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Motion Driven Tonal Stabilization
Oriel Frigo, Neus Sabater, Julie Delon, Pierre Hellier

Abstract—This paper addresses the problem of tonal fluctua-
tion in videos. Due to the automatic settings of consumer cameras,
the colors of objects in image sequences might change over time.
We propose here a fast and computationally light method to stabi-
lize this tonal appearance, while remaining robust to motion and
occlusions. To do so, a minimally-viable color correction model
is used, in conjunction with an effective estimation of dominant
motion. The final solution is a temporally-weighted correction,
explicitly driven by the motion magnitude, both visually efficient
and very fast, with potential to real time processing. Experimental
results obtained on a variety of sequences outperform the current
state of the art in terms of tonal stability, at a much reduced
computational complexity.

Index Terms—Tonal stabilization, White balance, Exposure
control, Video editing.

I. INTRODUCTION
The increasing number of amateur video footages facilitated

by the proliferation of low-cost video cameras has made it
visible a number of video artifacts, some of them being motion
and tonal instabilities. While motion stabilization has been
studied by several researchers, tonal instability has been far
less discussed. Video tonal instability is a particular temporal
artifact characterized by fluctuations in the colors of adjacent
frames of a sequence. According to [1], in modern videos
these instabilities are mainly caused by automatic settings of
the camera, notably automatic white balance and automatic
exposure. These common features of consumer digital cameras
are intended respectively to provide color balanced and well
exposed images, while facilitating the user experience. How-
ever, these features are mostly appropriated for still images
and are not stable in time, resulting in unpleasant tonal
instabilities that can be perceived in videos. A notable problem
with automatic white balance algorithms is their dependency
on illuminant estimation, which is considered an ill-posed
problem. Classical assumptions of color constancy algorithms
are easily violated in practice and in a context of temporal
scene changes, it is likely to result in chromatic instability.

While automatic white balance can be simply turned off in
some cases, low end cameras offer no control over setup pa-
rameters. In this case, the only alternative to avoid unpleasant
tonal fluctuations is to further process the video. This prepro-
cessing can also be crucial for computer vision applications
relying on brightness or tonal constancy assumptions.

Generally speaking, tonal stabilization can be described
as searching for the transformations that minimize undesired
tonal variations in multiple images of a sequence. While
surprisingly few works have specifically attempted to correct
such color fluctuations in videos [1], [2], numerous works are
motivated by similar purposes in different research communi-
ties.

Let us start with a word on radiometric calibration ap-
proaches, which takes into account operations performed in the

camera pipeline in order to retrieve a physically based color
calibration model between images. Recent models [3], [4],
[5] admit that the output image u of a camera is related to the
irradiance vector e measured by the sensor by a combination
of linear (white balance, color space conversion) and nonlinear
(gamut mapping, camera response function) transformations.
If the nonlinear part of the mapping could be estimated for a
video sequence, it could be inverted and the resulted sequence
could be corrected with linear transformations. Unfortunately,
recovering the camera response function necessitates regis-
tered images under multiple exposures, as well training sets
of RAW-sRGB image pairs [6], [4], both being generally not
available for smartphone and point-and-shoot video cameras.

In a related direction, one could argue that color constancy
algorithms would be the ideal solution to solve the tonal
stabilization problem. Starting with Land and McCain work on
the Retinex theory of color vision [7][8][9], color constancy
has been extensively studied and remains an active research
topic [10] [11]. In digital cameras, the feature intended to
approximate color constancy is known as automatic white
balance (AWB). The most common approach to perform AWB
is to first estimate the color temperature of the illuminant in the
scene, and then correct the image by compensating the ratio of
the estimated illuminant to the canonical (neutral) illuminant
with some variant of a Von Kries diagonal transformation.
However, illuminant estimation is a severely under-constrained
problem, necessitating additional assumptions intended to cope
with its ill-posed nature. Gijsenij et al [11] in their extensive
survey on computational color constancy, have categorized
illuminant estimation approaches into static methods, based on
fixed parameter settings and low-level statistics, in opposition
to gamut-based and learning-based methods, which tune their
parameters to a specific set of images. Automatic white
balance in low cost video cameras is likely to be based on
static methods, making strong assumptions about the scene
content, so that illuminant color can be estimated in real time.
Since this automatic feature is the cause of tonal instabilities,
recovering the scene illuminant in each frame to correct the
sequence is also prone to fail in practice. This is true even if
the available computing power makes it possible to use more
involved white balance methods than those used directly in
the camera.

Another possibility is to draw on color transfer, which
aims at modifying the colors of an input image according
to the colors of an example image. Unlike color constancy,
color transfer methods make very few assumptions about
the physics of the scene or the camera (the scene illu-
minant or the camera response function are not explicitly
estimated), being rather a general and pragmatic approach to
estimate color transformations between images. Reinhard et
al. [12] popularized the concept of color transfer 15 years
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Fig. 1. Overview of proposed method for tonal stabilization of videos.

ago with a very simple affine matching between 3D color
distributions. Other works have since proposed more complex
global color transfer in terms of nonlinear histogram matching
[13], [14], [15], or optimal transportation between compact
color signatures [16], [17], [18], [19], [20]. Another class
of methods assumes that there are spatial correspondences
to be found between the input and example images, these
correspondences being used to derive a color transformation
[21]. If this assumption reduces the scope of the method for
general images, it is particularly relevant for specific user cases
such as optimizing color consistency in photos from the same
scene [22], [23]. In the case of videos, we also expect to find
numerous spatial correspondences between neighbor frames of
the sequence. As we will see, the tonal stabilization algorithm
presented in this paper draws on a first raw motion estimation
between frames to compute a global color correction.

While very few works have attempted to correct color fluc-
tuations in videos, several global [24], [25] or local [26], [27]
approaches have been proposed to remove high frequency
brightness fluctuations, also known as flicker. In practice, the
causes and effects of flicker in videos are quite different from
those of tonal instabilities. In old archived films, these high
frequency brightness fluctuations are mainly due to physi-
cal reasons, which may cause the flicker to vary along the
image spatial coordinates. On the contrary, tonal instabilities
observed in modern videos (fluctuations in camera exposure
or white balance) tend to be global and are low frequency
artifacts. As a consequence, parametric and non-parametric
deflickering methods are not well suited to correct tonal
instabilities. Moreover, the extension of these deflickering
methods to color images is far from obvious.

To the best of our knowledge, only two previous
works [1], [2] have proposed approaches specifically designed
to correct color fluctuations in videos. The first one was pro-
posed by Farbman et al in [1]. The method works by aligning
tonally each frame of the video with one or several pre-
selected reference (anchor) frames (for instance the first frame
of the movie). Adjustment maps between successive frames are
computed without explicit motion compensation, the authors
claiming that many pixels in the same grid position in two
successive frames are likely to correspond to the same surface
in the scene. In practice, the method provides a reasonable
solution to stabilize tonal fluctuations in static videos, but

at the cost of high space and time complexity. Besides, the
lack of real motion estimation makes the computation of the
adjustment map highly sensitive to noise or fast movements,
and lack of accurate correspondences can result in flickering
and error propagation.

The second one, due to Wang et al. [2], starts by estimating
motion globally between successive frames, by relying on
local features correspondences. A nine parameters affine color
transformation is then used to model the exposure and white
balance changes between two frames in the log domain. These
affine color transformations are estimated by least squares
for all neighboring frame pairs and accumulated to obtain a
”color state” for each frame of the video, represented as a
4 × 4 matrix. To avoid data overfitting, a regularization term
is added to force the affine transformations to be close to
the identity matrix. In a second step, the frame color state
function is smoothed by minimizing an energy which also
tends to control the deviation from the original color state. The
regularization step necessitates to use PCA on the set of color
states in order to avoid smoothing the different parameters of
the affine matrices independently. While the results provided
by the authors are visually good and much more satisfying than
those of [1], the method is surprisingly complex to implement
and requires to tune several parameters.

We are aware of existing commercial tools (Adobe After
Effects®, Final Cut Pro®) able to correct specific brightness
fluctuations, such as high frequency flickering commonly seen
in time-lapse photography. Nevertheless, these applications
remain limited when it comes to correct tonal instabilities.
The Color Stabilizer Tool 1 from Adobe After Effects is based
on color sampling of selected points in a reference frame,
adjusting the colors neighbor frames so that the color values
of selected points remain constant throughout the duration of
the layer. The Flicker Free plugin2 for Final Cut Pro can
be useful to remove high frequency flicker and equalize the
exposure of footage, but is not targeted to stabilize white
balance fluctuations.

The method prosented in this paper draws on two elemen-
tary observations. First, we show that a simplified parametric
color transfer model between the frames of a video is enough

1https://helpx.adobe.com/after-effects/using/color-correction-effects.html
2https://digitalanarchy.com/Flicker/main.html
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to correct convincingly color instabilities. Second, we observe
that if motion estimation is necessary for tonal stabilization,
dominant motion estimation is generally more than enough
to infer large sets of correspondences between frames. These
are the two key ideas permitting to develop a method which is
both visually efficient and very fast, intended to work near-real
time on smartphones and similar devices. Furthermore, we
propose a temporal weighting scheme, where the intensity of
tonal stabilization is directly guided by the motion speed. The
present paper extends our work published in [28], presenting
extensive experiments on the goodness of fit of the power law
color transformation model, and comparing our model with
state-of-the-art color transfer models.

The outline of the paper is the following. Our method
is presented in Section II, first in the simplified case of
registered images, and then generalized to sequences with
motion. Section III illustrates the efficiency of the proposed
method on different sequences and shows that it compares
favorably to [1], [2], and achieve these results at a much
reduced computational cost. All results are available on the
project website3.

II. PROPOSED METHOD

In this section, we present the main contributions of our
method for video tonal stabilization. Our aim is to conceive a
method that is:

1) Accurate enough to correct color instabilities observed
between frames in a video;

2) Robust against motion, occlusion and noise;
3) Computationally simple enough to be implemented in a

near real time application.
Figure 1 presents a general overview of the proposed method.
In order to achieve robustness against motion and occlusion
(an important limitation of [1]) while satisfying the simplicity
requirement, we make use of dominant motion estimation
(and compensation) to estimate the color correspondences
between frames. By means of cumulative motion, we are able
to quickly register images even if they differ by several frames
in time. Color correspondences are then used to estimate
a color transformation that is applied to correct the tonal
instabilities. The requirement of physical accuracy for the tonal
transformation model being in contradiction with the other
requirements of robustness and simplicity, our color correction
model tries to achieve a good tradeoff between these three
properties.

The proposed algorithm makes two hypotheses on the
sequences to be corrected. First, it is assumed that there are
always spatial correspondences (or redundance in content)
between neighboring frames in the sequence (no scene cuts).
This is generally true for every sequence composed of a single
shot, as long as it does not pass through extreme variations of
scene geometry (nearly total occlusion) or radiometry (huge
changes in illumination or saturation). Second, we assume that
there is a global transformation which can compensate the
colorimetric aberrations between the frames. This implies that

3http://oriel.github.io/tonal stabilization.html

the observed color instability and consequently the camera
response function are global (spatially invariant). In other
words, the proposed method is not suitable for correction of
local tonal instabilities. This assumptions also holds for every
method of the state of the art [1], [2].

In the following subsections, we discuss in detail each
step of the proposed method. For the sake of simplicity,
we start the discussion with the tonal transformation model,
first assuming the simplest case of color correction between
registered images. We then present our model to deal with
the general case of tonal stabilization of sequences containing
motion.

A. Tonal Transformation Model

Let {ut}t=1,...,D be a registered sequence of color frames
ut : Ω → R3 defined over the same spatial domain Ω and
let uk be a reference keyframe in the sequence. The color
channels of ut are written (uRt , u

G
t , u

B
t ). In order to tonally

stabilize the sequence, for every following frame ut, t > k
we look for a parametric color transformation Tt : R3 → R3

such that Tt(ut) ' uk. Now, as recalled in the introduction
and according to [5] , ut is related to the irradiance vector
e = (eR, eG, eB) measured by the sensor (RAW intensities)
by the relation

ut = f ◦ h(TsTwe) (1)

where Ts is a 3 × 3 matrix transformation that accounts for
color space conversion, h : R3 −→ R3 is a nonlinear gamut
mapping operator, f : R3 −→ R3 is the nonlinear tone
mapping of the camera and Tw is a diagonal 3 × 3 matrix
accounting for white balance and exposure (varying over time)

Tw =

 φ 0 0
0 ξ 0
0 0 ψ

 . (2)

If ut and uk are two perfectly registered images of the same
scene, taken by the same camera, differing only with respect
to white balance and exposure (so that these images have
identical irradiance e), then ut and uk are related by

H−1(ut) =


φt

φk
0 0

0 ξt
ξk

0

0 0 ψt

ψk

H−1(uk), (3)

where H = f ◦ h ◦ Ts. In theory, we can achieve tonal
stabilization between images ut and uk with a simple diagonal
transformation performed in the camera sensor space (given
by the nonlinear transformation H−1). This tonal stabilization
model, inspired by radiometric calibration [5] [29], can be
seen as an accurate procedure to perform camera color transfer
when irradiances are known in the form of RAW images,
allowing an estimate of H . However, for the problem of tonal
stabilization, we are faced with videos taken with low-cost
cameras, from which we cannot make the usual assumptions
that are necessary to compute radiometric calibration.

The assumption of multiple exposures from the same scene,
which is required to estimate the camera response function
may not be valid for some sequences, and RAW-sRGB corre-
spondences are also not available in most low-cost cameras.
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Alternatively, blind gamma estimation could be obtained
when multiple images from the same scene are available, for
example in the case of video sequences. In [30] the non-
linearity of the camera response is modeled as a gamma
correction, defined as a single power transformation applied to
all color channels. As discussed in [30], estimating the optimal
gamma parameter is an optimization problem that is non-trivial
to solve and may need a trial and error approach.

In this paper, we follow another direction and claim that a
much simpler model can be used for achieving visually satisfy-
ing tonal stabilization when the transformation H is unknown.
Several paths can be followed, from fully non parametric color
transformations (such as weighted interpolation or optimal
transport / histogram specification) to more or less complex
parametric models (affine, spline, polynomial). Parametric
models have the important advantage of being expressed by
smooth and regular functions, well defined for the whole color
range (extrapolation is not a problem even if all colors are not
observed) and potentially described by few parameters, which
reduces the risk of instabilities in time. A purely diagonal
model applied to sRGB images is unfortunately not suitable
to cope with non linearities inherent to camera response
functions. In our quest for a tonal transformation model that is
simple enough to be fastly computed, and accurate enough to
produce a visually pleasant stabilized sequence, we converged
to a separable power law transformation, which is shown to
be a good compromise to fit the criteria described above.
Perhaps not surprinsingly, this model is quite close to the CDL
(Color Decision Lists) model used for color grading in post-
production industry 4.

Our deliberately simplified model for Tt assumes a separa-
ble transfer function on color channels:

Tt = (TRt , T
G
t , T

B
t ), where T ct (u) := αcu

γc , c ∈ {R,G,B}.
(4)

The accuracy (in term of goodness of fit) of this power law
model will be demonstrated in the experimental section on
several image pairs of the same scene, with varying white
balance and exposure values. The ability of the model to
achieve stabilization results more or equally satisfying than
more complex models on image sequences will also be shown.

In order to estimate αc, γc, we solve for every color channel
of the frame ut the linear least squares fitting problem

arg min
αc,γc

∑
x∈Ω

(
loguck(x)− (γc loguct(x) + logαc

)
)2, (5)

whose solution is given by

γc =
Cov

(
loguct , loguck

)
Var
(
loguct

) , αc = exp(loguck − γcloguct) ,

(6)

where z = 1
#Ω

∑
x∈Ω z(x) is the average value of

z(x), x ∈ Ω.
Note that this is not equivalent to solving
arg minαc,γc

∑
x∈Ω

(
uck(x) − αcu

c
t(x)γc

)2
, since the

4http://en.wikipedia.org/wiki/ASC CDL

loss function in Eq. 5 becomes logarithmic and gives more
weight to residuals computed from lower values. However,
this formulation permits to compute the coefficients αc and
γc exactly and very quickly (the computation is linear in
the number of correspondent points). For higher regression
accuracy in terms of linear mean squared error, the solution
can be computed with a numerical method such as gradient
descent [31], [32].

The model we propose in Eq. 4 is quite similar to the one
proposed in the work of color stabilization in [23], where the
tonal transformation is also modeled as a combination of a
linear term and a power term. Both models can be seen as
practical approximations to the unknown inverse camera tonal
transformation studied in [5]. But differently to [23], we do
not consider the γc coefficient in our model to be equivalent
to the parameter γ in the gamma correction of the camera
imaging pipeline (γ = 1

2.2 in sRGB) [5]. We rather assume
that the power γc in our model approximates possible non-
linear color changes between the images of a sequence, in the
spirit of CDL color correction.

Another difference between the two models is that [23] in-
cludes a full 3×3 matrix in the tonal transformation, while our
model is separable over color channels. Therefore, the model
of [23] can take into account channel correlations and possible
color space conversions that can take place when correcting
images taken from different cameras. Nevertheless, in our case
we consider sequences taken entirely with the same camera,
and as we show in our experiments, our tonal transformation
model is effective in practice with straightforward optimization
in comparison to the model proposed in [23].

B. Image Registration

For estimating tonal transformations between different
frames, it is desirable to have a dense set of correspondences,
especially in homogeneous areas. In this paper, we choose
to rely on global motion estimation. Estimating the dominant
motion of the camera is computationally simpler (it can poten-
tially be computed in real time) than dense optical flow, and
in our experience, tonal instabilities seen in videos are usually
highly correlated with the camera motion. In contrast to tasks
that depend heavily on precise motion, we do not need a
highly accurate motion description in order to estimate a color
transformation that compensates tonal differences between
frames. It is much more important that this dominant motion
estimation is robust enough to be cumulated in time and permit
color correction between non-neighbor frames.

In practice, for all pairs of consecutive frames ul and ul−1

in the sequence, we make use of the robust algorithm of [33]
to estimate the affine motion transformation Al,l−1 between
the frames. This planar affine transformation, defined by 6
parameters, only accounts for the dominant motion of the
camera without considering pixel-wise accuracy. Dominant
motion has the advantage of being computationally simple
to estimate, and is generally sufficient for the task of tonal
stabilization.

Now, let uk be a reference frame and ut (t > k) a
subsequent frame in the video. Before applying the transfor-
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mation model in Eq. (9), ut is warped towards uk with the
accumulated transformation

At,k = At,t−1 ◦At−1,t−2 ◦ ... ◦Ak+1,k. (7)

We define the set of spatial correspondences Ωt,k between
uk and ut as

Ωt,k =

{(
x, At,k(x)

)
∈ Ω× Ω

∣∣∣∣
1

3

∑
c

(
(uck(x) − uck)− (uct

(
At,k(x)

)
)− uct)

)2

< σ2

}
, (8)

where σ2 is the empirical noise variance (for instance, esti-
mated with the method in [34]). Note that the constraint in
Eq. (8) rules out possible motion outliers as well as occluded
points (points visible in only one of the frames).

Note that the obtained dominant motion is affine, represent-
ing translations and rotations, however it has the limitation of
not taking into account zooming of objects. Nevertheless, in
practice we observed that camera zoom is a feature rarely used
by users shooting videos with low-cost cameras. Moreover, our
method usually leads to a reasonable tonal stabilization even
in the case of innacurate motion registrations, by means of our
keyframe update approach discussed in the next section.

C. Motion driven tonal stabilization

Let us describe how keyframes are defined: following an
online procedure, the first frame of the sequence u1 is initially
defined as keyframe. The following frames ut, t > 1 are
stabilized with respect to u1 as long as there are enough
correspondences between ut and u1. In other words, a color
correction is computed only if there are enough spatial corre-
spondences to define an accurate and valid model. As soon as
the number of correspondences #Ωt,1 is lower than ω×#Ω,
a new keyframe is defined as the previously color corrected
frame. This process is repeated till the end of the sequence,
assuring tonal coherence across neighbor frames and also
across different keyframes in an online manner.

To ensure a fidelity to the colors of the input sequence
{ut}t=1,...,D, we also introduce a regularization term for the
transformation sequence {Tt(ut)}t=1,...,D as following:

T ′t = λTt + (1− λ)Id, (9)

where λ = λ0 exp(− ||Vt,k||
p ) controls the amount of trans-

formation of frame ut, according to the motion amplitude
between frame ut and the keyframe, ||Vt,k|| denotes the norm
of the dominant motion vector Vt,k (global translation from
the spatial coordinates of ut to the spatial coordinates in uk)
and p is the maximum spatial displacement (number of rows
+ number of columns of the image), λ0 is the initial weight
(in practice we set λ0 := 0.9). In other words, the smaller
the motion magnitude, the closer λ is to 1 and the greater
the transformation. In the following, this temporally-varying
regularization is useful to correct the sequence while avoiding
overexposure when huge changes in camera exposure occur in
the original sequence.

Algorithm 1 sketches the proposed method. Note that the
computation of Ωt,k involves the computation of At,k and the
warping of ut towards uk based on At,k.

Algorithm 1 Motion driven tonal stabilization
Input: Sequence of frames {ut}t=1,...,D

Output: Tonal stabilized sequence {T ′t (ut)}t=1,...,D

1: k ⇐ 1, t⇐ k + 1
2: T ′1(u1) = u1

3: while t ≤ D do
4: Compute Ωt,k
5: if #Ωt,k ≥ ω ×#Ω then
6: for c⇐ {R,G,B} do
7: αc, γc⇐arg min

α,γ

∑
(x,y)∈Ωt,k

(uck(x)− αuct(y)
γ
)2

8: T ′t (u
c
t)⇐ λαc(u

c
t)
γc + (1− λ)uct

9: end for
10: t⇐ t+ 1
11: else # If there are not enough correspondences
12: k ⇐ t− 1
13: uk ⇐ T ′t−1(ut−1)
14: end if
15: end while

For the sake of simplicity, the original frames are downsam-
pled (120 pixels wide) before estimating T ′. Then, the esti-
mated T ′ is coded into a Look-Up-Table (LUT) that is applied
to the high resolved original frames. These implementation
changes guarantee an algorithm with low complexity but do
not produce noticeable loss in tonal stabilization accuracy.

III. EXPERIMENTAL RESULTS

In this section we first study the goodness of fit of the
proposed power law model. Then, we show the experimental
results obtained with our tonal stabilization algorithm and we
compare them with state-of-the-art results. On the one hand,
qualitative evaluation based on visual inspection is performed
and, on the other hand, quantitative results measuring the
amount of tonal variation in the resulting sequence and the fi-
delity to the original sequence are provided. Both, quantitative
and qualitative evaluation prove that the proposed algorithm is
accurate and robust with all the tested sequences independently
of the amount of tonal instabilities or motion.

A. Goodness of fit

In order to evaluate the accuracy of our power law model,
we have estimated the mean R2 (coefficient of determination)
along color channels:

R2 =
1

3

∑
c

(
1−

∑
x∈Ωp

(log uck(x)− T ct (log uct(x)))2∑
x∈Ωp

(log uck(x)− log uck)2

)
.

(10)
where Ωp is the set of points selected from a color chart in
the image. In particular, we consider images captured with a
smartphone from the same scene containing a Macbeth color
chart (see Fig. 2). Each picture is adjusted (using the camera
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settings) to have a different exposure or white balance (WB),
so that we can analyze the tonal changes by studying the
color transfer function between the reference picture (sunlight
WB, medium exposure) and the other ones. More specifically,
we use the median color value of each color in the color
chart to estimate a power law transformation. In the right
column of Fig. 2, we plot the functional relationship (in
logarithmic domain) between the colors extracted from the
color chart of the reference picture and the correspondent
colors from the other pictures. As an indication of goodness
of fit, the computed R2 value is shown for each plot (the
closer is R2 to 1, the better the observed tonal transformation
fits the model). The coefficient is larger than 0.9 for all
the computed regressions, which shows that the relationship
between reference and test color intensities is approximately
linear in a logarithmic scale and in general the model fits the
data.

Note that the images with the color chart are useful to
evaluate our model but they are not enough challenging to
compare our results with other methods in the case of videos.
In fact, all methods are comparable with this data since
the presence of all the colors in the chart help the camera
automatic white balance algorithm to work properly, without
producing strong tonal instabilities.

Finally, we note that the tonal fluctuations caused by auto-
matic camera settings in videos are far less intense than the
tonal changes presented in Fig. 2, which were produced by
manually adjusting the camera settings.

B. Qualitative evaluation

In practice, our method has been tested on 18 different
video sequences. While some sequences have been kindly
provided by the authors of [1], we have completed our
dataset with video sequences acquired with smart phones from
different manufacturers. Complete video sequences (originals
and results) are available at the project website5. We strongly
recommend the reader to look at the electronic version of the
paper and the videos in our website to appreciate the results.

First, we have considered video sequences in which camera
motion is not complicated as in the sequence ”sofa” (see
Fig. 3). In the original sequence one same object appears with
different colors (e.g., sofa) while in our resulting sequence all
colors are stable.

We present our tonal stabilization result for a sequence with
fast motion in Figure 4. The video, taken while driving in
a highway, is particularly challenging because of the driving
speed, the fast motion of objects, the rain droplets falling and
the wiper blade movements.

We note that camera zoom is challenging to be estimated by
our dominant motion model. Nevertheless, our tonal stabiliza-
tion method compensates innacurate motion estimation with
the keyframe update approach. We have observed in practice
that for sequences where the registation is not accurate, the
number of motion outliers increases and keyframe updates are
triggered with more frequence. For example, in the driving
sequence in Fig. 4 we can see objects changing in scale,

5http://oriel.github.io/tonal stabilization.html

nevertheless our model still correct tonal instabilities in the
sequence and does not generate artifacts.

In order to evaluate our results with respect to state-of-
the-art tonal stabilization methods, we have considered the
methods of Farbman et al. [1] and Wang et al. [2]. In our com-
parison, the results from [2] have been provided by the authors
while the results from [1] come from our implementation of
their method, which is coherent with the results published in
their paper and website. In particular, Fig. 5 compares our
results with the sequence ”building” that has been acquired
with a Samsung Galaxy S smart phone. Note that the results
from [1] are not perfectly stabilized due to the important
camera motion of the sequence, and the results from [2] are
stabilized but the sequence is much whiter and parts of it are
completely saturated which is not visually pleasant. Fig. 6
compares with the sequence ”graycard” the same algorithms
which turn out to have the same behavior in terms of remnant
tonal variation for [1] and wash-out look (white) for [2]. On
the contrary, in the two sequences ”building” and ”graycard”,
our results are both stable and color coherent with a good
dynamic range.

Note that all video sequences are processed with the same
set of parameters, i.e., ω = 0.25 and λ0 = 0.9. Concerning
the parameter robustness in our method we have observed
that varying ω has very little impact on the results. On the
contrary, the choice of λ (cf. Eq. 9) determines the amount of
fidelity to the original sequence. Indeed, λ = 1 corresponds to
a strict tonal stabilization and λ = λ0 exp(− ||Vt,k||

p ) weights
temporally (in function of motion) the contribution to the
original sequence. While temporal weighting reduces the strict
tonal preservation, it may be argued that it produces a visually
pleasant result by preserving some degree of the original
colors. In particular, when the original sequence presents
high tonal variations, temporal weighting avoids to create a
resulting sequence too different from the original in which
colors may appear saturated or not natural. Fig. 7 shows an
example of a sequence with important tonal instabilities in the
original sequence and the results with the different choices of
λ. The strict tonal stabilization result (λ = 1) saturates some
parts of the resulting frames (e.g. t= 170) which motivates our
choice of λ.

C. Quantitative evaluation

1) Comparison of color transformation models: In order
to evaluate our power law color transformation, we compare
it to the parametric color transformation proposed by [23].
We made experiments with the tonal transformation model
proposed in [23] in two ways, based on trustworthy color
correspondences between the reference and test images:
• estimating all the 10 coefficients of the model by gradient

descent,
• estimating the 9 coefficients of the 3 × 3 matrix by

gradient descent, fixing γ := 1
2.2

To guarantee that no outliers are used for coefficient estima-
tion, the color correspondences used to compare our method
to [23] are taken from the mean 24 colors of the Macbeth
color chart, in particular, we use the same test images and
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Fig. 2. Illustration of the goodness of fit of the proposed tonal transformation model. In this experience, a sequence of approximately registered images is
taken from the same scene, and the color transformation is estimated from correspondent points (taking into account the small dominant motion between the
images as explained in Sec. II-B) and masking the Macbeth color chart. On the first row, a reference image (keyframe uk) is shown. For the following second
to fifth rows, on the left column, tonally unstable images (ut) taken with different exposures and white balance are shown. On the middle column, the color
corrected images are shown, where it can be noted that tonal instability is largely reduced. Finally, on the right column, the extracted points from the color
chart and the estimated regression lines are plotted in the logarithmic domain. The dashed black line corresponds to the identity, the x-axis corresponds to
log uct (Ωp), while the y-axis corresponds to log uck(Ωp) for the plotted points and log T c

t for the plotted lines, where Ωp is the set of color chart coordinates.
The regression line has a close fit to the color points, reminding that R2 values which are close to 1 are an indication of a good fit.
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TABLE I
COMPARISON OF DIFFERENT COLOR TRANSFORMATION MODELS. MEAN PSNR IS COMPUTED FROM IMAGES OF FIGURE 2.

Sunlight WB, Low exp. Cloudy WB, Low exp. Cloudy WB, Med. exp. Incand. WB, Med. exp.
Original 13.40 12.46 18.68 23.73

Our Power Law 37.62 28.84 29.27 34.39
[23], fixed γ 26.34 25.86 30.37 34.37

[23], estimated γ 26.81 26.62 30.67 36.30
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Fig. 3. Tonal stabilization of the sequence “sofa”. Top row: frames extracted from the original sequence, t = (2, 100, 200, 400). Second row: plot of point
correspondences between the original frame ut and the keyframe uk . Third row: estimated power law tonal transformation for each frame. Bottom row: same
frames from top row, after tonal stabilization with our method. Note that objects appearing with different colors in the original sequence have the same color
in our results. The color of the plotted points and curves correspond to the sRGB color channel (Red, Green, Blue) of the image.
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Fig. 4. Tonal stabilization of the sequence “driving”. Top row: frames extracted from the original sequence, t = (350, 375, 400, 425). Second row: same
frames from top row, after tonal stabilization with our method. This video, taken while driving in a highway, is particularly challenging because of the driving
speed, the fast motion of objects, the rain droplets falling and the wiper blade movements. Still, our method produces satisfactory tonal stabilization for this
sequence, with no artifact creation.



A SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 9

O
ri

gi
na

l
[1

]
[2

]
O

ur

t = 1 t = 40 t = 80
Fig. 5. Comparison of tonal stabilization for the sequence “building” with the methods of [1] and [2]. This figure shows three frames of the sequence
(t=1,40,80). Our algorithm is able to stabilize tonal variations without generating artifacts, while the results from [1] are not perfectly stabilized and the results
of [2] tend to saturate parts of the building.
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Fig. 7. Illustration of tonal stabilization in sequence “entrance”. First row:
Frames extracted from the original sequence. Second row: stabilizing with
λ = 1 (no temporal weighting) ensures tonal coherence between all the
frames, but at the cost of clipping intensities. Bottom row: Tonal stabilization
with temporal weighting (λ decreases exponentially in function of motion).

camera configurations as shown in Figure 2. According to our
experiments with four different white balance and exposure
configurations, summarized in Table I, for two of the shooting
configurations the color correction model proposed by [23]
is in average more accurate than our model (in terms of
PSNR), while for two other test images our model is in
average more accurate. In particular, for this set of four
images, we observed that [23] performed better when white
balance changed between reference and test images, while our
power law performed better when exposure changed between
reference and test images. However, we note that the number
of test images is not large enough to draw a solid conclusion
about the two models.

We note that the model proposed by [23] is more complete
(with 10 coefficients) and arguably closer to the radiometric
calibration pipeline [5] than our model (with 6 coefficients).
Nevertheless, we observed in practice that the estimation
of optimal coefficients of model [23] is less straightforward
and less numerically stable than ours, since a non-convex
optimization is solved. In conclusion, we may argue that both
models are practical approximations of the physical camera
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Fig. 6. Tonal stabilization of the sequence “graycard”. First row: frames extracted from the original sequence (t=1, 100, 200, 350). Second row: results from
[1]. Notice the yellowish color for t=200. Third row: results from [2] with a wash-out appearance. Bottom row: our stabilized results without any visual
artifact.
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model, where model proposed by [23] seems to be best
targeted for color stabilization among photographies taken
with arbitrary cameras, while our model seems to be best
targeted for video tonal stabilization, where a sequence of
images is typically taken from the same camera and lower
computational complexity is an important requirement.

2) Comparison of video tonal stabilization methods: In an
effort to quantitatively assess the performance of our algorithm
we propose to study the tonal variation of a homogeneous
patch with respect to the reference (first) frame through
the sequence. This is, considering the resulting sequence,
we compute the color differences (in CIELAB color space)
between a homogeneous patch in the reference frame P0 and
its corresponding patches through the resulting sequence Pt,
t = 1, . . . , D. Ideally, the patch tonal variation remains con-
stant and equal to zero. However, this criterion is not sufficient
to evaluate a tonal stabilization algorithm. For instance, a
resulting sequence of completely homogeneous color frames
would satisfy this criterion but would not be a good (pleasant)
result. Because of this reason we also study the fidelity to the
original sequence by computing the color difference between
the same aforementioned patches Pt and the same patches on
the original sequence P ot , for all t = {1, . . . , D}. A resulting
sequence with a large deviation from the original sequence
would produce undesired artifacts. With these two criteria
being defined we consider a tonal stabilized sequence being
a good result when the patch tonal variation is as constant
and small as possible and at the same time the fidelity to the
original sequence is as much preserved as possible.

Obviously, the two error curves (tonal variation and fidelity
to original) can be computed, provided the video sequence
has a homogeneous patch, as it is the case for the sequence
”building” or the sequence ”greycard”. Fig. 8 shows the error
curves for these two sequences. We observe that the patch
tonal variation is reduced with our method and the method
of [2] when compared to the patch tonal variation of the
original sequence but this is not the case for the results of
[1]. Also, our method produces the closest results in terms
of color fidelity to the original sequence. Notice that for the
sequence ”graycard” the fidelity to original is smaller for [2]
between t=75 and t=150. We explain this behavior because we
choose the first frame as reference. Indeed we obtain a smaller
fidelity to original for the first frames (from t=1 to t=75), but
then, when there is a big instability of the original sequence
for these frames (see red curve of the tonal variation) our
algorithm compensates this difference. As we have explained
in Fig. 7 we believe that our weighting strategy provides more
natural and artifact-free results.

D. Implementation

Besides the qualitative and quantitative evaluation our
method is also more efficient in comparison to the state-of-
the-art. Our prototype implementation in Python processes
a 1920 · 1080 resolution video in a rate of 11 frames per
second considering image reading and writing and 20 frames
per second without reading and writing6. On the contrary,

6Processed by Intel(R) Core(TM) i5-3340M CPU @ 2.70GHz, 8GB RAM

the C++ implementation of [2] processes 1 frame per second
(depending on video length) and a Python implementation
of [1] processes 0.6 frames per second. We believe that an
optimized implementation of our method could approach real
time processing which is a major advantage and proves the
feasibility of embedding robust tonal stabilization algorithms
on smart phones.

IV. CONCLUSION

In this work, we have proposed an efficient tonal sta-
bilization method, aided by global motion estimation and
a parametric tonal transformation. We have shown that a
simple six-parameters color transformation model is enough
to provide tonal stabilization caused by automatic camera
parameters, without the need to rely on any a priori knowledge
about the camera model.

The proposed algorithm is robust for sequences containing
motion, it reduces tonal error accumulation by means of long-
term tonal propagation, and it does not require high space and
time computational complexity to be executed.

One of the main advantages of the proposed method is that
it could be applied in practice as an online algorithm, that
has potential for real time video processing. The actual un-
optimized software implementation is already near real-time
processing. In addition, the proposed algorithm is suitable for
an implementation on a chip, opening applications such as
tonal compensation for video conferences or for live broadcast.

Experiments have demonstrated that the method performs
favorably compared to state-of-the-art methods, both in terms
of stabilization quality, fidelity to original colors, computa-
tional complexity and memory footprint.
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