop of Processing units.

In order to derive guidelines for an efficient detection
of possible deadlocks, we first perform the following ob-
servations. If MS is a MIRELA system, let us denote by
MS ′ the system obtained by dropping all rendering loops and
all time constraints (clocks, guards and invariants). Dropping
rendering loops is easy since this has no impact on the other
components of the system. And let MS ′′ be MS ′ where all
memory units are also dropped; this is slightly more involved
since some processing units use explicitly some memories:
in the corresponding timed automata, one has to remove the
lock !/unlock ! labels from the arcs.

Proposition 3: Let MS be a MIRELA system:

1) if a local deadlock is present in MS , it is also present
in MS ′, as in some connected subsystem of MS ′′;

2) if a component deadlocks in MS ′ or MS ′′, then so
do all its input components, all its output Both, all its
master output Priority, and all its output First units
having a unique input.

Proof:

1) From Proposition 2(2-3), if there is a (local) deadlock
there is a deadlocked component which is not a
rendering loop nor a memory unit. From Proposition
2(1), that component is blocked in a waiting location.
Then it is also blocked, after some finite time, if
we enlarge some or all intervals in MS , since this
allows to reach the same situation and the group of
components blocking each others does not depend
on timing constraints (deadlocks are simply due to
mutual waits). In particular the deadlock remains if
we replace each min by 0 (or equivalently if we
remove all guards). Moreover, now it is also possible
to reach the deadlock by shrinking the time, allowing



to also replace all max by a same arbitrary value d
(or by ∞, which amounts to remove all invariants).
Finally, the rendering loops and memory components
may be dropped, since their only possible effect on
the evolution leading to the deadlock is to delay some
components by some finite time, but the same effect
may be obtained by increasing the time used by those
components to handle the corresponding data. Hence
if there is a local deadlock in MS , the same situation
will occur in MS ′, as well as in some connected
subsystem of MS ′′.

2) This results from a quick analysis of the propagation
of deadlocks. Note that if a component deadlocks
while it is a source of a slave input to a Priority, the
latter does not necessary deadlock; a similar situation
may occur if a First component has many inputs and
one (or more, but not all) of them deadlocks, since
it may still manage inputs from non-deadlocking
units. In both cases, the deadlock does not necessarily
extend. Otherwise, it does.

3

These results are precious since the automatic detection of
deadlocks (with UPPAAL for example) is especially difficult
when the system is complex, when timing constraints exhibit
different orders of magnitude, when there is no deadlock
(because it is then necessary to explore the whole state space)
and when local deadlocks do not propagate to the entire
system.

Hence we propose the following methodology to detect the
presence or absence of deadlocks:

1) First detect if there is a (global or local) deadlock in
MS ′ or in some connected subsystem of MS ′′. This
is much more efficient than doing the same directly
on MS , since the systems to be considered are much
simpler, there is no timing constraints and there is
some hope that local deadlocks will become global
ones. If there is no such deadlock, from Proposition
3 we may deduce MS is deadlock free. If a deadlock
is detected, it is usually simple to check if the same
situation is also reachable in the original system MS .

2) A global deadlock may be checked on MS ′ or each
connected subsystem of MS ′′ with the UPPAAL
query A[] not deadlock; this is enough if it
is sure that local deadlocks propagate to the entire
subsystem (see Proposition 3-2). Unfortunately, a
local deadlock (not propagating to a global one)
is much more delicate to detect in MS ′ or in a
connected subsystem of MS ′′: this would need the
usage of imbricated queries to check that, for any
reachable state, if a component is in a waiting locality,
it is possible to leave the latter, and UPPAAL does
not allow them.

3) If the previous checks are non-conclusive, a local
deadlock in MS may be searched for with the
aid of liveness queries of the kind C.L --> C.N,
checking that, in a component C, if we reach a
location L it is certain that we shall eventually reach
a location N afterwords; this may be used to check
that a component is not stuck in a waiting location;

however, besides the time needed for such queries
(which may be prohibitive), a further analysis may
be necessary to avoid a confusion with an (expected)
unbounded waiting (see next section).

Table I illustrates some applications of this methodology,
using Intel(R) Quadri-Core(TM) i5-2400 CPU at 3.10GHz and
8GB of RAM. Lines 1 and 2 show that no global deadlock is
found in the simplified versions of Examples 1 and 2, while
Proposition 3-2 shows that a local deadlock would lead to a
global one in those cases; hence those examples are deadlock-
free. On the contrary, line 3 shows that the simplified version of
Example 3 presents a global deadlock, and it is easy to see that
the same situation remains reachable in the original version.
By contrast, a direct analysis of this example takes hours to
detect that component I may not always perform a full loop
(see lines 4-5), and the application of acceleration features of
UPPAAL (called -Z and -A, lines 6-7) are non-conclusive.

TABLE I. RESULTS OF CHECKING FOR (LOCAL) DEADLOCKS

case query time # states result
1 Ex′

1 A[] not deadlock 1ms 28 TRUE
2 Ex′

2 A[] not deadlock 2ms 175 TRUE
3 Ex′

3 A[] not deadlock 5ms 500 FALSE
4 Ex3 I.I --> I.S 21h38’ 36 009 471 TRUE
5 Ex3 I.S --> I.I 11’10s 710 921 FALSE
6 Ex3 (-Z) I.I --> I.S 15’55s 80 145 889 MAY BE
7 Ex3 (-A) I.I --> I.S 11s 247 MAY NOT

C. Unbounded waitings in MIRELA

Besides true deadlocks, situations may arise where a com-
ponent may undergo an unbounded waiting. For instance,
this may occur with an aperiodic sensor, since no upper
bound is specified for the time separating two successive data
acquisitions. If we do not want that this propagates to other
components, we should avoid to use them in a Both unit, as a
master to a Priority, or in a First when there is no other kind
of input.

Another kind of situation occurs if several components
compete to communicate and, due to the non-deterministic
way choices are performed, some of them never succeed.
In a MIRELA system, this may for instance occur when
performing a lock on a memory unit (note that unlocks may
only be performed by the components having succeeded in the
lock): it may happen that a component Comp tries to access
a memory, fails because, when the memory is unlocked, the
latter is attributed to another requesting component, and due
to an unfortunate choice of the timing constraint (intervals),
whenever the memory is unlocked, there are (remaining or
new) requesting components and Comp is never chosen,
unfortunately, again and again. This also shows that here
we should not consider simplified systems, without memory
and rendering units, since the latter ones may be essential
ingredients for inducing unbounded waitings.

This may be observed, for instance, in Example 4 (cf.
Figure 10), where sensors S1 and S2 can alternately write in
MemoryM while Rendering R may wait indefinitely. Actually,
it happens for example if S1 performs its task while S2 is
writing in M allowing S1 to be ready to access it when
S2 releases the lock, and they continue to indefinitely access
M alternately. This behaviour may occur if the maximum
writing time (in red) of a sensor to M is strictly greater than



the minimum time (in blue) needed by the other sensor to
perform its task. Here, the maximum writing time of S1 is
250, meaning that if we change the definition of S2 to

S2 = Periodic(400, 600)[250, 500];

the starvation no longer occurs, because when S1 releases the
lock on the memory, S2 is still executing its task and so, R is
the unique competitor to the memory and thus has to access it
(since the communication is urgent). In other words, this case
of starvation of R depends only on the time constraints of S1
and S2 but not on those of R itself. The time constraints of
R may only impact the number of memory accesses R may
perform before the starvation occurs.

Sensor S1 Sensor S2

Memory M

Rendering R

Ex4 :
S1 = Aperiodic(300);
S2 = Periodic(400, 600)[200, 400];
M = Memory(S1[200, 250], S2[250, 350]);
R = Rendering(50, 100)(M [20, 30]).

Fig. 10. Scheme and specification of Example 4.

The same kind of behaviour may happen when a compo-
nent Comp tries to emit to a First unit and the latter allows
several inputs: if at least one other component is ready to emit
whenever the First component enters the location at which
it may receive an input (actually W ), it may happen that,
unfortunately, Comp is never chosen. An analogous situation
may occur if a component Comp tries to synchronise as a
slave with a Priority unit: if the master is also ready whenever
the Priority component enters its location W , it may happen
that, unfortunately, the slave Comp is never chosen.

This may be avoided by an adequate choice of the timing
constraints, or by suitable fairness assumptions (and implemen-
tations) but in the latter case, ensuring that the waiting time will
be finite does not necessarily imply that this time is (upper)
bounded. This may again be checked using UPPAAL. Notice
that the verification may be performed using the same kind of
queries C.L --> C.N as for deadlocks, but the semantical
information we have about the model helps us to distinguish
between a deadlock and an unbounded waiting. In particular,
locations potentially allowing unbounded waiting are known
in the model (e.g., in an aperiodic sensor as in Example 1).

D. Temporal properties

Another kind of question that may be asked on such
systems concerns minimal and/or maximal durations taken
by components to perform operations. Average, median or
percentile values are irrelevant since our systems are non-
deterministic, but not probabilistic. We may be interested in
exact values, or in bounds such as: “is this time greater than
n units” or “is it between n and m”. For instance, one may

TABLE II. RESULTS OF CHECKING FOR DURATIONS.

case query time # states result
1 Ex2 sup{G.R}: G.y 10ms 1 049 < 1 760
2 Ex2 sup{B.C}: B.y 60ms 4 650 < 11 510
3 Ex2 sup{U.C && !U.firstCycle}: U.y 30ms 3 315 < 6 210
4 Ex2 sup{I.S}: I.xi 70ms 6 795 < 10 210
5 Ex2 sup{C.S}: C.xc 0ms 812 < 4 500

ask how much time a component may wait in some location
until a rendez-vous is performed, one may wonder how much
time a component takes to perform its (main) loop, or to go
from one location to another one. A typical query to do that
is sup{C.L}:C.x, which determines the supremum of the
clock x in location L for component C.

Usually, the cycle rates of a component are impacted by
the rest of the system, and the complete information is difficult
to obtain before the implementation. Using the MIRELA
approach allows to overcome this difficulty by performing
analyses on the model (so before any implementation). Table II
shows the results of measures concerning the actual maximal
duration of the cycles of various components, allowing to
assess the actual “cadence” of the system evolution. To do so,
new clocks were introduced in some automata, like y in lines
1-3, which is reset at the beginning of a cycle. For the property
in line 3, we used a Boolean variable firstCycle initially set to
true and switched to false when the camera C gets its first
image; this allows to get rid of the initial phase, when the
camera has not yet reached its own cycle.

For the rendering loop R (line 1), we obtain a duration that
is longer than the defined rendering task and the corresponding
memory reading (1760 time units instead of 1060 = 310+750)
showing that it may have to wait for the other components
of the system, i.e., B and U , which also compete to access
the memory. We obtain similar results for the maximal actual
duration of the cycle of each processing unit (B and U ) in
lines 2 and 3, and sensors (C and I) in lines 4 and 5, showing
that they are all impacted by the rest of the system.

VI. TOWARDS A CORRECTION METHODOLOGY

Of course, it would be interesting to develop techniques
to overcome the detected problems, when there are some. In
order to illustrate what can be done, we considered the local
deadlock in Example 3. In this example, the First components
L and F exhibit a local deadlock because they have to
communicate with each other, but if they initially get signals
from I and U they will both be in emitting state, hence unable
to exchange information (this leads to a deadlock of type E
(emission)); then we should manage so that, when one is trying
to emit a signal, the other one must be ready to receive it.

Next, we may observe that the semantics of this exchange
of information may be interpreted as follows: when no infor-
mation arrives from the outside world (from I for F and from
C through U for L), F and L cooperate to get progressively
a better perception of the current situation. But if some new
information arrives from I and/or C, they have to take it in
consideration, of course.

Now, in order to get this kind of behaviour, instead of using
First components, one may use Priority ones instead, with the
communications from the outside world as slaves: the details
of the behaviour will be slightly different, but the general spirit



BF P

D

A

xF < 60

kI?

xF := 0

kI?

kL?

xF := 0

kL?

xF := 0

xF ≥ 40
kF !Priority∗ F ′

F P A

TBC

D

xL < 30

xL < 20

kU?

xL := 0

kF ?

kF ?

xL := 0

xL ≥ 20

lock! xL := 0

xL ≥ 10unlock!

kL!

Priority L′

Fig. 11. Components Priority∗ F ′ and Priority L′ replacing respectively
components First F and First L in the corrected Example 3.

will be preserved. However, with the Priority components we
introduced before, there is a serious problem: initially, the two
components F and L will wait for each other in a R-type
deadlock. The idea to get out of this trap is to break the
symmetry and introduce for one the those components a new
kind of Priority, that we shall call Priority∗, where initially one
waits for the slave, handles it, and only after that we enter the
normal loop of a Priority component. We shall use this here for
the component closer to the outside world, i.e., F , but a similar
behaviour would be obtained by choosing L instead. We then
obtain the same system for Example 3 as before except that
F is replaced by F ′, and L by L′, as illustrated in Figure 11.

So, initially, F ′ will wait for a signal from I and then
engage a communication with L as an emitter, while L′

(after possibly receiving an information from U ) engages a
communication with F ′ as a receptor. Then, each time a
communication is performed between F ′ and L′, they will
exchange their role, as required for a correct communication.

As expected (lines 1-2 in Table III), the system of Ex-
ample 3 corrected as explained (cf. Figure 12), simplified as
before for easing and speeding the automatic checks, no longer
presents any deadlock. In general, that type of modification
can introduce unbounded waitings, however, and this should
be checked (lines 3-4) like in section V-C. (However, checking
these properties on the unmodified system takes a long time,
actually more than one day. Therefore, we checked them on a
system where rendering loops were removed.) It seems that this
kind of correction may be performed in many similar cases,
but if a First component with many inputs is concerned, it
may happen that we need to introduce Priority and Priority*
components with more than one slave. Note also that if C
would be replaced by an Aperiodic sensor, we would have a
situation where C and U could never start because neither L
nor M would require an input from them in order to work.

VII. CONCLUSION

We presented a fragment of the MIRELA framework for
analysing and understanding time related issues in MR appli-
cations, focusing on the specification and (semi-) automatic

Inertial ICamera C

Priority∗ F ′
First U

Priority L′

Memory M

Rendering H Rendering G

corEx3 :
C = Periodic(2000, 3000)[3500, 4500];
I = Periodic(400, 600)[900, 1000];
U = First(C[7000, 9000])→(M,L);
F ′ = Priority∗(L′, I[40, 60]);
L′ = Priority(F ′, U [20, 30])→(M,F ′);
M = Memory(U [300, 400], L′[10, 20]);
G = Rendering(500, 750)(M [310, 420])
H = Rendering(80, 120)(M [20, 30]).

Fig. 12. Scheme and specification of Example 3 corrected.

TABLE III. RESULTS OF CHECKING IN CORRECTED EXAMPLE 3.

case query time # states result
1 corEx′

3 A[] not deadlock 8ms 503 TRUE
2 corEx′′

3 A[] not deadlock 5ms 535 TRUE
3 corEx3 wo G,H I.I --> I.S 36’57s 1 519 043 TRUE
4 corEx3 wo G,H I.S --> I.I 9’24s 503 306 TRUE

verification of deadlocks and other important properties. A
simple declarative, domain specific language has been defined
in order to easily describe MR systems. It has been provided
with a compiler generating the corresponding timed automata,
and a verification methodology has been proposed. Such a
checked specification may now be used in the MIRELA
framework to produce an implementation skeleton aiming at
preserving those properties (see [7]).

The approach has been illustrated with several small but
realistic case studies, highlighting in some situations unex-
pected behaviours or errors. Various kinds of properties have
been checked with UPPAAL and a correction methodology
has been proposed for removing a deadlock in a cycling
specification.

The verification of some temporal properties, like actual
cycle or task durations, was unsatisfactorily long because of
the usual state space explosion problem. We are currently de-
veloping suitable series of abstractions, consisting in grouping
some automata and replacing them by tailored tasks, in order
to allow to overcome this difficulty.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees, whose
interesting comments allowed to improve the present paper.
This work has been partly supported by French ANR project
SYNBIOTIC and Polish-French project POLONIUM.



REFERENCES

[1] Rajeev Alur and David L. Dill. Automata for modeling real-time
systems. In International Colloquium on Algorithms, Languages, and
Programming (ICALP) 1990, volume 443 of LNCS, pages 322–335.
Springer, 1990.

[2] Rajeev Alur and David L. Dill. The theory of timed automata. In Real
Time: Theory in Practice (REX Workshop), volume 600 of LNCS, pages
45–73, 1991.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. In
Theoretical Computer Science, 126(2):183–235, 1994.

[4] Johan Arcile. Implémentation d’un outil de compilation des spécifi-
cations MIRELA vers les automates temporisés au format UPPAAL
(XML). Rapport de stage L3, université d’Evry, Département Infor-
matique, 2014.

[5] Martin Bauer, Bernd Bruegge, Gudrun Klinker, Asa MacWilliams,
Thomas Reicher, Stephan Riss, Christian Sandor, and Martin Wagner.
Design of a component-based augmented reality framework. In Pro-
ceedings of the International Symposium on Augmented Reality (ISAR),
2001.

[6] Mehdi Chouiten, Christophe Domingues, Jean-Yves Didier, Samir
Otmane, and Malik Mallem. Distributed mixed reality for remote
underwater telerobotics exploration. In Virtual Reality International
Conference, VRIC ’12, France, ACM, pages 1:1–1:6, 2012.

[7] Raymond Devillers, Jean-Yves Didier, and Hanna Klaudel. Imple-
menting timed automata specifications: The" sandwich" approach. In
Application of Concurrency to System Design (ACSD), 2013 13th
International Conference on. IEEE, pages 226–235, 2013.

[8] Jean-Yves Didier, Bachir Djafri, and Hanna Klaudel. The MIRELA
framework: modeling and analyzing mixed reality applications using
timed automata. In Journal of Virtual Reality and Broadcasting, 6(1),
t urn:nbn:de:0009-6-17423,, ISSN 1860-2037, 2009..

[9] Jean-Yves Didier, Hanna Klaudel, Mathieu Moine, and Raymond Dev-
illers. An improved approach to build safer mixed reality systems by
analysing time constraints. In Proceedings of the 5th Joint Virtual
Reality Conference, 2013.

[10] Christoph Endres, Andreas Butz, and Asa MacWilliams. A survey of
software infrastructures and frameworks for ubiquitous computing. In
Mobile Information Systems Journal, 1(1):41–80, 2005.

[11] Pablo Figueroa, Walter F Bischof, Pierre Boulanger, H James Hoover,
and Robyn Taylor. Intml: A dataflow oriented development system for
virtual reality applications. In Presence: Teleoperators and Virtual
Environments, 17(5):492–511, 2008.

[12] Pablo Figueroa, J Hoover, and Pierre Boulanger. Intml concepts.
University of Alberta. Computing Science Department, Tech. Rep,
2004.

[13] Michael Haller, Jürgen Zauner, Werner Hartmann, and Thomas Luck-
eneder. A generic framework for a training application based on mixed
reality. Technical report, Upper Austria University of Applied Sciences,
Hagenberg, Austria, 2003.

[14] Charles E Hughes, Christopher B Stapleton, Darin E Hughes, and
Eileen M Smith. Mixed reality in education, entertainment, and training.
Computer Graphics and Applications, IEEE, 25(6):24–30, 2005.

[15] Marc Erich Latoschik. Designing transition networks for multimodal vr-
interactions using a markup language. In Proceedings of the 4th IEEE
International Conference on Multimodal Interfaces, page 411, 2002.

[16] Mathieu Moine. Implementation tool of timed automata specifications.
Master’s thesis, ENSIIE – Université d’Evry-val d’Essonne, 2013.

[17] David Navarre, Philippe Palanque, Rémi Bastide, Amelie Schyn, Marco
Winckler, Luciana P Nedel, and Carla MDS Freitas. A formal de-
scription of multimodal interaction techniques for immersive virtual
reality applications. In Human-Computer Interaction-INTERACT 2005.
Springer, pages 170–183 2005.

[18] Wayne Piekarski and Bruce H. Thomas. An object-oriented software
architecture for 3D mixed reality applications. In ISMAR ’03: Pro-
ceedings of the The 2nd IEEE and ACM International Symposium on
Mixed and Augmented Reality, Washington, DC, USA (IEEE Computer
Society), page 247, 2003.

[19] G. Reitmayr and Dieter Schmalstieg. An open software architecture
for virtual reality interaction. In Proceedings of the ACM symposium

on Virtual reality software and technology. ACM Press, pages 47–54,
2001.

[20] Christian Sandor, Thomas Reicher, et al. Cuiml: A language for the
generation of multimodal human-computer interfaces. In Proceedings
of the European UIML conference, volume 124, 2001.

[21] Uppaal. http://www.uppaal.org/.
[22] Md Tawhid Bin Waez, Juergen Dingel, and Karen Rudie. Timed

automata for the development of real-time systems. Research Report
2011-579, Queen’s University – School of Computing, Canada, 2011.

http://www.uppaal.org/

	Introduction
	MIRELA syntax and examples
	Timed Automata with Synchronised Tasks
	TAST's features

	TAST components for MIRELA
	Analysis
	Bad behaviours
	Deadlocks in MIRELA
	Unbounded waitings in MIRELA
	Temporal properties

	Towards a correction methodology
	Conclusion
	References

