Smooth and adaptive gradient method with retards - Archive ouverte HAL
Article Dans Une Revue Mathematical and Computer Modelling Année : 2002

Smooth and adaptive gradient method with retards

Jean-Luc Lamotte
  • Fonction : Auteur
  • PersonId : 966000
Brígida Molina
  • Fonction : Auteur
Marcos Raydan
  • Fonction : Auteur

Résumé

The gradient method with retards (GMR) is a nonmonotone iterative method recently developed to solve large, sparse, symmetric, and positive definite linear systems of equations. Its performance depends on the retard parameter $\overline{m}$. The larger the $\overline{m}$, the faster the convergence, but also the faster the loss of precision is observed in the intermediate computations of the algorithm. This loss of precision is mainly produced by the nonmonotone behavior of the norm of the gradient which also increases with $\overline{m}$. In this work, we first use a recently developed inexpensive technique to smooth down the nonmonotone behavior of the method. Then we show that it is possible to choose $\overline{m}$ adaptively during the process to avoid loss of precision. Our adaptive choice of $\overline{m}$ can be viewed as a compromise between numerical stability and speed of convergence. Numerical results on some classical test problems are presented to illustrate the good numerical properties.

Dates et versions

hal-01150600 , version 1 (11-05-2015)

Identifiants

Citer

Jean-Luc Lamotte, Brígida Molina, Marcos Raydan. Smooth and adaptive gradient method with retards. Mathematical and Computer Modelling, 2002, 36 (9-10), pp.1161-1168. ⟨10.1016/S0895-7177(02)00266-2⟩. ⟨hal-01150600⟩
57 Consultations
0 Téléchargements

Altmetric

Partager

More