
HAL Id: hal-01150582
https://hal.science/hal-01150582v1

Submitted on 11 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multistage Stochastic Programming Approach to the
Dynamic and Stochastic VRPTW

Michael Saint-Guillain, Yves Deville, Christine Solnon

To cite this version:
Michael Saint-Guillain, Yves Deville, Christine Solnon. A Multistage Stochastic Programming Ap-
proach to the Dynamic and Stochastic VRPTW. 12th International Conference on Integration of
AI and OR Techniques in Constraint Programming (CPAIOR 2015), May 2015, Barcelone, Spain.
pp.357-374. �hal-01150582�

https://hal.science/hal-01150582v1
https://hal.archives-ouvertes.fr

A Multistage Stochastic Programming Approach to
the Dynamic and Stochastic VRPTW

Michael Saint-Guillain∗, Yves Deville∗ & Christine Solnon∗∗

∗ICTEAM, Université catholique de Louvain, Belgium
∗∗Université de Lyon, CNRS

∗∗INSA-Lyon, LIRIS, UMR5205, F-69621, France

Abstract. We consider a dynamic vehicle routing problem with time windows
and stochastic customers (DS-VRPTW), such that customers may request for ser-
vices as vehicles have already started their tours. To solve this problem, the goal
is to provide a decision rule for choosing, at each time step, the next action to
perform in light of known requests and probabilistic knowledge on requests like-
lihood. We introduce a new decision rule, called Global Stochastic Assessment
(GSA) rule for the DS-VRPTW, and we compare it with existing decision rules,
such as MSA. In particular, we show that GSA fully integrates nonanticipativity
constraints so that it leads to better decisions in our stochastic context. We de-
scribe a new heuristic approach for efficiently approximating our GSA rule. We
introduce a new waiting strategy. Experiments on dynamic and stochastic bench-
marks, which include instances of different degrees of dynamism, show that not
only our approach is competitive with state-of-the-art methods, but also enables
to compute meaningful offline solutions to fully dynamic problems where abso-
lutely no a priori customer request is provided.

1 Introduction

Dynamic (or online) vehicle routing problems (D-VRPs) arise when information about
demands is incomplete, e.g., whenever a customer is able to submit a request during
the online execution of a solution. D-VRP instances usually indicate the deterministic
requests, i.e., those that are known before the online process if any. Whenever some ad-
ditional (stochastic) knowledge about unknown requests is available, the problem is said
to be stochastic. We focus on the Dynamic and Stochastic VRP with Time Windows (DS-
VRPTW). These problems arise in many practical situations, as door-to-door or door-
to-hospital transportation of elderly or disabled persons. In many countries, authorities
try to set up dial-a-ride services, but escalating operating costs and the complexity of
satisfying all customer demands become rapidly unmanageable for solution methods
based on human choices [10]. However, such complex dynamic problems need reliable
and efficient algorithms that should first be assessed on reference problems, such as the
DS-VRPTW.

In this paper, we present a new heuristic method for solving the DS-VRPTW, based
on a Stochastic Programming modeling. By definition, our approach enables a higher
level of anticipation than heuristic state-of-the-art methods. The resulting new online
decision rule, called Global Stochastic Assessment (GSA), comes with a theoretical

analysis that clearly defines the nature of the method. We propose a new waiting strategy
together with a heuristic algorithm that embeds GSA. We compare GSA with the state-
of-the-art method MSA from [7], and provide a comprehensive experimental study that
highlights the contributions of existing and new waiting and relocation strategies.

This paper is organized as follows. Section 2 describes the problem. Section 3
presents the state-of-the-art method we compare to and briefly discuss related works.
GSA is then presented in Section 4. Section 5 describes an implementation that em-
beds GSA, based on heuristic local search. Finally, section 6 resumes the experimental
results. A conclusion follows in section 7.

2 Description of the DS-VRPTW

Notations. We note [l, u] the set of all integer values i such that l ≤ i ≤ u. A se-
quence < xi, xi+1, . . . , xi+k > (with k ≥ 0) is noted xi..i+k, and the concatenation
of two sequences xi..j and xj+1..k (with i ≤ j < k) is noted xi..j .xj+1..k. Random
variables are noted ξ and their realizations are noted ξ. We note ξ ∈ ξ the fact that
ξ is a realization of ξ, and p(ξ = ξ) the probability that the random variable ξ is re-
alized to ξ. Finally, we note Eξ[f(ξ)] the expected value of f(ξ) which is defined by
Eξ[f(ξ)] =

∑
ξ∈ξ p(ξ = ξ) · f(ξ).

Input Data of a DS-VRPTW. We consider a discrete time horizon [1, H] such that each
online event or decision occurs at a discrete time t ∈ [1, H], whereas each offline event
or decision occurs at time t = 0. The DS-VRPTW is defined on a complete and directed
graph G = (V,E). The set of vertices V = [0, n] is composed of a depot (vertex 0) and
n customer regions (vertices 1 to n). To each arc (i, j) ∈ E is associated a travel time
ti,j ∈ R≥0, that is the time needed by a vehicle to travel from i to j, with ti,j 6= tj,i in
general. To each customer region i ∈ [1, n] is associated a load qi, a service duration
di ∈ [1, H] and a time window [ei, li] with ei, li ∈ [1, H] and ei ≤ li.

The set of all customer requests is R ⊆ [1, n]× [0, H]. For each request (i, t) ∈ R,
t is the time when the request is revealed. When t = 0, the request is known before the
online execution and it is said to be deterministic. When t > 0, the request is revealed
during the online execution at time t and it is said to be online (or dynamic). There may
be several requests for a same vertex i which are revealed at different times. During
the online execution, we only know a subset of the requests of R (i.e., those which have
already been revealed). However, for each time t ∈ [1, H], we are provided a probability
vector P t such that, for each vertex i ∈ [1, n], P t[i] is the probability that a request is
revealed for i at time t.

There are k vehicles and all vehicles have the same capacity Q.

Solution of a DS-VRPTW. At the end of the time horizon, a solution is a subset of
requests Ra ⊆ R together with k routes (one for each vehicle). Requests in Ra are said
to be accepted, whereas requests in R \ Ra are said to be rejected. The routes must
satisfy the constraints of the classical VRPTW restricted to the subset Ra of accepted
requests, i.e., each route must start at the depot at a time t ≥ 1 and end at the depot at a
time t′ ≤ H , and for each accepted request (i, t) ∈ Ra, there must be exactly one route

that arrives at vertex i at a time t′ ∈ [ei, li] with a current load l ≤ Q − qi and leaves
vertex i at a time t′′ ≥ t′+ di. The goal is to minimize the number of rejected requests.

As not all requests are known at time 0, the solution cannot be computed offline, and
it is computed during the online execution. More precisely, at each time t ∈ [1, H], an
action at is computed. Each action at is composed of two parts: first, for each request
(i, t) ∈ R revealed at time t, the action at must either accept the request or reject it;
second, for each vehicle, the action at must give operational decisions for this vehicle
at time t (i.e., service a request, travel towards a vertex, or wait at its current position).
Before the online execution (at time 0), some decisions are computed offline. Therefore,
we also have to compute a first action a0.

A solution is a sequence of actions a0..H which covers the whole time horizon.
This sequence must satisfy VRPTW constraints, i.e., the actions of a0..H must define
k routes such that each request accepted in a0..H is served once by one of these routes
within the time window associated with the served vertex and without violating capacity
constraints. We define the objective function ω such that ω(a0..t) is +∞ if a0..t does
not satisfy VRPTW constraints, and ω(a0..t) is the number of requests rejected in a0..t

otherwise. Hence, a solution is a sequence a0..H such that ω(a0..H) is minimal at the
end of the horizon.

Stochastic program. There are different notations used for formulating stochastic pro-
grams; we mainly use those from [8]. For each time t ∈ [1, H], we have a vector of
random variables ξt such that, for each vertex i ∈ [1, n], ξt[i] is realized to 1 if a re-
quest for i is revealed at time t, and to 0 otherwise. The probability distribution of ξt is
defined by P t, i.e., p(ξt[i] = 1) = P t[i] and p(ξt[i] = 0) = 1−P t[i]. We note ξ1..t the
random matrix composed of the random vectors ξ1 to ξt. A realization ξ1..H ∈ ξ1..H
is called a scenario.

At each time t ∈ [1, H], the action at must contain one accept or reject for each
request which is revealed in ξt. Therefore, we note A(ξt) the set of all actions that con-
tain an accept or a reject for each vertex i ∈ [1, n] such that ξt[i] = 1. Of course, these
actions also contain other decisions related to the k vehicles. We also note A(ξt1..t2)
the sequence of sets < A(ξt1), . . . , A(ξt2) > where t1 ≤ t2.

Hence, at each time t, given the sequence a0..t−1 of past actions, the best action at
is obtained by solving the multistage stochastic problem defined by eq. (1):

at = argmin
at∈A(ξt)

Eξt+1

[
min

at+1∈A(ξt+1)
Eξt+2

[
· · · min

aH−1∈A(ξH−1)
EξH

[
min

aH∈A(ξH)
ω(a0..H)

]
· · ·
]]

(1)
Note that this multistage stochastic problem is different from the two-stage stochastic

problem defined by eq. (2):

at = argmin
at∈A(ξt)

Eξt+1..H [min
at+1..H∈A(ξt+1..H)

ω(a0..H)] (2)

Indeed, eq. (1) enforces nonanticipativity constraints so that, at each time t′ > t, we
consider the action at

′
which minimizes the expectation with respect to ξt

′
only, with-

out considering the possible realizations of ξt
′+1..H . Eq. (2) does not enforce these con-

straints and considers the best sequence at+1..H for each realization ξt+1..H ∈ ξt+1..H .

cab

d e f

g h i

j
t=1

[5,5] [7,7] [9,9]

[7,7] [9,9][5,5]

Time 2 3 4 5 6 7 8 9
Scenario ξ2..51 ∅ ∅ {d, e, f} ∅ ∅ ∅ ∅ ∅
Scenario ξ2..52 ∅ ∅ {g, h, i} ∅ ∅ ∅ ∅ ∅

At time t = 1, there is only 1 vehicle which is
on vertex a, and we have to choose between 2
possible actions: travel to b or travel to c

Fig. 1. A simple example of nonanticipation. The graph is displayed on the left. Time windows
are displayed in brackets. For every couple of vertices (i, j), if an arrow i→ j is displayed then
ti,j = 2; otherwise ti,j = 20. To simplify, we consider only 2 equiprobable scenarios (displayed
on the right). These scenarios have the same prefix (at times 2 and 3 no request is revealed) but
reveal different requests at time 4. When using eq. (1) at time t = 1, we choose to travel to c as
the expected cost with nonanticipativity constraints is 1: At time 4, only one scenario will remain
and if this scenario is ξ1 (resp. ξ2), request (d, 4) (resp. (g, 4)) will be rejected. When using eq.
(2), we choose to travel to b as the expected cost without nonanticipativity constraints is 0 (for
each possible scenario, there exists a sequence of actions which serves all requests: travel to d, e,
and f for ξ1 and travel to g, h, and i for ξ2). However, if we travel to b, at time 3 we will have to
choose between traveling to d or g and at this time the expected cost of both actions will be 1.5:
If we travel to d (resp. g), the cost with scenario ξ1 is 0 (resp. 3) and the cost with scenario ξ2 is
3 (resp. 0). In this example, the nonanticipativity contraints of multistage problem (1) thus leads
to a better action than the two-stage relaxation (2).

Therefore, eq. (1) may lead to a larger expectation of ω than eq. (2), as it is more con-
strained. However, the expectation computed in eq. (1) leads to better decisions in our
context where some requests are not revealed at time t. This is illustrated in Fig. 1.

3 Related Work

The first D-VRP is proposed in [29], which introduces a single vehicle Dynamic Dial-
a-Ride Problem (D-DARP) in which customer requests appear dynamically. Then, [20]
introduced the concept of immediate requests that must be serviced as soon as possi-
ble, implying a replanning of the current vehicle route. Complete reviews on D-VRP
may be found in [21,18]. In this section, we more particularly focus on stochastic D-
VRP. [18] classifies approaches for stochastic D-VRP in two categories, either based on
stochastic modeling or on sampling. Stochastic modeling approaches formally capture
the stochastic nature of the problem, so that solutions are computed in the light of an
overall stochastic context. Such holistic approaches usually require strong assumptions
and efficient computation of complex expected values. Sampling approaches try to cap-
ture stochastic knowledge by sampling scenarios, so that they tend to be more focused
on local stochastic evidences. Their local decisions however allow sample-based meth-
ods to scale up to larger problem instances, even under challenging timing constraints.
One usually needs to find a good compromise between having a high number of sce-
narios, providing a better representation of the real distributions, and a more restricted
number of these leading to less computational effort.

Algorithm 1: The ChooseRequest-ε Expectation Algorithm
1 for at ∈ A(ξt) do f(at)← 0 ;
2 Generate a set S of α scenarios using Monte Carlo sampling
3 for each scenario s ∈ S and each action at ∈ A(ξt) do
4 f(at)← f(at)+cost of (approximate) solution to scenario s starting with at

5 return argminat∈A(ξt) f(a
t)

[7] studies the DS-VRPTW and introduces the Multiple Scenario Approach (MSA).
A key element of MSA is an adaptive memory that stores a pool of solutions. Each so-
lution is computed by considering a particular scenario which is optimized for a few
seconds. The pool is continuously populated and filtered such that all solutions are con-
sistent with the current system state. Another important element of MSA is the ranking
function used to make operational decisions involving idle vehicles. The authors de-
signed 3 algorithms for that purpose:

– Expectation [3,4] samples a set of scenarios and selects the next request to be ser-
viced by considering its average cost on the sampled set of scenarios. Algorithm
1 [27] depicts how it chooses the next action at to perform. It requires an opti-
mization for each action at ∈ A(ξt) and each scenario s ∈ S (lines 3-4), which is
computationally very expensive, even with a heuristic approach.

– Regret [3,6] approximates the expectation algorithm by recognizing that, given a
solution sol∗s to a particular scenario s, it is possible to compute a good approxima-
tion of the local loss inquired by performing another action than the next planned
one in sol∗s .

– Consensus [4,7] selects the request that appears the most frequently as the next
serviced request in the solution pool.

Quite similar to the consensus algorithm is the Dynamic Sample Scenario Hedging
Heuristic introduced by [14] for the stochastic VRP. Also, [15] designed a Tabu Search
heuristic for the DS-VRPTW and introduced a vehicle-waiting strategy computed on a
future request probability threshold in the near region. Finally, [5] extends MSA with
waiting and relocation strategies so that the vehicles are now able to relocate to promis-
ing but unrequested yet vertices. As the performances of MSA has been demonstrated in
several studies [5,12,22,19], it is still considered as a state-of-the-art method for dealing
with DS-VRPTW.

Other studies of particular interest for our paper are [13], on the dynamic and
stochastic pickup and delivery problem, and [22], on the DS-DARP. Both consider local
search based algorithms. Instead of a solution pool, they exploit one single solution that
minimizes the expected cost over a set of scenarios. However, in order to limit com-
putational effort, only near future requests are sampled within each scenario. Although
the approach of [22] is similar to the one of [13], the set of scenarios considered is
reduced to one scenario. Although these later papers show some similarities with the
approach we propose, they do not provide any mathematical motivation and analysis of
their methods.

4 The global Stochastic Assessment decision rule

The two-stage stochastic problem defined by eq. (2) may be solved by a sampling solv-
ing method such as MSA, which solves a deterministic VRPTW for each possible sce-
nario (i.e., realization of the random variables) and selects the action at which mini-
mizes the sum of all minimum objective function values weighted by scenario proba-
bilities. However, we have shown in Section 2 that eq. (2) does not enforce nonanticipa-
tivity constraints because the different deterministic VRPTW are solved independently.
To enforce nonanticipativity constraints while enabling sampling methods, we push
these constraints in the computation of the optimal solutions for all different scenarios:
Instead of computing these different optimal solutions independently, we propose to
compute them all together so that we can ensure that whenever two scenarios share a
same prefix of realizations, the corresponding actions are enforced to be equal.

At each time t ∈ [0, H], let r be the number of different possible realizations of
ξt+1..H , and let us note ξt+1..H

1 , . . . , ξt+1..H
r these realizations. Given the sequence

a0..t−1 of past actions, we choose action at by using eq. (3)

at = argmin
at∈A(ξt)

Q(a0..t, {ξt+1..H
1 , . . . , ξt+1..H

r }) (3)

which is called the deterministic equivalent form of eq. (1).
Q(a0..t, {ξt+1..H

1 , . . . , ξt+1..H
r }) solves the deterministic optimization problem

min
at+1..H
1 ∈A(ξt+1..H

1),...,at+1..H
r ∈A(ξt+1..H

r)

r∑
i=1

p(ξt+1..H=ξt+1..H
i) · ω(a0..t.at+1..H

i) (4)

s.t. (ξt+1..t′

i = ξt+1..t′

j)⇒ (at+1..t′

i = at+1..t′

j), ∀t′ ∈ [t+ 1, H], ∀i, j ∈ [1, r] (5)

The nonanticipativity constraints (5) state that, when 2 realizations ξt+1..H
i and ξt+1..H

j

share a same prefix from t+ 1 to t′, the corresponding actions must be equal [23].
Solving eq. (3) is computationally intractable for two reasons. First, since the num-

ber r of possible realizations of ξt+1..H is exponential in the number of vertices and
in the remaining horizon size H − t, considering every possible scenario is intractable
in practice. We therefore consider a smaller set of α scenarios S = {s1, ..., sα} such
that each scenario si ∈ S is a realization of ξt+1..H , i.e., ∀i ∈ [1, α], si ∈ ξt+1..H .
This set S is obtained by Monte Carlo sampling [2]. All elements of S share the same
probability, i.e., p(ξt+1..H = s1) = . . . = p(ξt+1..H = sα).

Second, solving eq. (3) basically involves solving to optimality problemQ for each
possible action at ∈ A(ξt). Each problem Q involves solving a VRPTW for each pos-
sible scenario of S, while ensuring nonanticipativity constraints between the different
solutions. As the VRPTW problem is anNP-hard problem, we propose to compute an
upper boundQ ofQ based on a given sequence at+1..H

R of future route actions. Because
we impose the sequence at+1..H

R , the set of possible actions at time t is limited to those
directly compatible with it, denoted Ã(ξt, at+1..H

R) ⊆ A(ξt). That limitation enforces
ω(a0..H) < +∞. This finally leads to the GSA decision rule:

(GSA) at = argmin
at∈Ã(ξt,at+1..H

R)

Q(a0..t, at+1..H
R , S) (6)

which, provided realization ξt, sampled scenarios S and future route actions at+1..H
R ,

selects the action at that minimizes the expected approximate cost over scenarios S.
Notice that almost all the anticipative efficiency of the GSA decision rule relies on the
sequence at+1..H

R , which directly affects the quality of the upper bound Q.

Sequence at+1..H
R of future route actions. This sequence is used to compute an upper

bound ofQ. For each time t′ ∈ [t+1, H], the route action at
′

R only contains operational
decisions related to vehicle routing (i.e., for each vehicle, travel towards a vertex, or wait
at its current position) and does not contain decisions related to requests (i.e., request
acceptance or rejection). The more flexible at

′

R with respect to S, the better the bound
Q. We describe in Section 5 how a flexible sequence is computed through local search.

Computation of an upper bound Q of Q. Algorithm 2 depicts the computation of
an upper bound Q of Q given a sequence at+1..H

R of route actions consistent with past
actions a0..t. For each scenario si of S, Algorithm 2 builds a sequence b0..H for si,
which starts with a0..t, and whose end bt+1..H is computed from at+1..H

R in a greedy
way. At each time t′ ∈ [t + 1..H], each request revealed at time t′ in scenario si is
accepted if it is possible to modify bt

′..H so that one vehicle can service it; it is rejected
otherwise. One can consider bt

′..H as being a set of vehicle routes, each defined by
a sequence of planned vertices. Each planned vertex comes with specific decisions: a
waiting time and whether a service is performed. In this context, trytoServe performs
a deterministic linear time modification of bt

′..H such that (j, t′) corresponds to the
insertion of the vertex j in one of the routes defined by bt

′..H , at the best position
with respect to VRPTW constraints and travel times, without modifying the order of
the remaining vertices. At the end, Algorithm 2 returns the average number of rejected
requests for all scenarios. Note that, when modifying a sequence of actions so that a
request can be accepted (line 6), actions bt

′..H can be modified, but b0..t
′−1 are not

modified. This ensures that Q preserves the nonanticipativity constraints. Indeed, the
fact that two identical scenarios prefixes could be assigned two different subsequences
of actions implies that either trytoServe((j, t′), bt

′..H) is able to modify an action

Algorithm 2: The Q(a0..t, at+1..H
R , S) approximation function

1 Precondition: at+1..H
R is a sequence of route actions consistent with a0..t

2 for each scenario si ∈ S do
3 nbRejected [i]← 0; b0..t ← a0..t; bt+1..H ← at+1..H

R

4 for t′ ∈ [t+ 1..H] do
5 for each request (j, t′) revealed at time t′ for a vertex j in scenario si do
6 ct

′..H ← trytoServe((j, t′), bt
′..H)

7 if bt+1..t′−1 · ct
′..H is feasible then bt

′..H ← ct
′..H

8 else add the decision reject(j,t’) to bt
′

and increment nbRejected [i];

9 return 1
|S| ·

∑
si∈S nbRejected [i]

bt<t
′

or is a nondeterministic function. In both cases, there is a contradiction. Finally,
notice that contrary to other local search methods based on Monte Carlo simulation
as in [13,22], GSA considers the whole timing horizon when evaluating a first-stage
solution against a scenario.

Comparison to MSA GSA has two major differences with MSA. Given a set of scenar-
ios, GSA maintains only one solution, namely the sequence at+1..H

R , that best suits to a
pool of scenarios whilst MSA computes a set of solutions, each specialized to one sce-
nario from the pool. Furthermore, by preserving nonanticipativity GSA approximates
the multistage problem of equations (1,3). In contrary, MSA relaxes these constraints
and therefore approximates the two-stage problem (2) [27].

In particular, given a pool of scenarios obtained by Monte Carlo sampling, MSA Ex-
pectation Algorithm 1 reformulates eq. (2) as a sample average approximation (SAA,
[1,28]) problem. The SAA tackles each scenario as a separate deterministic problem.
For a specific scenario ξt+1..H , it considers the recourse cost of a solution starting with
actions a0..t. Because the scenarios are not linked by nonanticipativity constraints, two
scenarios i and j that share the same prefix ξt+1..t′ can actually be assigned two so-
lutions performing completely different actions a0..t

′

i and a0..t
′

j , for some t′ > t. The
evaluation of action at over the set of scenarios is therefore too optimistic, leading to
a suboptimal choice. By definition, the Regret algorithm approximates the Expecta-
tion algorithm. The Regret algorithm then also approximates a two-stage problem. The
Consensus algorithm selects the most suggested action among plans of the pool. By
selecting the most frequent action in the pool, Consensus somehow encourages nonan-
ticipation. However, the nonanticipativity constraints are not enforced as each scenario
is solved separately. Consensus also approximates a two-stage problem.

5 Solving the Dynamic and Stochastic VRPTW

GSA alone does not permit to solve a DS-VRPTW instance. In this section, we now
show how the decision rule, as defined in eq. 6, can be embedded in an online algorithm
that solves the DS-VRPTW. Finally, we present the different waiting and relocation
strategies we exploit, including a new waiting strategy.

5.1 Embedding GSA

In order to solve the DS-VRPTW, we design Algorithm 3, which embeds the GSA
decision rule.

Main Algorithm. It is parameterized by: α which determines the size of the pool S of
scenarios; β which determines the frequency for re-initializing S; and δins which limits
the time spent for trying to insert a request in a sequence.

It runs in real time. It is started before the beginning of the time horizon, in order
to compute an initial pool S of α scenarios and an initial solution a1..HR with respect to
offline requests (revealed at time 0). It runs during the whole time horizon, and loops
on lines 3 to 11. It is stopped when reaching the end of the time horizon. The real

Algorithm 3: LS-based GSA
1 Initialize S with α scenarios and compute initial solution a1..HR w.r.t. known requests
2 t← 1;
3 while real time has not reached the end of the time horizon do

/* Beginning of the time unit */

4 (at, at+1..H
R)←handleRequests(a0..t−1, at..HR , ξt)

5 execute action at and update the pool S of scenarios w.r.t. to ξt

/* Remaining of the time unit */
6 while real time has not reached the end of time unit t do
7 bt+1..H

R ← shakeSolution(at+1..H
R)

8 ifQ(a0..t, bt+1..H
R , S) < Q(a0..t, at+1..H

R , S) then at+1..H
R ← bt+1..H

R ;
9 if the number of iterations since the last re-initialization of S is equal to β then

10 Re-initialize the pool S of scenarios w.r.t. ξt+1..H

11 t← t+ 1 /* Skip to next time unit */

12 Function handleRequests(a0..t−1, at..HR , ξt)
13 b0..t−1 ← a0..t−1; bt..H ← at..HR

14 for each request revealed for a vertex j in realization ξt do
15 if we find, in less than δins, how to modify bt..H s.t. request (j, t) is served then
16 modify bt..H to accept request (j, t)
17 else
18 modify bt..H to reject request (j, t)

19 return (bt, bt+1..H)

time is discretized in H time units, and the variable t represents the current time unit:
It is incremented when real time exceeds the end of the tth time unit. In order to be
correct, Algorithm 3 requires the real computation time of lines 4 to 11 to be smaller
than the real time spent in one time unit. This is achieved by choosing suitable values
for parameters α and δins.

Lines 4 and 5 describe what happens whenever the algorithm enters a new time unit:
Function handleRequests (described below) chooses the next action at and updates
at+1..H
R ; Finally, S is updated such that it stays coherent with respect to realization ξt.

Each scenario ξt..H ∈ S is composed of a sequence of sampled requests. To each
customer region i is associated an upper bound ri = min(l0− ti,0−di, li− t0,i) on the
time unit at which a request can be revealed in that region, like in [7]. That constraint
prevents tricky or inserviceable requests to be sampled. At time t, a sampled request
(i, t) which doesn’t appear in ξt is either removed if t ≥ ri or randomly delayed in
ξt+1..H ∈ S otherwise.

The algorithm spends the rest of the time unit to iterate over lines 7 to 10, in order to
improve the sequence of future route actions at+1..H

R . We consider a hill climbing strat-
egy: The current solution at+1..H

R is shaked to obtain a new candidate solution bt+1..H
R ,

and if this solution leads to a better upper bound Q of Q, then it becomes the new
current solution. Shaking is performed by the shakeSolution function. This func-
tion considers different neighborhoods, corresponding to the following move operators:

relocate, swap, inverted 2-opt, and cross-exchange (see [16,26] for complete descrip-
tions). As explained in Section 5.2, depending on the chosen waiting and relocation
strategy, additional move operators are exploited. At each call to the shakeSolution
function, the considered move operator is changed, such that the operators are equally
selected one after another in the list. Every β iterations, the pool S of scenarios is re-
sampled (lines 9-10). This re-sampling introduces diversification as the upper bound
computed by Q changes. We therefore do not need any other meta-heuristic such as
Simulated Annealing.

Function handleRequest is called at the beginning of a new time unit t, to compute
action at in light of online requests (if any). It implements the GSA decision rule defined
in eq. (6). The function considers each request revealed at time t for a vertex j, in a
sequential way. For each request, it tries to insert it into the sequence at..HR (i.e., modify
the routes so that a vehicle visits j during its time window). As in shakeSolution,
local search operations are performed during that computation. The time spent to find a
feasible solution including the new request is limited to δins. If such a feasible solution
is found, then the request is accepted, otherwise it is rejected. If there are several online
requests for the same discretized time t, we process these requests in their real-time
order of arrival, and we assume that all requests are revealed at different real times.

5.2 Waiting and Relocation strategies

As defined in section 2, a vehicle that just visited a vertex usually has the choice be-
tween traveling right away to the next planned vertex or first waiting for some time at
its current position. Unlike in the static (and deterministic) case, in the dynamic (and
stochastic) VRPTW these choices may have a significant impact on the solution quality.

Waiting and relocation strategies have attracted a great interest on dynamic and
stochastic VRP’s. In this section, we present and describe how waiting and reloca-
tion strategies are integrated to our framework, including a new waiting strategy called
relocation-only.

Relocation strategies Studies in [8,9] already showed that for a dynamic VRP with no
stochastic information, it is optimal to relocate the vehicle(s) either to the center (in case
of single-vehicle) or to strategical points (multiple-vehicle case) of the service region.
The idea evolved and has been successfully adapted to routing problems with customer
stochastic information, in reoptimization approaches as well as sampling approaches.

Relocation strategies explore solutions obtained when allowing a vehicle to move
towards a customer vertex even if there is no request received for that vertex at the
current time slice. Doing so, one recognizes the fact that, in the context of dynamic and
stochastic vehicle routing, a higher level of anticipation can be obtained by considering
to reposition the vehicle after having serviced a request to a more stochastically fruitful
location. Such a relocation strategy has already been applied to the DS-VRPTW in [5].

Waiting strategies In a dynamic context, the planning of a vehicle usually contains
more time than needed for traveling and servicing requests. When it finishes to service

a request, a vehicle has the choice between waiting for some time at its location or
leaving for the next planned vertex. A good strategy for deciding where and how long to
wait can potentially help at anticipating future requests and hence increase the dynamic
performances. We consider three existing waiting strategies and introduce a new one:

– Drive-First (DF): The basic strategy aims at leaving each serviced request as soon
as possible, and possibly wait at the next vertex before servicing it if the vehicle
arrives before its time window.

– Wait-First (WF): Another classical waiting strategy consists in delaying as much
as possible the service time of every planned requests, without violating their time
windows. After having serviced a request, the vehicle hence waits as long as possi-
ble before moving to the next planned request.

– Custom-Wait (CW): A more tailored waiting strategy aims at controlling the wait-
ing time at each vertex, which becomes part of the online decisions.

– Relocation-Only waiting (RO): In order to take maximum benefit of relocation
strategy while avoiding the computational overhead due to additional decision vari-
ables involved in custom waiting, we introduce a new waiting strategy. It basically
applies drive-first scheduling to every request and then applies wait-first waiting
only to those requests that follow a relocation one. By doing so, a vehicle will try
to arrive as soon as possible at a planned relocation request, and wait there as long
as possible. In contrary, it will spend as less time as possible at non-relocation re-
quest vertices. Note that if it is not coupled to a relocation strategy, RO reduces
to DF . Furthermore, RO also reduces to the dynamic waiting strategy described
in [17] if we define the service zones as being delimited by relocation requests.
However, our strategy differs by the fact that service zones in our approach are
computed in light of stochastic information instead of geometrical considerations.

Depending on the waiting strategy we apply and whether we use relocation or not, addi-
tional LS move operators are exploited. Specifically, among the waiting strategies, only
custom-wait requires additional move operators aiming at either increasing or decreas-
ing the waiting time at a random planned vertex. Relocation also requires two additional
move operators that modify a given solution by either inserting or removing a relocation
action at a random vertex.

6 Experimentations

We now describe our experimentations and compare our results with those of the state
of the art MSA algorithm of [7].

6.1 Algorithms

Different versions of Algorithm 3 have been experimentally assessed, depending on
which waiting strategy is implemented and whether in addition we use the relocation
strategy or not.

Surprisingly, the wait-first waiting strategy, as well as its version including relo-
cation, produced very bad results in comparison to other strategies, rejecting more

than twice more online requests in average. Because of its computational overhead, the
custom-wait strategy also produced bad results, even with relocation. For conciseness
we therefore do not report these strategies in the result plots.

The 3 different versions of Algorithm 3 we thus consider are the following: GSAdf,
which stands for GSA with drive-first waiting strategy, GSAdfr which stands for GSA
with drive-first and relocation strategies, and finally GSAro with means GSA using
relocation-only strategy. Recall that, by definition, the relocation-only strategy involves
relocation. In addition to those 3 algorithms, as a baseline we consider the GLSdf algo-
rithm, which stands for greedy local search with drive-first waiting. This algorithm is
similar to the dynamic LS described in [22], to which we coupled a Simulated Anneal-
ing metaheuristic. In this algorithm, stochastic information about future request is not
taken into account and a neighboring solution is solely evaluated by its total travel cost.

Finally, GSA and GLS are compared to two MSA algorithms, namely MSAd and
MSAc depending on whether the travel distance or the consensus function are used as
ranking functions.

6.2 Benchmarks

The selected benchmarks are borrowed from [7] which considers a set of benchmarks
initially designed for the static and deterministic VRPTW in [25], each of these con-
taining 100 customers. In our stochastic and dynamic context, each customer becomes
a request region, where dynamic requests can occur during the online execution.

The original problems from [7] are divided into 4 classes of 15 instances. Each class
is characterized by its degree of dynamism (DOD, the ratio of the number of dynamic
requests revealed at time t > 0 over the number of a priori request known at time t = 0)
and whether the dynamic requests are known early or lately along the online execution.
The time horizon H = 480 is divided into 3 time slices. A request is said to be early
if it is revealed during the first time slice t ∈ [1, 160]. A late request is revealed during
the second time slice t ∈ [161, 320]. There is no request revealed during the third time
slice t ∈ [321, 480], but the vehicles can use it to perform customer operations.

In Class 1 there are many initial requests, many early requests and very few late
requests. Class 2 instances have many initial requests, very few early requests and some
late requests. Class 3 is a mix of classes 1 and 2. In Class 4, there are few initial requests,
few early requests and many late requests. Finally, classes 1, 2 and 3 have an average
DOD of 44%, whilst Class 4 has an average DOD of 57%.

In [5], a fifth class is proposed with a higher DOD of 81% in average. Unfortunately,
we were not able to get those Class 5 instances. We complete these classes by providing
a sixth class of instance, with DOD of 100%. Each instance hence contains no initial
request, an early request with probability 0.3 and a late request with probability 0.7.

Figure 2 summarizes the different instance classes.

6.3 Results

Computations are performed on a cluster composed of 32 64-bits AMD Opteron(tm)
Processor 6284 SE cores, with CPU frequencies ranging from 1400 to 2600 MHz. Ex-
ecutables were developed with C++ and compiled on a Linux Red Hat environment

DOD t = 0 t ∈ [1, 160] t ∈ [161, 320] t ∈ [321, 480]

Class 1,2,3 44% P 0[i] = 0.5 P [1,160][i] = 0.25 P [161,320][i] = 0.25 P [321,480][i] = 0

Class 4 57% P 0[i] = 0.2 P [1,160][i] = 0.2 P [161,320][i] = 0.6 P [321,480][i] = 0

Class 5 81% P 0[i] = 0.1 P [1,160][i] = 0.1 P [161,320][i] = 0.8 P [321,480][i] = 0

Class 6 100% P 0[i] = 0 P [1,160][i] = 0.3 P [161,320][i] = 0.7 P [321,480][i] = 0

Fig. 2. Summary of the test instances, grouped per degree of dynamism. P [t,t′][i] represents the
probability that a request gets revealed during the time slice defined by interval [t, t′].

with GCC 4.4.7. Average results over 10 runs are reported. In [7], 25 minutes of of-
fline computation are allocated to MSA, in order to decide the first online action at time
t = 1. During online execution, each time unit within the time horizon was executed
during 7.5 seconds by the simulation framework. In order to compensate the technol-
ogy difference, we decided in this study to allow only 10 minutes of offline computation
and 4 seconds of online computation per time unit. Thereafter, in order to highlight the
contribution of the offline computation in our approach, the amount of time allowed
at pre-computation is increased to 60 minutes, while each time unit still lasts 4 sec-
onds. According to preliminary experiments, both the size of the scenario pool and the
resampling rate are set to α = β = 150 for all our algorithms except GLSdf.

Figure 3 gives a graphical representation of our algorithms results, through perfor-
mance profiles. Performance profiles provide, for each algorithm, a cumulative distri-
bution of its performance compared to other algorithms. For a given algorithm, a point
(x, y) on its curve means that, in (100·y)% of the instances, this algorithm performed at
most x times worse than the best algorithm on each instance taken separately. Instances
are grouped by DOD and by offline computation time. Classes 1, 2 and 3 have a DOD
of 44%, hence they are grouped together. An algorithm is strictly better than another
one if its curve stays above the other algorithm’s curve. For example on the 60min plot
of Class 6, GLSdf is the worst algorithm in 95% of Class 6 instances, outperforming
GSAdf in the remaining 5% (but not the other algorithms). On the other hand, provided
these 60 minutes of offline computation, GSAro obtains the best results in 55% of the
instances, whereas only 30% for GSAdf and GSAdfr. See [11] for a complete descrip-
tion of performance profiles. Detailed results are provided in the extended version [30].

Our algorithms compare fairly with MSA, especially on lately dynamic instances
of Class 4. Given more offline computation, our algorithms get stronger, although that
MSA benefits of the same offline time in every plots. Surprisingly, GLSdf performs
well compared to other algorithms on classes 1,2 and 3. The low DOD that charac-
terizes these instances tends to lower the contribution of stochastic knowledge against
the computational power of GLSdf. Indeed, approximating the stochastic evaluation
function over 150 scenarios is about 103 times more expensive than GLSdf evaluation
function. However, as the offline computation time and the DOD increase, stochastic
algorithms tend to outperform their deterministic counterpart.

We notice that the relocation strategy gets stronger as the offline computation time
increases. This is due to the computational overhead induced by relocation vertices.
GSAdf is then the good choice under limited offline computation time. However, both

Fig. 3. Performance profiles on classes [1, 2 ,3], Class 4 and Class 6 problem instances

GSAro and GSAdfr tend to outperform the other strategies when provided enough of-
fline computation and high DOD.

As it contains no deterministic request, in Class 6 the offline computation is not ap-
plicable to those algorithms that does not exploit the relocation strategy, i.e. GLSdf and
GSAdf. Class 6 shows that, despite the huge difference in the number of iterations per-
formed by GLSdf on one hand and stochastic algorithms on the other, the laters clearly
outperform GLSdf under fully dynamic instances. We also notice in this highly dynamic
context that GSAro tends to outperform GSAdfr as offline computation increases, high-
lighting the anticipative contribution provided by the relocation-only strategy, centering
waiting times on relocation vertices.

7 Conclusions

We proposed GSA, a decision rule for dynamic and stochastic vehicle routing with time
windows (DS-VRPTW), based on a stochastic programming heuristic approach. Exist-
ing related studies, such as MSA, simplify the problem as a two-stage problem by using
sample average approximation. In contrary, the theoretical singularity of our method is
to approximate a multistage stochastic problem through Monte Carlo sampling, using a
heuristic evaluation function that preserves the nonanticipativity constraints. By main-
taining one unique anticipative solution designed to be as flexible as possible according
to a set of scenarios, our method differs in practice from MSA which computes as many
solutions as scenarios, each being specialized for its associated scenario. Experimental
results show that GSA produces competitive results with respect to state-of-the-art. This
paper also proposes a new waiting strategy, relocation-only, aiming at taking full benefit
of relocation strategy.

In a future study we plan to address a limitation of our solving algorithm which
embeds GSA, namely the computational cost of its evaluation function. One possible
direction would be to take more benefit of each evaluation, by spending much more
computational effort in constructing neighboring solutions, e.g. by using Large Neigh-
borhood Search [24]. Minimizing the operational cost, such as the total travel distance,
is usually also important in stochastic VRPs. Studying the aftereffect when incorporat-
ing it as a second objective should be of worth. It is also necessary to consider other
types of DS-VRPTW instances, such as problem sets closer to public or good trans-
portation. Finally, the conclusions we made in section 2 about the shortcoming of a
two-stage formulation (showed in Fig. 1) are theoretical only, and should be experi-
mentally assessed.

Acknowledgement

Christine Solnon is supported by the LABEX IMU (ANR-10-LABX-0088) of Univer-
sité de Lyon, within the program "Investissements d’Avenir" (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR). This research is also par-
tially supported by the UCLouvain Action de Recherche Concertée ICTM22C1.

References

1. Shabbir Ahmed and Alexander Shapiro. The sample average approximation method for
stochastic programs with integer recourse. Submitted for publication, 2002.

2. Sø ren Asmussen and Peter W Glynn. Stochastic Simulation: Algorithms and Analysis:
Algorithms and Analysis, volume 57. Springer, 2007.

3. Russell Bent and Pascal Van Hentenryck. Regrets only! online stochastic optimization under
time constraints. AAAI, pages 501–506, 2004.

4. Russell Bent and Pascal Van Hentenryck. The Value of Consensus in Online Stochastic
Scheduling. ICAPS, (1):219–226, 2004.

5. Russell Bent and Pascal Van Hentenryck. Waiting and Relocation Strategies in Online
Stochastic Vehicle Routing. IJCAI, pages 1816–1821, 2007.

6. Russell Bent, Irit Katriel, and Pascal Van Hentenryck. Sub-optimality approximations. Prin-
ciples and Practice of Constraint . . . , pages 1–15, 2005.

7. Russell W Bent and Pascal Van Hentenryck. Scenario-based planning for partially dynamic
vehicle routing with stochastic customers. Operations Research, 52(6):977–987, 2004.

8. DJ Bertsimas and G Van Ryzin. A stochastic and dynamic vehicle routing problem in the
Euclidean plane. Operations Research, 1991.

9. DJ Bertsimas and G Van Ryzin. Stochastic and Dynamic Vehicle Routing in the Euclidean
Plane with Multiple Capacitated Vehicles. Operations Research, 1993.

10. Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem (DARP): Variants,
modeling issues and algorithms. 4OR: A Quarterly Journal of Operations Research, 1(2):89–
101, 2003.

11. Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

12. Truls Flatberg, Geir Hasle, Oddvar Kloster, Eivind J Nilssen, and Atle Riise. Dynamic and
stochastic vehicle routing in practice. In Dynamic Fleet Management, pages 41–63. Springer,
2007.

13. Gianpaolo Ghiani, Emanuele Manni, Antonella Quaranta, and Chefi Triki. Anticipatory
algorithms for same-day courier dispatching. Transportation Research Part E: Logistics and
Transportation Review, 45(1):96–106, January 2009.

14. Lars M. Hvattum, Arne Lø kketangen, and Gilbert Laporte. Solving a Dynamic and Stochas-
tic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic. Transportation
Science, 40(4):421–438, November 2006.

15. Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Exploiting Knowledge About
Future Demands for Real-Time Vehicle Dispatching. Transportation Science, 40(2):211–
225, May 2006.

16. Gerard A P Kindervater and Martin W P Savelsbergh. Vehicle routing: handling edge ex-
changes. Local search in combinatorial optimization, pages 337–360, 1997.

17. Snežana Mitrović-Minić and Gilbert Laporte. Waiting strategies for the dynamic pickup
and delivery problem with time windows. Transportation Research Part B: Methodological,
38(7):635–655, August 2004.

18. Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L Medaglia. A review of
dynamic vehicle routing problems. European Journal of Operational Research, 225(1):1–
11, 2013.

19. Victor Pillac, Christelle Guéret, and Andrés L. Medaglia. An event-driven optimization
framework for dynamic vehicle routing. Decision Support Systems, 54(1):414–423, Decem-
ber 2012.

20. Harilaos N Psaraftis. A dynamic programming solution to the single vehicle many-to-many
immediate request dial-a-ride problem. Transportation Science, 14(2):130–154, 1980.

21. Harilaos N Psaraftis. Dynamic vehicle routing: Status and prospects. annals of Operations
Research, 61(1):143–164, 1995.

22. M Schilde, K F Doerner, and R F Hartl. Metaheuristics for the dynamic stochastic dial-a-ride
problem with expected return transports. Computers & operations research, 38(12):1719–
1730, December 2011.

23. Alexander Shapiro, Darinka Dentcheva, and Andrzej P Ruszczy\’nski. Lectures on stochas-
tic programming: modeling and theory, volume 9. SIAM, 2009.

24. Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Principles and Practice of Constraint Programming—CP98, pages 417–431.
Springer, 1998.

25. MM Solomon. Algorithms for the vehicle routing and scheduling problems with time win-
dow constraints. Operations research, 35(2), 1987.

26. É Taillard and P Badeau. A tabu search heuristic for the vehicle routing problem with soft
time windows. Transportation . . . , pages 1–36, 1997.

27. Pascal Van Hentenryck, Russell Bent, and Eli Upfal. Online stochastic optimization under
time constraints, volume 177. September 2009.

28. Bram Verweij, Shabbir Ahmed, Anton J Kleywegt, George Nemhauser, and Alexander
Shapiro. The sample average approximation method applied to stochastic routing problems:
a computational study. Computational Optimization and Applications, 24(2-3):289–333,
2003.

29. Nigel H M Wilson and Neil J Colvin. Computer control of the Rochester dial-a-ride system.
Massachusetts Institute of Technology, Center for Transportation Studies, 1977.

30. Michael Saint-Guillain, Yves Deville, and Christine Solnon A Multistage Stochastic
Programming Approach to the Dynamic and Stochastic VRPTW - Extended version.
arXiv:1502.01972 [cs.AI], 2015.

