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Motion Driven Tonal Stabilization

ORIEL FRIGO* and NEUS SABATER* and JULIE DELON' and PIERRE HELLIER*

*Technicolor R&I1, Cesson-Sévigné, France
fUniversité Paris Descartes, MAP5, Paris, France

This paper addresses the problem of tonal fluctuation in videos. Due to
the automatic settings of consumer cameras, the colors of objects in image
sequences might change over time. We propose here a fast and computa-
tionally light method to stabilize this tonal appearance, while remaining
robust to motion and occlusions. To do so, a minimally-viable color correc-
tion model is used, in conjunction with an effective estimation of dominant
motion. The final solution is a temporally-weighted correction, explicitly
driven by the motion magnitude, both visually efficient and very fast, with
potential to real time processing. Experimental results obtained on a vari-
ety of sequences outperform the current state of the art in terms of tonal
stability, at a much reduced computational complexity.

Categories and Subject Descriptors: 1.4.8 [Image Processing and Com-
puter Vision]: Scene Analysis—Color; 1.4.3 [Image Processing and
Computer Vision]: Enhancement—Grayscale manipulation

Additional Key Words and Phrases: Tonal stabilization; White balance; Ex-
posure control; Video editing;

1. INTRODUCTION

The increasing number of amateur video footages facilitated by the
proliferation of low-cost video cameras has made it visible a num-
ber of video artifacts, some of them being motion and tonal insta-
bilities. While motion stabilization has been studied by several re-
searchers, tonal instability has been far less discussed. Video tonal
instability is a particular temporal artifact characterized by fluctua-
tions in the colors of adjacent frames of a sequence. According to
[Farbman and Lischinski 2011], in modern videos these instabili-
ties are mainly caused by automatic settings of the camera, notably
automatic white balance and automatic exposure. These common
features of consumer digital cameras are intended respectively to
provide color balanced and well exposed images, while facilitat-
ing the user experience. However, these features are mostly ap-
propriated for still images and are not stable in time, resulting in
unpleasant tonal instabilities that can be perceived in videos. A
notable problem with automatic white balance algorithms is their
dependency on illuminant estimation, which is considered an ill-
posed problem. Classical assumptions of color constancy algo-
rithms are easily violated in practice and in a context of temporal
scene changes, it is likely to result in chromatic instability.

While automatic white balance can be simply turned off in some
cases, low end cameras offer no control over setup parameters. In
this case, the only alternative to avoid unpleasant tonal fluctuations
is to further process the video. This preprocessing can also be cru-
cial for computer vision applications relying on brightness or tonal
constancy assumptions.

Generally speaking, tonal stabilization can be described as
searching for the transformations that minimize undesired tonal
variations in multiple images of a sequence. While surprisingly few
works have specifically attempted to correct such color fluctuations
in videos [Farbman and Lischinski 2011], [Wang et al. 2014], nu-

merous works are motivated by similar purposes in different re-
search communities.

Let us start with a word on radiometric calibration approaches,
which takes into account operations performed in the camera
pipeline in order to retrieve a physically based color calibration
model between images. Recent models [Chakrabarti et al. 2009],
[Lin et al. 2011], [Kim et al. 2012] admit that the output image u of
a camera is related to the irradiance vector e measured by the sensor
by a combination of linear (white balance, color space conversion)
and nonlinear (gamut mapping, camera response function) trans-
formations. If the nonlinear part of the mapping could be estimated
for a video sequence, it could be inverted and the resulted sequence
could be corrected with linear transformations. Unfortunately, re-
covering the camera response function necessitates registered im-
ages under multiple exposures, as well training sets of RAW-sRGB
image pairs [Grossberg and Nayar 2002], [Lin et al. 2011], both
being generally not available for smartphone and point-and-shoot
video cameras.

In a related direction, one could argue that color constancy al-
gorithms would be the ideal solution to solve the tonal stabiliza-
tion problem. Starting with Land and McCain work on the Retinex
theory of color vision [Land et al. 1971][Land 1977][Brainard
and Wandell 1986], color constancy has been extensively stud-
ied and remains an active research topic [Hordley 2006] [Gijsenij
et al. 2011]. In digital cameras, the feature intended to approximate
color constancy is known as automatic white balance (AWB). The
most common approach to perform AWB is to first estimate the
color temperature of the illuminant in the scene, and then correct
the image by compensating the ratio of the estimated illuminant
to the canonical (neutral) illuminant with some variant of a Von
Kries diagonal transformation. However, illuminant estimation is
a severely under-constrained problem, necessitating additional as-
sumptions intended to cope with its ill-posed nature. Gijsenij et
al [Gijsenij et al. 2011] in their extensive survey on computational
color constancy, have categorized illuminant estimation approaches
into static methods, based on fixed parameter settings and low-level
statistics, in opposition to gamut-based and learning-based meth-
ods, which tune their parameters to a specific set of images. Auto-
matic white balance in low cost video cameras is likely to be based
on static methods, making strong assumptions about the scene con-
tent, so that illuminant color can be estimated in real time. Since
this automatic feature is the cause of tonal instabilities, recovering
the scene illuminant in each frame to correct the sequence is also
prone to fail in practice. This is true even if the available comput-
ing power makes it possible to use more involved white balance
methods than those used directly in the camera.

Another possibility is to draw on color transfer, which aims at
modifying the colors of an input image according to the colors of
an example image. Unlike color constancy, color transfer methods
make very few assumptions about the physics of the scene or the
camera (the scene illuminant or the camera response function are
not explicitly estimated), being rather a general and pragmatic ap-
proach to estimate color transformations between images. Reinhard
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Fig. 1. Overview of proposed method for tonal stabilization of videos.

et al. [Reinhard et al. 2001] popularized the concept of color trans-
fer 15 years ago with a very simple affine matching between 3D
color distributions. Other works have since proposed more com-
plex global color transfer in terms of nonlinear histogram match-
ing [Neumann and Neumann 2005], [Pitié et al. 2007], [Papadakis
etal. 2011], or optimal transportation between compact color signa-
tures [Freedman and Kisilev 2010], [Ferradans et al. 2013], [Mur-
ray et al. 2012], [Wu et al. 2013], [Frigo et al. 2014]. Another
class of methods assumes that there are spatial correspondences to
be found between the input and example images, these correspon-
dences being used to derive a color transformation [HaCohen et al.
2011]. If this assumption reduces the scope of the method for gen-
eral images, it is particularly relevant for specific user cases such as
optimizing color consistency in photos from the same scene [Ha-
Cohen et al. 2013], [Vazquez-Corral and Bertalmio 2014]. In the
case of videos, we also expect to find numerous spatial correspon-
dences between neighbor frames of the sequence. As we will see,
the tonal stabilization algorithm presented in this paper draws on
a first raw motion estimation between frames to compute a global
color correction.

While very few works have attempted to correct color fluctua-
tions in videos, several global [Decenciere 1997], [Delon 2006] or
local [Pitié et al. 2004], [Delon and Desolneux 2010] approaches
have been proposed to remove high frequency brightness fluctua-
tions, also known as flicker. In practice, the causes and effects of
flicker in videos are quite different from those of tonal instabili-
ties. In old archived films, these high frequency brightness fluctu-
ations are mainly due to physical reasons, which may cause the
flicker to vary along the image spatial coordinates. On the contrary,
tonal instabilities observed in modern videos (fluctuations in cam-
era exposure or white balance) tend to be global and are low fre-
quency artifacts. As a consequence, parametric and non-parametric
deflickering methods are not well suited to correct tonal instabili-
ties. Moreover, the extension of these deflickering methods to color
images is far from obvious.

To the best of our knowledge, only two previous works [Farbman
and Lischinski 2011], [Wang et al. 2014] have proposed approaches
specifically designed to correct color fluctuations in videos. The
first one was proposed by Farbman et al in [Farbman and Lischin-
ski 2011]. The method works by aligning tonally each frame of the
video with one or several pre-selected reference (anchor) frames
(for instance the first frame of the movie). Adjustment maps be-
tween successive frames are computed without explicit motion
compensation, the authors claiming that many pixels in the same
grid position in two successive frames are likely to correspond to

the same surface in the scene. In practice, the method provides a
reasonable solution to stabilize tonal fluctuations in static videos,
but at the cost of high space and time complexity. Besides, the lack
of real motion estimation makes the computation of the adjustment
map highly sensitive to noise or fast movements, and lack of accu-
rate correspondences can result in flickering and error propagation.

The second one, due to Wang et al. [Wang et al. 2014], starts by
estimating motion globally between successive frames, by relying
on local features correspondences. A nine parameters affine color
transformation is then used to model the exposure and white bal-
ance changes between two frames in the log domain. These affine
color transformations are estimated by least squares for all neigh-
boring frame pairs and accumulated to obtain a “color state” for
each frame of the video, represented as a 4 x 4 matrix. To avoid
data overfitting, a regularization term is added to force the affine
transformations to be close to the identity matrix. In a second step,
the frame color state function is smoothed by minimizing an energy
which also tends to control the deviation from the original color
state. The regularization step necessitates to use PCA on the set of
color states in order to avoid smoothing the different parameters
of the affine matrices independently. While the results provided by
the authors are visually good and much more satisfying than those
of [Farbman and Lischinski 2011], the method is surprisingly com-
plex to implement and requires to tune several parameters.

We are aware of existing commercial tools (Adobe After Ef-
fects®, Final Cut Pro®) able to correct specific brightness fluc-
tuations, such as high frequency flickering commonly seen in time-
lapse photography. Nevertheless, these applications remain limited
when it comes to correct tonal instabilities. The Color Stabilizer
Tool ' from Adobe After Effects is based on color sampling of se-
lected points in a reference frame, adjusting the colors neighbor
frames so that the color values of selected points remain constant
throughout the duration of the layer. The Flicker Free plugin® for
Final Cut Pro can be useful to remove high frequency flicker and
equalize the exposure of footage, but is not targeted to stabilize
white balance fluctuations.

The method prosented in this paper draws on two elementary ob-
servations. First, we show that a simplified parametric color transfer
model between the frames of a video is enough to correct convinc-
ingly color instabilities. Second, we observe that if motion estima-
tion is necessary for tonal stabilization, dominant motion estima-
tion is generally more than enough to infer large sets of correspon-

Lhttps://helpx.adobe.com/after-effects/using/color-correction-effects.html
2https://digitalanarchy.com/Flicker/main.html
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dences between frames. These are the two key ideas permitting to
develop a method which is both visually efficient and very fast, with
potential to real time processing. Furthermore, we propose a tem-
poral weighting scheme, where the intensity of tonal stabilization
is directly guided by the motion speed.

The outline of the paper is the following. Our method is pre-
sented in Section 2, first in the simplified case of registered images,
and then generalized to sequences with motion. Section 3 illus-
trates the efficiency of the proposed method on different sequences
and shows that it compares favorably to [Farbman and Lischinski
2011], [Wang et al. 2014], and achieve these results at a much re-
duced computational cost. All results are available on the project
website®.

2. PROPOSED METHOD

In this section, we present the main contributions of our method for
video tonal stabilization. Our aim is to conceive a method that is:

(1) Accurate enough to correct color instabilities observed be-
tween frames in a video;

(2) Robust against motion, occlusion and noise;

(3) Computationally simple enough to be implemented in a near
real time application.

Figure 1 presents a general overview of the proposed method. In or-
der to achieve robustness against motion and occlusion (an impor-
tant limitation of [Farbman and Lischinski 2011]) while satisfying
the simplicity requirement, we make use of dominant motion esti-
mation (and compensation) to estimate the color correspondences
between frames. By means of cumulative motion, we are able to
quickly register images even if they differ by several frames in time.
Color correspondences are then used to estimate a color transfor-
mation that is applied to correct the tonal instabilities. The require-
ment of physical accuracy for the tonal transformation model being
in contradiction with the other requirements of robustness and sim-
plicity, our color correction model tries to achieve a good tradeoff
between these three properties.

The proposed algorithm makes two hypotheses on the sequences
to be corrected. First, it is assumed that there are always spatial
correspondences (or redundance in content) between neighboring
frames in the sequence (no scene cuts). This is generally true for
every sequence composed of a single shot, as long as it does not
pass through extreme variations of scene geometry (nearly total oc-
clusion) or radiometry (huge changes in illumination or saturation).
Second, we assume that there is a global transformation which can
compensate the colorimetric aberrations between the frames. This
implies that the observed color instability and consequently the
camera response function are global (spatially invariant). In other
words, the proposed method is not suitable for correction of local
tonal instabilities. This assumptions also holds for every method
of the state of the art [Farbman and Lischinski 2011], [Wang et al.
2014].

In the following subsections, we discuss in detail each step of the
proposed method. For the sake of simplicity, we start the discussion
with the tonal transformation model, first assuming the simplest
case of color correction between registered images. We then present
our model to deal with the general case of tonal stabilization of
sequences containing motion.

Shttp://oriel.github.io/tonal_stabilization
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2.1 Tonal Transformation Model

Let {u¢}1—1,....p be a registered sequence of color frames u; :
Q — R3 defined over the same spatial domain € and let u; be
a reference keyframe in the sequence. The color channels of u, are
written (uf, S, uP). In order to tonally stabilize the sequence,
for every following frame u.,¢ > k we look for a parametric color
transformation T; : R® — R3 such that T} (u;) ~ uy. Now, as
recalled in the introduction and according to [Kim et al. 2012] , u,
is related to the irradiance vector e = (e, e, eP) measured by
the sensor (RAW intensities) by the relation

uy = f o h(TsTye€) 1)

where T’ is a 3 X 3 matrix transformation that accounts for color
space conversion, h : R® — R3 is a nonlinear gamut mapping
operator, f : R® — R3 is the nonlinear tone mapping of the
camera and T, is a diagonal 3 x 3 matrix accounting for white
balance and exposure (varying over time)

00
T,=10¢0]. )
00

If u; and uy, are two perfectly registered images of the same scene,
taken by the same camera, differing only with respect to white bal-
ance and exposure (so that these images have identical irradiance
e), then u, and uy, are related by

20 0

k

H ' (u)=| 0 %f H ' (uy), 3)
0 0 ¥

Pk

where H = f o h o T. In theory, we can achieve tonal stabiliza-
tion between images u; and u with a simple diagonal transforma-
tion performed in the camera sensor space (given by the nonlinear
transformation H~1!). This tonal stabilization model, inspired by
radiometric calibration [Kim et al. 2012] [Xiong et al. 2012], can
be seen as an accurate procedure to perform camera color transfer
when irradiances are known in the form of RAW images, allowing
an estimate of H. However, for the problem of tonal stabilization,
we are faced with videos taken with low-cost cameras, from which
we cannot make the usual assumptions that are necessary to com-
pute radiometric calibration. The assumption of multiple exposures
from the same scene, which is required to estimate the camera re-
sponse function may not be valid for some sequences, and RAW-
sRGB correspondences are also not available in practice.

In this paper, we follow another direction and claim that a much
simpler model can be used for achieving visually satisfying tonal
stabilization when the transformation H is unknown. Several paths
can be followed, from fully non parametric color transformations
(such as weighted interpolation or optimal transport / histogram
specification) to more or less complex parametric models (affine,
spline, polynomial). Parametric models have the important advan-
tage of being expressed by smooth and regular functions, well de-
fined for the whole color range (extrapolation is not a problem even
if all colors are not observed) and potentially described by few pa-
rameters, which reduces the risk of instabilities in time. A purely di-
agonal model applied to sSRGB images is unfortunately not suitable
to cope with non linearities inherent to camera response functions.
In our quest for a tonal transformation model that is simple enough
to be fastly computed, and accurate enough to produce a visually
pleasant stabilized sequence, we converged to a separable power
law transformation, which is shown to be a good compromise to fit
the criteria described above. Perhaps not surprinsingly, this model
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is quite close to the ones used in the color post-production indus-
try .
Our deliberately simplified model for 7} assumes a separable
transfer function on color channels:

T, = (TR, TF,TP), where Tf(s) :=a.s", c € {R,G, B}.
Q)]
The accuracy (in term of goodness of fit) of this power law model
will be demonstrated in the experimental section on several im-
age pairs of the same scene, with varying white balance and expo-
sure values. The ability of the model to achieve stabilization results
more or equally satisfying than more complex models on image
sequences will also be shown.
In order to estimate «., 7., we solve for every color channel of
the frame u, the linear least square fitting problem

arg min Z(uz () — acuy (m)%)2, (®)]

which can be rewritten as
arg min Z (log uj,(z) — 7. log ug () + log aC)Q, (6)
GesVe  peq

whose solution is given by

 Cov(logug,logug)
R (log ug)

y Qe = eXp(IOg uz - fYCIOg uf) ) (7)

where Z = ﬁ > zeq 2(x) is the average value of z(x), « € Q.
This is not equivalent to solving the least squares problem di-
rectly, since the loss function becomes logarithmic, which gives
more weight to residuals computed from low values. However, this
formulation permits to compute the coefficients c. and 7. exactly
and very quickly (the computation is linear in the number of cor-
respondent points). For higher regression accuracy in terms of lin-
ear mean squared error, the solution could be alternatively com-
puted with a numerical method such as gradient descent [Leven-
berg 1944], [Marquardt 1963].

2.2 Image Registration

For estimating tonal transformations between different frames, it is
desirable to have a dense set of correspondences, especially in ho-
mogeneous areas. In this paper, we choose to rely on global motion
estimation. Estimating the dominant motion of the camera is com-
putationally simpler (it can potentially be computed in real time)
than dense optical flow, and in our experience, tonal instabilities
seen in videos are usually highly correlated with the camera mo-
tion. In contrast to tasks that depend heavily on precise motion,
we do not need a highly accurate motion description in order to
estimate a color transformation that compensates tonal differences
between frames. It is much more important that this dominant mo-
tion estimation is robust enough to be cumulated in time and permit
color correction between non-neighbor frames.

In practice, for all pairs of consecutive frames u; and u;_; in
the sequence, we make use of the robust algorithm of [Odobez
and Bouthemy 1995] to estimate the affine motion transformation
Aj ;-1 between the frames. This planar affine transformation, de-
fined by 6 parameters, only accounts for the dominant motion of the
camera without considering pixel-wise accuracy. Dominant motion
has the advantage of being computationally simple to estimate, and
is generally sufficient for the task of tonal stabilization.

“http://en.wikipedia.org/wiki/ASC_CDL

Now, let u; be a reference frame and u; (¢t > k) a subsequent
frame in the video. Before applying the transformation model in
Eq. (10), u; is warped towards u;, with the accumulated transfor-
mation

Arp=As10A 14 920 0A 1 k. (8)

We define the set of spatial correspondences 2, ; between wuy,
and u; as

where o2 is the empirical noise variance (for instance, estimated
with the method in [Colom and Buades 2013]). Note that the con-
straint in Eq. (9) rules out possible motion outliers as well as oc-
cluded points (points visible in only one of the frames).

2.3 Motion driven tonal stabilization

Let us describe how keyframes are defined: the first frame of the se-
quence u; is defined as a keyframe. The following frames u;,? > 1
are stabilized with respect to u; as long as there are enough corre-
spondences between u; and w;. More precisely, given a method
parameter w to be tuned, a new keyframe is defined as soon as the
number of correspondences #2,; 1 is lower than w x #2. In other
words, a color correction is computed only if there are enough spa-
tial correspondences to define an accurate and valid model. This
process is repeated till the end of the sequence.

To ensure a fidelity to the colors of the input sequence
{ui}+=1,... p, we also introduce a regularization term for the trans-
formation sequence {T}(u¢)}:=1, .. p as following:

T, = AT+ (1 = \)Id, (10)

v, .
where A = \g exp(— H%H) controls the amount of transformation

of frame wu,, according to the motion amplitude between frame u;
and the keyframe, ||V} ;|| denotes the norm of the dominant motion
vector V; i, and p is the maximum spatial displacement (number of
rows + number of columns of the image), Ay is the initial weight (in
practice we set Ao := 0.9). In other words, the smaller the motion
magnitude, the closer A is to 1 and the greater the transformation.
In the following, this temporally-varying regularization is useful
to correct the sequence while avoiding overexposure when huge
changes in camera exposure occur in the original sequence.

Algorithm 1 sketches the proposed method. Note that the com-
putation of €2, j involves the computation of A, ; and the warping
of u; towards uy, based on A; j.
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Algorithm 1 Motion driven tonal stabilization

Input: Sequence of frames {u;}—1, . p
Output: Tonal stabilized sequence {77 (u¢)}1=1,....p

Lk<=lt<k+1

2: Tl/ (Ul) = U1

3: whilet < D do

4: Compute € i

5: if #Q > w x #Q then

6: forc < {R,G, B} do

7: e, Ve<=argmin Y, (ul(x) — auf(y)”)?

Y (=,Y)€Q i

8: T/ (uf) < Aae(u§)re + (1 — Nus

9: end for
10: t<=t+1
11: else # If there are not enough correspondences
12: k<=t—1
13: up <= Ty 1 (ue1)
14: end if

15: end while

For the sake of complexity, the original frames are rescaled (120
pixels wide) before estimating 7”. Then, the estimated 7" is coded
into a Look-Up-Table (LUT) that is applied to the high resolved
original frames. These implementation changes guarantee an algo-
rithm with low complexity but do not produce noticeable loss in
tonal stabilization accuracy.

3. EXPERIMENTAL RESULTS

In this section we first study the goodness of fit of our power law
model. Then, we show the experimental results obtained with our
tonal stabilization algorithm and we compare them with state-of-
the-art results. On the one hand, qualitative evaluation based on
visual inspection is performed and, on the other hand, quantitative
results measuring the amount of tonal variation in the resulting se-
quence and the fidelity to the original sequence are provided. Both,
quantitative and qualitative evaluation prove that the proposed al-
gorithm is accurate and robust with all the tested sequences inde-
pendently of the amount of tonal instabilities or motion.

3.1 Goodness of fit

In order to evaluate the accuracy of our power law model, we have
estimated the mean R? (coefficient of determination) along color
channels:

RQ—;Z<1

c

Y weq, (logug (z) — Tt (log uf () )

> weq, (loguj(x) — loguj)?

(11
where €, is the set of points selected from a color chart in the im-
age. In particular, we consider images captured with a smartphone
from the same scene containing a Macbeth color chart (see Fig. 2).
Each picture is adjusted (using the camera settings) to have a dif-
ferent exposure or white balance (WB), so that we can analyze the
tonal changes by studying the color transfer function between the
reference picture (sunlight WB, medium exposure) and the other
ones. More specifically, we use the median color value of each color
in the color chart to estimate a power law transformation. In the
right column of Fig. 2, we plot the functional relationship (in loga-
rithmic domain) between the colors extracted from the color chart
of the reference picture and the correspondent colors from the other

Article Title . 5

pictures. As an indication of goodness of fit, the computed R? value
is shown for each plot (the closer is R? to 1, the better the observed
tonal transformation fits the model). The coefficient is larger than
0.9 for all the computed regressions, which shows that the relation-
ship between reference and test color intensities is approximately
linear in a logarithmic scale and in general the model fits the data.

Note that the images with the color chart are useful to evaluate
our model but they are not enough challenging to compare our re-
sults with other methods in the case of videos. In fact, all methods
are comparable with this data since the presence of all the colors
in the chart help the camera automatic white balance algorithm to
work properly, without producing strong tonal instabilities.

3.2 Qualitative evaluation

In practice, our method has been tested on 18 different video se-
quences. While some sequences have been kindly provided by the
authors of [Farbman and Lischinski 2011], we have completed our
dataset with video sequences acquired with smart phones from dif-
ferent manufacturers. Complete video sequences (originals and re-
sults) are available at the project website®. We strongly recommend
the reader to look at the electronic version of the paper and the
videos in our website to appreciate the results.

First, we have considered video sequences in which camera mo-
tion is not complicated as in the sequence “sofa” (see Fig. 3). In
the original sequence one same object appears with different colors
(e.g., sofa) while in our resulting sequence all colors are stable.

In order to evaluate our results with respect to state-of-the-art
methods, we have considered the methods of Farbman et al. [Farb-
man and Lischinski 2011] and Wang et al. [Wang et al. 2014]. In
our comparison, the results from [Wang et al. 2014] have been pro-
vided by the authors while the results from [Farbman and Lischin-
ski 2011] come from our implementation of their method, which
is coherent with the results published in their paper and website.
In particular, Fig. 4 compares our results with the sequence “’build-
ing” that has been acquired with a Samsung Galaxy S smart phone.
Note that the results from [Farbman and Lischinski 2011] are not
perfectly stabilized due to the important camera motion of the se-
quence, and the results from [Wang et al. 2014] are stabilized but
the sequence is much whiter and parts of it are completely satu-
rated which is not visually pleasant. Fig. 5 compares with the se-
quence “graycard” the same algorithms which turn out to have the
same behavior in terms of remnant tonal variation for [Farbman and
Lischinski 2011] and wash-out look (white) for [Wang et al. 2014].
On the contrary, in the two sequences “building” and “graycard”,
our results are both stable and color coherent with a good dynamic
range.

Note that all video sequences are processed with the same set
of parameters, i.e., w = 0.25 and A\g = 0.9. Concerning the pa-
rameter robustness in our method we have observed that varying
w has very little impact on the results. On the contrary, the choice
of A (cf. Eq. 10) determines the amount of fidelity to the original
sequence. Indeed, A = 1 corresponds to a strict tonal stabiliza-
tion and A = A\ exp(— W) weights temporally (in function of
motion) the contribution to the original sequence. While temporal
weighting reduces the strict tonal preservation, it may be argued
that it produces a visually pleasant result by preserving some de-
gree of the original colors. In particular, when the original sequence
presents high tonal variations, temporal weighting avoids to create
a resulting sequence too different from the original in which colors

Shttp://oriel.github.io/tonal_stabilization

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



6 . Author Name

Reference image

Sunlight WB, Med. exp.

Corrected images

Original images Regression line (log. domain)

R?=0.99

 Blue channel
1l +Green channel | |
¢ Red channel

Sunlight WB, Low exp.

Cloudy WB, Low exp.

Cloudy WB, Med. exp.

Incand. WB, Med. exp.

Fig. 2. Illustration of the goodness of fit of the proposed tonal transformation model. In this experience, a sequence of approximately registered images is
taken from the same scene, and the color transformation is estimated from correspondent points extracted from the Macbeth color chart. On the first row, a
reference image (keyframe wy,) is shown. For the following second to fifth rows, on the left column, tonally unstable images (u+) taken with different exposures
and white balance are shown. On the middle column, the color corrected images are shown, where it can be noted that tonal instability is largely reduced.
Finally, on the right column, the extracted points from the color chart and the estimated regression lines are plotted in the logarithmic domain. The x-axis
corresponds to log uf (€2,), while the y-axis corresponds to log uf, (€2,,) for the plotted points and T (log u§(€2,,)) for the plotted lines, where §2,, is the set
of color chart coordinates. The regression line has a close fit to the color points, reminding that R? values which are close to 1 are an indication of a good fit.
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Fig. 3. Tonal stabilization of the sequence “sofa”. Top row: frames extracted from the original sequence, t = (2, 100, 200, 400). Second row: plot of point
correspondences between the original frame u; and the keyframe wy. Third row: estimated power law tonal transformation for each frame. Bottom row: same
frames from top row, after tonal stabilization with our method. Note that objects appearing with different colors in the original sequence have the same color
in our results. The color of the plotted points and curves correspond to the SRGB color channel (Red, Green, Blue) of the image.

may appear saturated or not natural. Fig. 6 shows an example of a
sequence with important tonal instabilities in the original sequence
and the results with the different choices of A. The strict tonal stabi-
lization result (A = 1) saturates some parts of the resulting frames
(e.g. t= 170) which motivates our choice of A.

3.3 Quantitative evaluation

In an effort to quantitatively assess the performance of our algo-
rithm we propose to study the tonal variation of a homogeneous
patch with respect to the reference (first) frame through the se-
quence. This is, considering the resulting sequence, we compute
the color differences (in CIELAB color space) between a homo-
geneous patch in the reference frame P, and its corresponding
patches through the resulting sequence P;, t = 1,..., D. Ideally,
the patch tonal variation remains constant and equal to zero. How-
ever, this criterion is not sufficient to evaluate a tonal stabilization
algorithm. For instance, a resulting sequence of completely homo-
geneous color frames would satisfy this criterion but would not be
a good (pleasant) result. Because of this reason we also study the
fidelity to the original sequence by computing the color difference
between the same aforementioned patches P; and the same patches
on the original sequence P?, forallt = 1,..., D. A resulting se-
quence with a large deviation from the original sequence would

produce undesired artifacts. With these two criteria being defined
we consider a tonal stabilized sequence being a good result when
the patch tonal variation is as constant and small as possible and
at the same time the fidelity to the original sequence is as much
preserved as possible.

Obviously, the two error curves (tonal variation and fidelity to
original) can be computed, provided the video sequence has a ho-
mogeneous patch, as it is the case for the sequence “building” or
the sequence “greycard”. Fig. 7 shows the error curves for these
two sequences. We observe that the patch tonal variation is reduced
with our method and the method of [Wang et al. 2014] when com-
pared to the patch tonal variation of the original sequence but this is
not the case for the results of [Farbman and Lischinski 2011]. Also,
our method produces the closest results in terms of color fidelity to
the original sequence. Notice that for the sequence “graycard” the
fidelity to original is smaller for [Wang et al. 2014] between t=75
and t=150. We explain this behavior because we choose the first
frame as reference. Indeed we obtain a smaller fidelity to original
for the first frames (from t=1 to t=75), but then, when there is a big
instability of the original sequence for these frames (see red curve
of the tonal variation) our algorithm compensates this difference.
As we have explained in Fig. 6 we believe that our weighting strat-
egy provides more natural and artifact-free results.
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Fig. 4. Comparison of tonal stabilization for the sequence “building” with the methods of [Farbman and Lischinski 2011] and [Wang et al. 2014]. This figure
shows three frames of the sequence (t=1,40,80). Our algorithm is able to stabilize tonal variations without generating artifacts, while the results from [Farbman
and Lischinski 2011] are not perfectly stabilized and the results of [Wang et al. 2014] tend to saturate parts of the building.

3.4 Implementation

Besides the qualitative and quantitative evaluation our method is
also more efficient in comparison to the state-of-the-art. Our pro-
totype implementation in Python processes a 1920 - 1080 resolu-
tion video in a rate of 11 frames per second considering image
reading and writing and 20 frames per second without reading and
writing®. On the contrary, the C++ implementation of [Wang et al.
2014] processes 1 frame per second (depending on video length)
and a Python implementation of [Farbman and Lischinski 2011]
processes 0.6 frames per second. We believe that an optimized im-
plementation of our method could approach real time processing
which is a major advantage and proves the feasibility of embed-
ding robust tonal stabilization algorithms on smart phones.

4. CONCLUSION

In this work, we have proposed an efficient tonal stabilization
method, aided by global motion estimation and a parametric tonal

SProcessed by Intel(R) Core(TM) i5-3340M CPU @ 2.70GHz, 8GB RAM

transformation. We have shown that a simple six-parameters color
transformation model is enough to provide tonal stabilization
caused by automatic camera parameters, without the need to rely
on any a priori knowledge about the camera model.

The proposed algorithm is robust for sequences containing mo-
tion, it reduces tonal error accumulation by means of long-term
tonal propagation, and it does not require high space and time com-
putational complexity to be executed.

One of the main advantages of the proposed method is that it
could be applied in practice as an online algorithm, that has poten-
tial for real time video processing. The actual un-optimized soft-
ware implementation is already near real-time processing. In addi-
tion, the proposed algorithm is suitable for an implementation on
a chip, opening applications such as tonal compensation for video
conferences or for live broadcast.

Experiments have demonstrated that the method performs favor-
ably compared to state-of-the-art methods, both in terms of stabi-
lization quality, fidelity to original colors, computational complex-
ity and memory footprint.
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Fig. 5. Tonal stabilization of the sequence “graycard”. First row: frames extracted from the original sequence (t=1, 100, 200, 350). Second row: results from

[Farbman and Lischinski 2011]. Notice the yellowish color for t=200. Third row: results from [Wang et al. 2014] with a wash-out appearance. Bottom row:
our stabilized results without any visual artifact.
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Fig. 7. Quantitative evaluation of the sequence building” (top) and “graycard” (bottom). For each sequence, we show (i) the tonal instability error, computed
as the color distance of a tracked patch to the reference (first) frame, and (ii) the tonal fidelity error, computed as the color distance at each instant, between
the corrected frame and the original frame, which indicates the degree of fidelity between the original and the corrected sequence. The color distances are
computed as the euclidian distance in perceptual color space CIELAB. Overall, our method compares favorably with the methods of [Farbman and Lischinski
2011] and [Wang et al. 2014], both in terms of reduction of tonal instability as in terms of fidelity to original colors.
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