Deadlock and temporal properties analysis in mixed reality applications - Archive ouverte HAL Access content directly
Conference Papers Year : 2014

Deadlock and temporal properties analysis in mixed reality applications


Mixed reality systems overlay real data with virtual information in order to assist users in their current task, they are used in many fields (surgery, maintenance, entertainment). Such systems generally combine several hardware components operating at different time scales, and software that has to cope with these timing constraints. MIRELA, for Mixed Reality Language, is a framework aimed at modelling, analysing and implementing systems composed of sensors, processing units, shared memories and rendering loops, communicating in a well-defined manner and submitted to timing constraints. The paper describes how harmful software behaviour, which may result in possible hardware deterioration or revert the system's primary goal from user assistance to user impediment, may be detected such as (global and local) deadlocks or starvation features. This also includes a study of temporal properties resulting in a finer understanding of the software timing behaviour, in order to fix it if needed.
Fichier principal
Vignette du fichier
issre_final.pdf (359.76 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01150615 , version 1 (12-11-2019)



Raymond Devillers, Jean-Yves Didier, Hanna Klaudel, Johan Arcile,. Deadlock and temporal properties analysis in mixed reality applications. 25th IEEE International Symposium on Software Reliability Engineering (ISSRE 2014), Nov 2014, Naples, Italy. pp.55--65, ⟨10.1109/ISSRE.2014.33⟩. ⟨hal-01150615⟩
47 View
70 Download



Gmail Facebook Twitter LinkedIn More