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ABSTRACT

The visual signal is highly occupied by regions of homoge-
neous and repetitive patterns known as Textures. Textures
have a common property that their similarity highly devi-
ates from point by point comparison, i.e, two textures can
look very similar even if they have some shift, rotation and
difference in their distribution.

In the context of compression, All of the MPEG refer-
ence encoders (including HEVC), aim at minimizing the bi-
trate at a certain distortion level measured in terms of pixel
comparison. For textures, this kind of distortion measure
does not usually reflect the amount of perceived distortion.
For this reason, we investigate the use of state of the art
perceptual similarity metrics as a replacement for this mea-
sure. In other words, we aim at optimization the bitrate
such that we minimize the perceptual distortion rather that
the pixels difference. We used two metrics (Local Radius
Index and Structure Texture Similarity Metric) in selecting
the best intra prediction mode and block partitioning. Ex-
perimental results showed that these metrics try always to
retain some structural properties of the textures. These met-
rics also showed a better rate-distortion performance when
the distortion is measured via a distance metric based on
texture features.

1. INTRODUCTION

Visual signal is a rich source of information. It can be de-
composed into different classes and components. In this
work, we consider it as two components, structure and tex-
ture. Structure contains the semantic meaning of the scene
(edges, lines, corners, etc.) and textures fill the gap be-
tween structures. According to this, Textures range from
very simple ones, like a DC block, to more complex ones.
They can be also classified as regular and stochastic. Each
texture type possesses different spectral, statistical and per-
ceptual properties. For this reason, encoding them without
considering their properties does not end up with the best

rate-quality performance, which is the optimal goal of video
compression.

In terms of visual similarity, humans are less sensitive to
variations in textures, i.e, two textures can look very similar
even if they have some deviations in scale, orientation and
repetition. In contrast, they can look very different even if
they have small average pixel difference. Therefore, assess-
ing the texture similarity by the means of pixel comparison
is avoided. Instead, the comparison can be done between
structural information (encoded in frequency subband chan-
nels) and/or statistical information. this problem is an active
research topic in both engineering and psychology. Details
of different texture similarity metrics can be found in [1].

Video coding standards, such as HEVC, aim at minimiz-
ing the bitrate within a certain distortion level. The mea-
sured distortion is typically the mean squared error. This
type of distortion, which is based on comparing pixel val-
ues, does not proportionally reflect the amount of perceived
distortion (especially for texture components). For this rea-
son, many approaches consider different weight for the dis-
tortion computed at each block according to its texture com-
plexity (ex. [2]). Others consider replacing this measure
by more appropriate ones (ex. [3]). In contrast, some ap-
proaches try to replace some textures with a synthesized
ones which look visually very similar (ex. [4] [5]).

In this paper, we investigate the possibility of encoding
static textures in such a way that the encoder try to minimize
the bitrate while maximizing visual similarity between the
reconstructed and the original signal. We borrow two sim-
ilarity metrics from the texture retrieval problem. The two
metrics, known as Local Radius Index (LRI) and Structure
Texture Similarity Index (STSIM), are the most recent and
successful ones in texture retrieval. We used them to select
the best intra prediction mode and block partitioning. By
doing so, we do not violate the HEVC standard, the HEVC
decoder can thus be directly used to decode the resulting
bitstream.

The rest of the paper is organized as follows: Section
2 gives an overview of the texture similarity metrics used



in this work. Section 3 presents the procedure carried out
to evaluate each metric. In Section 4.1, the experimental
results are provided and discussed with a conclusion given
in Section 5.

2. OVERVIEW OF TEXTURE SIMILARITY
METRICS

Texture similarity metrics exist in various forms. Some of
them compare the statistics of textures in the spatial domain
and others in the subband frequency domain (details can be
found in [1]. In this paper, we consider LRI and STSIM as
being recent and successful texture similarity metrics.

2.1. STSIM

STSIM was presented in [6] and further improved in [7]. It
is based on comparing set of statistics in the subband de-
composition. These statistics consist of mean, standard de-
viation, and horizontal and vertical auto-correlation of each
subband. Beside that, it computes also the cross correlation
between subbands with the same scale or subbands with the
same orientation. This set of statistics provides a solid de-
scription of a given texture and thus can well characterize
the similarity between two textures.

2.2. LRI

LRI is a successive to STSIM. LRI is much less compu-
tationally expensive as compared to STSIM and performs
better in the context of similar texture retrieval [8]. It com-
putes local index for each pixel in the spatial domain, beside
that, it also computes the local binary pattern, standard de-
viation of each subband in the subband frequency domain
and an intensity penalization term. Thus it is a combina-
tion between the analysis in frequency decomposition and
spatial domain.

2.3. Adaptation of Similarity Metrics in HEVC

2.3.1. STSIM

One interesting property of STSIM is that it is bounded be-
tween one and zero, where one is the maximum similarity
index. Embedding this metric in HEVC is straightforward.
As we want to use it as a distortion metric, we consider the
distortion function as:

DSTSIM = 1− ISTSIM (1)

where ISTSIM is the STSIM similarity index.

2.3.2. LRI

LRI, in contrast, is not bounded. It computes information
divergence between the distribution of the local indexes of
two textures. This divergence, as well as the one used inside
the local binary pattern, can easily have infinite value when
used as block based distortion measure (specially for small
blocks comparison) as both of them compute the logarithm
of the probability distribution. To overcome this problem,
we modified both of them in the following manner:

• We use a normalized Kullback Leiber Divergence (KLD)
in LRI . Since the Gibbs inequality assures that KLD
value cannot accede the entropy of the first element
of two compared distributions, we normalize KLD
by dividing it by this entropy. The only exception is
when any compared distributions have a probability
value of zero when the other does not. In this case,
we assume that the two distributions are different and
we return the maximum value which is one.

• We normalize also the the local binary pattern term
which computes the log-likelihood function between
two distributions. The function is divided it by the en-
tropy of the second distribution. The similarity func-
tion is then obtained by subtracting the normalized
LBP from one. Similarly, we return the maximum
value (one) when the distributions are assumed to be
different.

We also eliminate the intensity penalization term in our work.
This term was initially added to penalize the differences in
the intensity values. Since we normalized LRI, the IP term
has a greater impact on the overall metric and causes the
metric to be more pixel dependent, which is far away from
our goal.

3. PERFORMANCE EVALUATION

To evaluate the performance of the metrics, we implemented
both STSIM and LRI and integrated them in HEVC en-
coder. These metrics were used inside the cost function for
selecting the best intra prediction mode and block partition-
ing. To elaborate more, the details of HEVC intra prediction
mode selection is given below:

3.1. Intra Mode Selection in HEVC reference Encoder

HEVC defines 33 possible directional prediction modes. Be-
side this, it also defines DC and Planar prediction modes.
For each mode, the residual block can be directly encoded
(transform, qunatization and entropy coding) or further par-
titioned into quadtree. Each time, the cost function is com-
puted. The particular mode and partition which minimizes
the cost is then selected.



In the reference encoder, HEVC considers only 3 most
probable modes for the full rate-distortion optimization. These
3 modes are the ones among the 35 modes that have a mini-
mum Sum of Absolute Transformed Difference (SATD) be-
tween the original and prediction blocks. For selecting the
best mode, HEVC computes the Sum of Squared Difference
(SSD) as a distortion metric in the cost function.

3.2. Replacing HEVC Distortion Metric

In this work, we replaced the SATD and SSD of HEVC ref-
erence encoder by distortion metrics evaluated with percep-
tual similarity metrics. We experimented both STSIM and
LRI and adapted in HEVC as described in 2.3. To keep the
range of SATD and SSD, the metrics were multiplied by:

• 255×N ×N for SATD

• 2552 ×N ×N for SSD.

where N is the dimension of the prediction block.

4. EXPERIMENTS AND RESULTS

We have experimented the use the two metrics in HEVC
for coding static textures. We used Brodazt textures down-
loaded from USC-SIPI dataset [9]. This contains 13 differ-
ent gray scale textures (see Fig. 1) which are extensively
used in textures analysis for engineering and psychophysi-
cal experiments. We used HM 9.0 [10] as a host encoder.
In the following subsections, we provide the details of each
experiment.

Fig. 1. Texture dataset used in this paper (from USC-SIPI
dataset [9])

4.1. Quality of the Decoded Textures

To study the impact of using perceptual similarity metrics
in HEVC, we encoded all textures for different QP values.

First we compared the visual quality when using the de-
fault metric or the perceptual ones. For low QP values (low
compression), no change has been observed. For high QP,
however, significant changes can be seen. Examples of this
are shown in the figures below.

The first example is shown in Fig. 2. We can see that
encoding a highly structured texture with a large QP value
results in loosing most of its semantics. This is because
many blocks are replaced by DC values. Using either one
of the metrics can retain the overall structure of the texture.
One can also notice that there exists many wrong directions,
but the overall quality is much more better.

Another example is shown in Fig.3. In this figure, the
effect of wrong prediction direction is more clear when LRI
is used. On the other hand, the right part of the texture is
completely eliminated when the default metrics are used.

Fig. 4 gives an example of a extensive compression.
In this case, the details of the texture are lost in all three
coding configuration. But one thing to notice that there is
different kind of compression artifacts when the perceptual
metrics are used. We noticed that whatever hard the com-
pression is, the perceptual metrics try to provide a structure
of a textures rather than simple DC blocks. This can be par-
ticularly interesting if we consider the no reference quality
of the decoded texture. This means that the original texture
is somehow replaced by another texture which looks more
natural than when the default metrics are used.

Fig. 2. Example of using LRI and STSIM inside HEVC
(QP=51). Top left: original Image, top right: encoded with
default HEVC metrics, down left: encoded with LRI, down
right: encoded with STSIM.



Fig. 3. Example of using LRI and STSIM inside HEVC
(QP=43). Top left: original Image, top right: encoded with
default HEVC metrics, down left: encoded with LRI, down
right: encoded with STSIM.

4.2. Encoder Partitioning Behavior

To understand more the effects of each metric on the pre-
diction mechanism, we measured the number of splitting
depths that the encoder uses to encode each texture. We ran
a simulation on the 13 textures from the used dataset with
a quantization parameter (QP) taken range of [22, 27, 32,
37, 43, 47, 51]. The corresponding histograms are shown in
Fig. 5. The splitting depth of zero means that the prediction
block has its maximal size (64x64). Increasing the splitting
depth by one corresponds to partition the block into four
sub-blocks. In this figure, the histograms were scaled by
the number of smallest blocks (4x4) that the corresponding
splitting depth contains. This was done to have a fair com-
parison between splitting depths as each splitting occupies
different areas of the frame. We observe from these his-
tograms that when the default metrics are used, the encoder
uses small prediction blocks for low compression (low QP)
to better approximate the input signal. For high compres-
sion, it tries to approximate large prediction blocks (mostly
with DC values) to have better compression. The behavior
is totally different when LRI or STSIM is used. The en-
coder behavior does not change much as the compression
changes. It uses always large block sizes to approximate
the input signal and small block sizes (less than 16x16) are
rarely chosen. The is because these metrics compare statis-
tics of different distributions. For small block sizes, there is

Fig. 4. Example of using LRI and STSIM inside HEVC
(QP=51). Top left: original Image, top right: encoded with
default HEVC metrics, down left: encoded with LRI, down
right: encoded with STSIM.

always a lack of enough statistics and usually these metrics
return a high value of distortion in such a condition.

4.3. Rate Distortion Analysis

Until now, we considered only the quality of the decoded
textures. In video coding, however, the comparison between
two different schemes is a rate-distortion based. For this
work, the rate-distortion comparison is not straightforward.
This is because, up to our knowledge, no reliable quality
metric has been designed designed for textures. The usual
approach of comparing PSNR value does not provide a use-
ful information as it compare pixel values, which is far away
from the purpose of this work. Beside that, the type of dis-
tortion when the perceptual metrics is used is totally differ-
ent and cannot be assessed by PSNR (ex. see Fig 2).

Again, we follow the same approach of borrowing a dis-
tance metric from texture retrieval problem. We avoid using
LRI or STSIM as this may result in biased assessment. We
used another metric [11] which is based on comparing fea-
tures of textures in the frequency domain. This metric is
compared to both LRI and STSIM ([8]) and provides close
by results in retrieval rate. This metric compares the energy
and mean of frequency subbands (computed using Gabor
filters). The metric was downloaded from the authors web-
site and used as a distortion metrics in our work.

By calculating the distance measure by this metric to



Fig. 5. Histograms of splitting depths vs QP. Each depth is
scaled by the number of 4x4 block that it has

the original texture for different compression levels, we ob-
tained the curves shown in Fig 6. What we observe from
these is that in most cases, LRI and STSIM provides better
score than the default metrics in the low bitrate region. For
high bitrate region, no gain when using LRI or STSIM. This
can prove that even for high compression, both the similar-
ity metrics try to keep the structural information rather than
replacing the texture blocks with DC blocks.

5. CONCLUSION

In this paper, we studied the effect of replacing some of
the default distortion metrics in HEVC by perceptual ones.
These metrics were used to select the best prediction mode
and block partitioning. We used recent perceptual similar-
ity metrics, namely LRI and STSIM which have been devel-

oped in the context of texture retrieval. The direct benefit of
this approach is that it is its compatibility with HEVC stan-
dard, which means no modification to the decoder is needed.

When these metrics are used, the structural information
of the textures is tried to be retained in contrast to the de-
fault metrics which tries to smooth the contents and poten-
tially replace them by DC values. For severe compression,
the decoded textures can have a noisy structure as HEVC
intra prediction cannot provide anything better than paral-
lel lines of the directional prediction. Using both metrics,
wrong prediction directions might be selected. This is be-
cause these metrics are less sensitive to pixel by pixel com-
parison. LRI, as compared to STSIM, is much less compu-
tationally expensive. But it results in more wrong prediction
directions than STSIM. The reason behind this is the ap-
proximation used when the metric is adapted to this work.

The encoder behavior is changed when these metrics are
used. It always tends to use large prediction block sizes for
all range of compression. This is mainly because in small
blocks, there is a lack of enough statistics to compare and
the metrics will return high dis-similarity values. Experi-
mental results showed that using these metrics can improve
the overall perceived quality of the decoded textures. The
small details of textures are better preserved and the de-
coded textures look more pleasant.

In terms of texture similarity, the rate-distortion curves
show that both metrics perform better than the default met-
ric. The distortion metric that was used compares the energy
and mean of subband frequency channels obtained by Gabor
filter.

As a conclusion, the use of texture similarity metrics can
generally give a better no-reference quality than the default
one. A possible further improvement will be rate-distortion
optimization and perceptual post processing to reduce the
effects of wrong prediction direction. Beside that, since the
metrics usually work for large block size, a hybrid mecha-
nism can be used to reduce the complexity of their use. That
is, for blocks larger than 16x16, the perceptual metrics can
be used where the default metrics can be used for the rest.
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