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Abstract

In this paper, we consider the Forward–Backward proximal splitting algorithm to
minimize the sum of two proper closed convex functions, one of which having
a Lipschitz continuous gradient and the other being partly smooth relative to an
active manifoldM. We propose a generic framework under which we show that
the Forward–Backward (i) correctly identifies the active manifold M in a finite
number of iterations, and then (ii) enters a local linear convergence regime that we
characterize precisely. This gives a grounded and unified explanation to the typical
behaviour that has been observed numerically for many problems encompassed in
our framework, including the Lasso, the group Lasso, the fused Lasso and the
nuclear norm regularization to name a few. These results may have numerous
applications including in signal/image processing processing, sparse recovery and
machine learning.

1 Introduction

1.1 Problem statement

Convex optimization has become ubiquitous in most quantitative disciplines of science. A common
trend in modern science is the increase in size of datasets, which drives the need for more efficient
optimization methods. Our goal is the generic minimization of composite functions of the form

min
x∈Rn

{
Φ(x) = F (x) + J(x)

}
, (1.1)

where

(A.1) J : Rn → R ∪ {+∞} is a proper, closed and convex function;
(A.2) F is a convex and C1,1(Rn) function whose gradient is β–Lipschitz continuous;
(A.3) Argmin Φ 6= ∅.

The class of problems (1.1) covers many popular non-smooth convex optimization problems en-
countered in various fields throughout science and engineering, including signal/image processing,
machine learning and classification. For instance, taking F = 1

2λ ||y − A · ||
2 for some A ∈ Rm×n

and λ > 0, we recover the Lasso problem when J = || · ||1, the group Lasso for J = || · ||1,2, the
fused Lasso for J = ||D∗ · ||1 with D = [DDIF, εId] and DDIF is the finite difference operator,
anti-sparsity regularization when J = || · ||∞, and nuclear norm regularization when J = || · ||∗.

1

{Jingwei.Liang,Jalal.Fadili}@greyc.ensicaen.fr
Gabriel.Peyre@ceremade.dauphine.fr


The standard (non relaxed) version of Forward–Backward (FB) splitting algorithm [3] for solving
(1.1) updates to a new iterate xk+1 according to

xk+1 = proxγkJ
(
xk − γk∇F (xk)

)
, (1.2)

starting from any point x0 ∈ Rn, where 0 < γ ≤ γk ≤ γ < 2/β. Recall that the proximity operator
is defined, for γ > 0, as

proxγJ(x) = argminz∈Rn
1
2γ ||z − x||

2
+ J(z).

1.2 Contributions

In this paper, we present a unified local linear convergence analysis for the FB algorithm to solve
(1.1) when J is in addition partly smooth relative to a manifoldM (see Definition 2.1 for details).
The class of partly smooth functions is very large and encompasses all previously discussed ex-
amples as special cases. More precisely, we first show that FB has a finite identification property,
meaning that after a finite number of iterations, say K, all iterates obey xk ∈ M for k ≥ K. Ex-
ploiting this property, we then show that after such a large enough number of iterations, xk converges
locally linearly. We characterize this regime and the rates precisely depending on the structure of the
active manifoldM. In general, xk converges locally Q-linearly, and whenM is an linear subspace,
the convergence becomes R-linear. Several experimental results on some of the problems discussed
above are provided to support our theoretical findings.

1.3 Related work

Finite support identification and local R-linear convergence of FB to solve the Lasso problem,
though in infinite-dimensional setting, is established in [4] under either a very restrictive injectivity
assumption, or a non-degeneracy assumption which is a specialization of ours (see (3.1)) to the `1
norm. A similar result is proved in [13], for F being a smooth convex and locally C2 function
and J the `1 norm, under restricted injectivity and non-degeneracy assumptions. The `1 norm is a
partly smooth function and hence covered by our results. [1] proved Q-linear convergence of FB to
solve (1.1) for F satisfying restricted smoothness and strong convexity assumptions, and J being
a so-called convex decomposable regularizer. Again, the latter is a small subclass of partly smooth
functions, and their result is then covered by ours. For example, our framework covers the total
variation (TV) semi-norm and `∞-norm regularizers which are not decomposable.

In [15, 16], the authors have shown finite identitification of active manifolds associated to partly
smooth functions for various algorithms, including the (sub)gradient projection method, Newton-
like methods, the proximal point algorithm. Their work extends that of e.g. [28] on identifiable
surfaces from the convex case to a general non-smooth setting. Using these results, [14] considered
the algorithm [25] to solve (1.1) where J is partly smooth, but not necessarily convex and F is
C2(Rn), and proved finite identitification of the active manifold. However, the convergence rate
remains an open problem in all these works.

1.4 Notations

Suppose M ⊂ Rn is a C2-manifold around x ∈ Rn, denote TM(x) the tangent space of M at
x ∈ Rn. The tangent model subspace is defined as

Tx = Lin
(
∂J(x)

)⊥
,

where Lin(C) is the linear hull of the convex set C ⊂ Rn. For a linear subspace V , we denote PV
the orthogonal projector onto V and for a matrix A ∈ Rm×n, AV = A◦PV . Define the generalized
sign vector

ex = PTx

(
∂J(x)

)
.

For a convex set C ⊂ Rn, ri(C) denotes its relative interior, i.e. the interior relative to its affine hull.
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2 Partial smoothness

In addition to (A.1), our central assumption is that J is a partly smooth function. Partial smoothness
of functions is originally defined in [17]. Our definition hereafter specializes it to the case of proper
closed convex functions.
Definition 2.1. Let J be a proper closed convex function such that ∂J(x) 6= ∅. J is partly smooth
at x relative to a setM containing x if

(1) (Smoothness)M is a C2-manifold around x and J restricted toM is C2 around x.

(2) (Sharpness) The tangent space TM(x) is Tx.

(3) (Continuity) The set–valued mapping ∂J is continuous at x relative toM.

In the following, the class of partly smooth functions at x relative to M is denoted as PSx(M).
WhenM is an affine manifold, thenM = x+ Tx, and we denote this subclass as PSAx(x+ Tx).
WhenM is a linear manifold, thenM = Tx, and we denote this subclass as PSLx(Tx).

Capitalizing on the results of [17], it can be shown that under mild transversality assumptions, the
set of continuous convex partly smooth functions is closed under addition and pre-composition by a
linear operator. Moreover, absolutely permutation-invariant convex and partly smooth functions of
the singular values of a real matrix, i.e. spectral functions, are convex and partly smooth spectral
functions of the matrix [10].

It then follows that all the examples discussed in Section 1, including `1, `1−`2, `∞, TV and nuclear
norm regularizers, are partly smooth. In fact, the nuclear norm is partly smooth at a matrix x relative
to the manifoldM =

{
x′ : rank(x′) = rank(x)

}
. The first three regularizers are all part of the

class PSLx(Tx), see Section 4 and [27] for details.

We now define a subclass of partly smooth functions where the active manifold is actually a subspace
and the generalized sign vector ex is locally constant.
Definition 2.2. J belongs to the class PSSx(Tx) if and only if J ∈ PSAx(x+Tx) or J ∈ PSLx(Tx)
and ex is constant near x, i.e. there exists a neighbourhood U of x such that ∀x′ ∈ Tx ∩ U

ex′ = ex.

A typical family of functions that comply with this definition is that of partly polyhedral func-
tions [26, Section 6.5], which includes the `1 and `∞ norms, and the TV semi-norm.

3 Local linear convergence of the FB method

In this section, we state our main result on finite identification and local linear convergence of FB.
Theorem 3.1. Assume that (A.1)-(A.3) hold. Suppose that the FB scheme is used to create a se-
quence xk which converges to x? ∈ Argmin Φ such that J ∈ PSx?(Mx?), F is C2 near x? and

−∇F (x?) ∈ ri
(
∂J(x?)

)
. (3.1)

Then we have the following holds,

(1) The FB scheme (1.2) has the finite identification property, i.e. there exists K ≥ 0, such that
for all k ≥ K, xk ∈Mx? .

(2) Suppose moreover that ∃α > 0 such that
PT∇2F (x?)PT � αId, (3.2)

where T := Tx? . Then for all k ≥ K, the following holds.

(i) Q-linear convergence: if 0 < γ ≤ γk ≤ γ̄ < min
(
2αβ−2, 2β−1

)
, then given any

1 > ρ > ρ̃,
||xk+1 − x?|| ≤ ρ||xk − x?||,

where ρ̃2 = max
{
q(γ), q(γ̄)

}
∈ [0, 1[ and q(γ) = 1− 2αγ + β2γ2.
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(ii) R-linear convergence: if J ∈ PSAx?(x? + T ) or J ∈ PSLx?(T ), then for 0 < γ ≤
γk ≤ γ̄ < min

(
2αν−2, 2β−1

)
, where ν ≤ β is the Lipzchitz constant of PT∇FPT ,

then
||xk+1 − x?|| ≤ ρk||xk − x?||,

where ρ2k = 1− 2αγk + ν2γ2k ∈ [0, 1[. Moreover, if α
ν2 ≤ γ̄ and set γk ≡ α

ν2 , then
the optimal linear rate can be achieved is

ρ∗ =
√

1− α2/ν2.

Remark 3.2. • The non-degeneracy assumption in (3.1) can be viewed as a geometric gener-
alization of strict complementarity of non-linear programming. Building on the arguments
of [16], it turns out that it is almost a necessary condition for finite identification ofMx? .

• Under the non-degeneracy and local strong convexity assumptions (3.1)-(3.2), one can ac-
tually show that x? is unique by extending the reasoning in [26].

• For F = G ◦ A, where G satisfies (A.2), assumption (3.2) and the constant α can be
restated in terms of local strong convexity of G and restricted injectivity of A on T , i.e.
Ker(A) ∩ T = {0}.

• When F = 1
2 ||y − A · ||

2, not only the minimizer x? is unique, but also the rates in Theo-
rem 3.1 can be refined further as the gradient operator∇F becomes linear.

• Partial smoothness guarantees that xk arrives the active manifold in finite time, hence rais-
ing the hope of acceleration using second-order information. For instance, one can think
of turning to geometric methods along the manifoldMx? , where faster convergence rates
can be achieved. This is also the motivation behind the work of e.g. [19].

When J ∈ PSSx?(T ), it turns out that the restricted convexity assumption (3.2) of Theorem 3.1 can
be removed in some cases, but at the price of less sharp rates.

Theorem 3.3. Assume that (A.1)-(A.3) hold. For x? ∈ Argmin Φ, suppose that J ∈ PSSx?(Tx?),
(3.1) is fulfilled, and there exists a subspace V such that Ker

(
PT∇2F (x)PT

)
= V for any x ∈

Bε(x?), ε > 0. Let the FB scheme be used to create a sequence xk that converges to x? with
0 < γ ≤ γk ≤ γ̄ < min

(
2αβ−2, 2β−1

)
, where α > 0 (see the proof). Then there exists a constant

C > 0 and ρ ∈ [0, 1[ such that for all k large enough

||xk − x?|| ≤ Cρk.

A typical example where this result applies is for F = G ◦ A with G locally strongly convex, in
which case V = Ker(AT ).

4 Numerical experiments

In this section, we describe some examples to demonstrate the applicability of our results. More
precisely, we consider solving

min
x∈Rn

1
2 ||y −Ax||

2
+ λJ(x) (4.1)

where y ∈ Rm is the observation, A : Rn → Rm, λ is the tradeoff parameter, and J is either the
`1-norm, the `∞-norm, the `1 − `2-norm, the TV semi-norm or the nuclear norm.

Example 4.1 (`1-norm). For x ∈ Rn, the sparsity promoting `1-norm [8, 23] is

J(x) =
∑n

i=1|xi|.

It can verified that J is a polyhedral norm, and thus J ∈ PSSx(Tx) for the model subspace

M = Tx =
{
u ∈ Rn : supp(u) ⊆ supp(x)

}
, and ex = sign(x).

The proximity operator of the `1-norm is given by a simple soft-thresholding.
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Example 4.2 (`1−`2-norm). The `1−`2-norm is usually used to promote group-structured sparsity
[29]. Let the support of x ∈ Rn be divided into non-overlapping blocks B such that

⋃
b∈B b =

{1, . . . , n}. The `1 − `2-norm is given by

J(x) = ||x||B =
∑

b∈B||xb||,

where xb = (xi)i∈b ∈ R|b|. || · ||B in general is not polyhedral, yet partly smooth relative to the
linear manifold

M = Tx =
{
u ∈ Rn : suppB(u) ⊆ suppB(x)

}
, and ex =

(
N (xb)

)
b∈B,

where suppB(x) =
⋃{

b : xb 6= 0
}

, N (x) = x/||x|| and N (0) = 0. The proximity operator of the
`1 − `2 norm is given by a simple block soft-thresholding.

Example 4.3 (Total Variation). As stated in the introduction, partial smoothness is preserved under
pre-composition by a linear operator. Let J0 be a closed convex function and D is a linear operator.
Popular examples are the TV semi-norm in which case J0 = || · ||1 and D∗ = DDIF is a finite
difference approximation of the derivative [22], or the fused Lasso for D = [DDIF, εId] [24].

If J0 ∈ PSD∗x(M0), then it is shown in [17, Theorem 4.2] that under an appropriate transversality
condition, J ∈ PSx(M) where

M =
{
u ∈ Rn : D∗u ∈M0

}
.

In particular, for the case of the TV semi-norm, we have J ∈ PSSx(Tx) with

M = Tx =
{
u ∈ Rn : supp(D∗u) ⊆ I

}
and ex = PTx

Dsign(D∗x)

where I = supp(D∗x). The proximity operator for the 1D TV, though not available in closed form,
can be obtained efficiently using either the taut string algorithm [11] or the graph cuts [7].

Example 4.4 (Nuclear norm). Low-rank is the spectral extension of vector sparsity to matrix-
valued data x ∈ Rn1×n2 , i.e. imposing the sparsity on the singular values of x. Let x = UΛxV

∗ a
reduced singular value decomposition (SVD) of x. The nuclear norm of a x is defined as

J(x) = ||x||∗ =
∑r

i=1(Λx)i,

where rank(x) = r. It has been used for instance as SDP convex relaxation for many problems
including in machine learning [2, 12], matrix completion [21, 5] and phase retrieval [6].

It can be shown that the nuclear norm is partly smooth relative to the manifold [18, Example 2]

M =
{
z ∈ Rn1×n2 : rank(z) = r

}
.

The tangent space toM at x and ex are given by

TM(x) =
{
z ∈ Rn1×n2 : z = UL∗ +MV ∗, ∀L ∈ Rn2×r,M ∈ Rn1×r

}
, and ex = UV ∗.

The proximity operator of the nuclear norm is just soft–thresholding applied to the singular values.

Recovery from random measurements In these examples, the forward observation model is

y = Ax0 + ε, ε ∼ N (0, δ2), (4.2)

where A ∈ Rm×n is generated uniformly at random from the Gaussian ensemble with i.i.d. zero-
mean and unit variance entries. The tested experimental settings are

(a) `1-norm m = 48 and n = 128, x0 is 8-sparse;

(b) Total Variation m = 48 and n = 128, (DDIFx0) is 8-sparse;

(c) `∞-norm m = 123 and n = 128, x0 has 10 saturating entries;

(d) `1 − `2-norm m = 48 and n = 128, x0 has 2 non-zero blocks of size 4;

(e) Nuclear norm m = 1425 and n = 2500, x0 ∈ R50×50 and rank(x0) = 5.
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The number of measurements is chosen sufficiently large, δ small enough and λ of the order of
δ so that [27, Theorem 1] applies, yielding that the minimizer of (4.1) is unique and verifies the
non-degeneracy and restricted strong convexity assumptions (3.1)-(3.2).

The convergence profile of ||xk−x?|| are depicted in Figure 1(a)-(e). Only local curves after activity
identification are shown. For `1, TV and `∞, the predicted rate coincides exactly with the observed
one. This is because these regularizers are all partly polyhedral gauges, and the data fidelity is
quadratic, hence making the predictions of Theorem 3.1(ii) exact. For the `1 − `2-norm, although
its active manifold is still a subspace, the generalized sign vector ek is not locally constant, which
entails that the the predicted rate of Theorem 3.1(ii) slightly overestimates the observed one. For the
nuclear norm, whose active manifold is not linear. Thus Theorem 3.1(i) applies, and the observed
and predicted rates are again close.

TV deconvolution In this image processing example, y is a degraded image generated accord-
ing to the same forward model as (4.1), but now A is a convolution with a Gaussian kernel. The
anisotropic TV regularizer is used. The convergence profile is shown in Figure 1(f). Assumptions
(3.1)-(3.2) are checked a posteriori. This together with the fact that the anisotropic TV is polyhedral
justifies that the predicted rate is again exact.
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(f) TV deconvolution

Figure 1: Observed and predicted local convergence profiles of the FB method (1.2) in terms of
||xk − x?|| for different types of partly smooth functions. (a) `1-norm; (b) TV semi-norm; (c) `∞-
norm; (d) `1 − `2-norm; (e) Nuclear norm; (f) TV deconvolution.

5 Proofs

Lemma 5.1. Suppose that J ∈ PSx(M). Then for any x′ ∈ M∩ U , where U is a neighbourhood
of x, the projector PM(x′) is uniquely valued and C1 around x, and thus

x′ − x = PTx
(x′ − x) + o

(
||x′ − x||

)
.

If J ∈ PSAx(x+ Tx) or J ∈ PSLx(Tx), then

x′ − x = PTx(x′ − x).

Proof. Partial smoothness implies that M is a C2–manifold around x, then PM(x′) is uniquely
valued [20] and moreover C1 near x [18, Lemma 4]. Thus, continuous differentiability shows

x′ − x = PM(x′)− PM(x) = DPM(x)(x− x′) + o(||x− x′||).
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where DPM(x) is the derivative of PM at x. By virtue of [18, Lemma 4] and the sharpness propo-
erty of J , this derivative is given by

DPM(x) = PTM(x) = PTx
,

The case whereM is affine or linear is immediate. This conlcudes the proof.

Proof of Theorem 3.1.
1. Classical convergence results of the FB scheme, e.g. [9], show that xk converges to some x? ∈

Argmin Φ 6= ∅ by assumption (A.3). Assumptions (A.1)-(A.2) entail that (3.1) is equivalent
to 0 ∈ ri ∂

(
Φ(x?)

)
. Since F ∈ C2 around x?, the smooth perturbation rule of partly smooth

functions [17, Corollary 4.7] ensures that Φ ∈ PSx?(M). By definition of xk+1, we have
1
γk

(
Gk(xk)−Gk(xk+1)

)
∈ ∂Φ(xk+1).

where Gk =
(
Id− γk∇F

)
. By Baillon-Haddad theorem, Gk is non-expansive, hence

dist
(
0, ∂Φ(xk+1)

)
≤ 1

γk
||Gk(xk)−Gk(xk+1)|| ≤ 1

γk
||xk − xk+1||.

Since lim inf γk = γ > 0, we obtain dist
(
0, ∂Φ(xk+1)

)
→ 0. Owing to assumptions (A.1)-

(A.2), Φ is subdifferentially continuous and thus Φ(xk) → Φ(x?). Altogether, this shows that
the conditions of [15, Theorem 5.3] are fulfilled, whence the claim follows.

2. Take K > 0 sufficiently large such that for all k ≥ K, xk ∈Mx? and xk ∈ Bε(x?).

(i) Since proxγkJ is firmly non-expansive, hence non-expansive, we have

||xk+1 − x?|| = ||proxγkJGkxk − proxγkJGkx
?|| ≤ ||Gkxk −Gkx?||. (5.1)

By virtue of Lemma 5.1, we have xk − x? = PT (xk − x?) + o(||xk − x?||). This, together
with local C2 smoothness of F and Lipschitz continuity of∇F entails

〈xk − x?,∇F (xk)−∇F (x?)〉 =
∫ 1

0
〈xk − x?,∇2F (x? + t(xk − x?))(xk − x?)〉dt

=
∫ 1

0
〈PT (xk − x?),∇2F (x? + t(xk − x?))PT (xk − x?)〉dt+ o

(
||xk − x?||2

)
≥ α||xk − x?||2 + o

(
||xk − x?||2

)
. (5.2)

Since (3.2) holds and ∇2F (x) depends continuously on x, there exists ε > 0 such that
PT∇2F (x)PT � αId, ∀x ∈ Bε(x?). Thus, classical development of the right hand side of
(5.1) yields

||xk+1 − x?||2 ≤ ||Gkxk −Gkx?||2 = ||(xk − x?)− γk(∇F (xk)−∇F (x?))||2

= ||xk − x?||2 − 2γk〈xk − x?,∇F (xk)−∇F (x?)〉+ γ2k||∇F (xk)−∇F (x?)||2

≤ ||xk − x?||2 − 2γkα||xk − x?||2 + γ2kβ
2||xk − x?||2 + o

(
||xk − x?||2

)
=
(
1− 2αγk + β2γ2k

)
||xk − x?||2 + o

(
||xk − x?||2

)
. (5.3)

Taking the lim sup in this inequality gives

lim sup
k→+∞

||xk+1 − x?||2/||xk − x?||2 ≤ q(γk) = 1− 2αγk + β2γ2k. (5.4)

It is clear that for 0 < γ ≤ γ ≤ γ̄ < min
(
2αβ−2, 2β−1

)
, q(γ) ∈ [0, 1[, and q(γ) ≤ ρ̃2 =

max
{
q(γ), q(γ̄)

}
. Inserting this in (5.4), and using classical arguments yields the result.

(ii) We give the proof forM = T , that forM = x? + T is similar. Since xk and x? belong to
T , from xk+1 = proxγkJ(Gkxk) we have

Gkxk−xk+1 ∈ γk∂J(xk+1)⇒ xk+1 = PT
(
Gkxk − γk∂J(xk+1)

)
= PTGkxk− γkek+1.

Similarily, we have x? = PTGkx
? − γke?. We then arrive at

(xk+1 − x?) + γk(ek+1 − e?) = (xk − x?)− γk
(
PT∇F (PTxk)− PT∇F (PTx

?)
)
. (5.5)
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Moreover, maximal monotonicity of γk∂J gives

||(xk+1 − x?) + γk(ek+1 − e?)||2

= ||xk+1 − x?||2 + 2〈xk+1 − x?, γk(ek+1 − e?)〉+ γk||ek+1 − e?||2 ≥ ||xk+1 − x?||2.

It is straightforward to see that now, (5.2) becomes

〈xk − x?,PT∇F (PTxk)− PT∇F (PTx
?)〉 ≥ α||xk − x?||2.

Let ν be the Lipschitz constant of PT∇FPT . Obviously ν ≤ β. Developing ||PT (Gkxk −
Gkx

?)||2 similarly to (5.3) we obtain

||xk+1 − x?||2 ≤
(
1− 2αγk + ν2γ2k

)
||xk − x?||2 = ρ2k||xk − x?||

2
,

where ρk ∈ [0, 1[ for 0 < γ ≤ γk ≤ γ̄ < min
(
2α/ν2, 2/β

)
. ρk is minimized at α

ν2 with the
proposed optimal rate whenever it obeys the given upper-bound.

Proof of Theorem 3.3. Arguing similarly to the proof of Theorem 3.1(ii), and using in addition that
e? = ex? is locally constant, we get

xk+1 − x? = (xk − x?)− γk
(
PT∇F (PTxk)− PT∇F (PTx

?)
)

= (xk − x?)− γk
∫ 1

0
PT∇2F (x? + t(xk − x?))PT (xk − x?)dt,

Denote Ht = PT∇2F (x? + t(xk − x?))PT � 0. Using that Ht is self-adjoint, we have

PV xk+1 = PV xk.

Since xk → x?, it follows that PV xk = PV x
? for all k sufficiently large. Observing that xk−x? =

PV ⊥(xk − x?) for all large k, we get

xk+1 − x? = xk − x? − γk
∫ 1

0
PV ⊥HtPV ⊥(xk − x?)dt.

Observe that V ⊥ ⊂ T . By definition, Bt = H
1/2
t PV ⊥ is injective, and therefore, ∃σ > 0 such that

||Btx||2 > σ||x||2 for all x 6= 0 and t ∈ [0, 1]. We then have

||xk+1 − x?||2

= ||xk − x?||2 − 2γk
∫ 1

0
〈xk − x?, BTt Bt(xk − x?)〉dt+ γ2k||PV ⊥PT

(
∇F (xk)−∇F (x?)

)
||2

= ||xk − x?||2 − 2γk
∫ 1

0
||Bt(xk − x?)||2dt+ γ2k||PV ⊥PT ||2||∇F (xk)−∇F (x?)||2

= ||xk − x?||2 − 2γkσ||xk − x?||2 + γ2k||PTPV ⊥ ||
2||∇F (xk)−∇F (x?)||2

≤ ||xk − x?||2 − 2γkσ||xk − x?||2 + γ2kβ
2||PV ⊥ ||

2||PV ⊥(xk − x?)||2

≤ ||xk − x?||2 − 2γkσ||xk − x?||2 + γ2kβ
2||xk − x?||2 = ρ2k||xk − x?||

2
.

It is easy to see again that ρk ∈ [0, 1[ whenever 0 < γ ≤ γk ≤ γ̄ < min
(
2β−1, 2σβ−2

)
.
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