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Abstract

Subshifts of finite type are sets of colorings of the plane defined by local constraints. They
can be seen as a discretization of continuous dynamical systems. We investigate here the
hardness of deciding factorization, conjugacy and embedding of subshifts in dimensions
d > 1 for subshifts of finite type and sofic shifts and in dimensions d ≥ 1 for effective
shifts. In particular, we prove that the conjugacy, factorization and embedding problems
are Σ0

3-complete for sofic and effective subshifts and that they are Σ0
1-complete for SFTs,

except for factorization which is also Σ0
3-complete.

Keywords: Subshifts, Computability, Factorization, Embedding, Conjugacy, Subshift of
finite type, Arithmetical Hierarchy, Tilings, SFTs.

A d-dimensional subshift is the set of colorings of Zd by a finite set of colors in which
a family of forbidden patterns never appear. These are shift-invariant spaces, hence the
name. If the family of forbidden patterns is finite, then it is a subshift of finite type
(SFT). If the family of forbidden patterns is recursively enumerable, then the subshift
is called effective. Another class of subshifts can be defined by the help of local maps,
namely the class of sofic shifts: they are the letter by letter projections of SFTs.

One can also see SFTs as tilings of Zd, and in dimension 2 they are equivalent to
the usual notion of tilings introduced by Wang [17]. Subshifts are a way to discretize
continuous dynamical systems: if X is a compact space and φ : X → X a continuous
map, we can partition X in a finite number of parts A = {1, . . . , n} and transform the
orbit of a point x ∈ X into a sequence (xn)n∈N∗ , where xi denotes the part of X in which
φi(x) lies.

Conjugacy is the right notion of isomorphism between subshifts, and plays a major
role in their study: when two subshifts are conjugate they code each other and hence
have the same dynamical properties. Conjugacy is an equivalence relation and allows
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to separate SFTs into equivalence classes. Deciding whether two SFTs are conjugate
is called the classification problem. It is a long standing open problem in dimension
one [5], although has been proved decidable in the particular case of one-sided SFTs on
N, see [18]. It has been known for a long time that in higher dimensions the problem
is undecidable when given two SFTs, since it can be reduced to the emptiness problem
which is Σ0

1-complete [2]. However, we prove here a slightly stronger result: even by fixing
the class in advance, it is still undecidable to decide whether some given SFT belongs to
it:

Theorem 0.1. For any fixed SFT X, given some SFT Y as an input, it is Σ0
1-complete

to decide whether X and Y are conjugate (resp. equal).

As for the classes of sofic and effective shifts, the complexity is higher:

Theorem 0.2. Given two sofic/effective shifts X,Y , it is Π0
2-complete to decide whether

X and Y are equal.

Theorem 0.3. Given two sofic/effective subshifts X,Y , it is Σ0
3-complete to decide

whether X and Y are conjugate.

An interesting open question for higher dimension that would probably help solve
the one dimensional problem would be is conjugacy of subshifts decidable when provided
an oracle answering whether or not a pattern is extensible ?. A positive answer to this
question would solve the one dimensional case, even if the SFTs are considered on N2

instead of Z2.
Factorization is the notion of surjective morphism adapted to SFTs: when X factors

on Y , then Y is a recoding of X, possibly with information loss: the dynamic of Y is
“simpler” than X’s,i.e. it can be deduced from X’s. The problem of knowing if some SFT
is a factor of another one has also been much studied. In dimension one, it is only partly
solved for the case when the entropies of the two SFTs X,Y verify h(X) > h(Y ), see [4].
Factor maps have also been studied with the hope of finding universal SFTs: SFTs that
can factor on any other and thus contain the dynamics of all of them. However it has
been shown that such SFTs do not exist, see [7, 3]. We prove here that it is harder to
know if an SFT is a factor of another than to know if it is conjugate to it.

Theorem 0.4. Given two SFTs/sofic/effective subshifts X,Y as input, it is Σ0
3-complete

to decide whether X factors onto Y .

The last problem we will tackle is the embedding problem, that is to say: when can an
SFT be injected into some other SFT? If an SFT X can be injected into another SFT Y ,
that means that there is an SFT Z ⊆ Y such that X and Z are conjugate. In dimension
1, this problem is also partly solved when the two SFTs X,Y are irreducible and their
entropies verify h(X) > h(Y ) [12]. We prove here that the problem is Σ0

1-complete for
SFTs and Σ0

3-complete for effective and sofic subshifts:

Theorem 0.5. Given two SFTs X,Y as inputs, it is Σ0
1-complete to decide whether X

embeds into Y .

Theorem 0.6. Given two sofic/effective subshifts X,Y as inputs, it is Σ0
3-complete to

decide whether X embeds into Y .
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The paper is organized as follows: first we give the necessary definitions and fix the
notation is section 1, after what we give the proofs of the theorems about conjugacy and
equality in Section 2, about factorization in Section 3 and about embedding in Section 4.

This article covers the results announced in [10] with the additions of the results on
sofic and effective subshifts.

1. Preliminary definitions

1.1. SFTs and effective subshifts
We give here some standard definitions and facts about multidimensional subshifts,

one may consult Lind [14] or Lind/Marcus [13] for more details.
Let A be a finite alphabet, its elements are called symbols, the d-dimensional full shift

on A is the set AZd

of all maps (colorings) from Zd to the A (the colors). For v ∈ Zd,
the shift functions σv : AZd → AZd

, are defined locally by σv(cx) = cx+v. The full shift
equipped with the distance d(x, y) = 2−min{‖v‖|v∈Zd,xv 6=yv} is a compact metric space
on which the shift functions act as homeomorphisms. An element of AZd

is called a
configuration.

Every closed shift-invariant (invariant by application of any σv) subset X of AZd

is
called a subshift, or shift. An element of a subshift is called a point of this subshift.

Alternatively, subshifts can be defined with the help of forbidden patterns. A pattern
is a function p : P → A, where P , the support, is a finite subset of Zd. Let F be a
collection of forbidden patterns, the subset XF of AZd

containing the configurations
having nowhere a pattern of F . More formally, XF is defined by

XF =
{
x ∈ AZd

∣∣∣∀z ∈ Zd,∀p ∈ F, x|z+P 6= p
}
.

In particular, a subshift is said to be a subshift of finite type (SFT) when the collection
of forbidden patterns is finite. Usually, the patterns used are blocks or r-blocks, that is
they are defined over a finite subset P of Zd of the form Br = J−r, rKd, r is called its
radius. We may assume that all patterns of F are defined with blocks of the same radius
r, and say the family F has radius r. We note rX the radius of the SFT X, the smallest
r for which there is a family F of radius r defining X. When the collection of forbidden
patterns is recursively enumerable (i.e. Σ0

1), the subshift is an effective subshift.
Given a subshift X, a pattern p is said to be extensible if there exists x ∈ X in which

p appears, p is also said to be extensible to x. We also say that a pattern p1 is extensible
to a pattern p2 if p1 appears in p2. A block or pattern is said to be admissible if it does
not contain any forbidden pattern. Note that every extensible pattern is admissible but
that the converse is not necessarily true. As a matter of fact, for SFTs, it is undecidable
(in Π0

1 to be precise) in general to know whether a pattern is extensible while it is always
decidable efficiently (polynomial time) to know if a pattern is admissible, further details
about that will be introduced in Section 1.4.

As we said before, subshifts are compact spaces, this gives a link between admissibility
and extensibility: if a pattern appears in an increasing sequence of admissible patterns,
then it appears in a valid configuration and is thus extensible. More generally, if we have
an increasing sequence of admissible patterns, then we can extract from it a sequence
converging to some point of the subshift.
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Note that instead of using the formalism of SFTs for the theorems we could have used
the formalism of Wang tiles, in which numerous results have been proved. In particular
the undecidability of knowing whether an SFT is empty. Since we will use a construction
based on Wang tiles, we review their definitions.

Wang tiles are unit squares with colored edges which may not be flipped or rotated.
A tileset T is a finite set of Wang tiles. A coloring of the plane is a mapping c : Z2 → T
assigning a Wang tile to each point of the plane. If all adjacent tiles of a coloring of the
plane have matching edges, it is called a tiling.

The set of tilings of a Wang tileset is a SFT on the alphabet formed by the tiles.
Conversely, any SFT is isomorphic to a Wang tileset. From a recursivity point of view,
one can say that SFTs and Wang tilesets are equivalent. In this paper, we will be using
both terminologies indiscriminately.

1.2. Conjugacy, Embedding and Factorization
In the rest of the paper, we will use the notation AX for the alphabet of the subshift

X.
Let X ⊆ AZ2

X and Y ⊆ AZ2

Y be two subshifts, a function F : X → Y is a block code if
there exists a finite set V = {v1, . . . , vk} ⊂ Z2, the window, and a local map f : A|V |X → AY ,
such that for any point x ∈ X and y = F (x), for all z ∈ Zd, yz = f(xz+v1 , . . . , xz+vk).
That is to say F is defined locally. Without loss of generality, we may suppose that the
window is an r-block, r being then called the radius of F and (2r + 1) its diameter, we
note rF the radius of F .

A factorization or factor map is a surjective block code F : X → Y . When the
function is injective instead of being surjective, it is called an embedding, and we say that
X embeds into Y .

By the Curtis/Lyndon/Hedlund Theorem [6], when a block map F is bijective then it
is invertible and its inverse is also a block code. Subshifts X and Y for which there exist
a bijective block map F : X → Y are said to be conjugate. In the rest of the paper, we
will note with the same symbol the local and global functions, the context making clear
which one is being used.

The entropy of a subshift X is defined as

h(X) = lim
n→∞

logEn(X)

nd

where En(X) is the number of extensible patterns of X of support J0, n− 1Kd where d is
the dimension. For instance, the entropy of the full shift is h(AZd

) = log |A|. The entropy
is a conjugacy invariant, that is to say, if X and Y are conjugate, then h(X) = h(Y ). It
is in particular easy to see thanks to the entropy that the full shift on n symbols is not
conjugate to the full shift with n′ symbols when n 6= n′.

1.3. Sofic subshifts and their relation to effective subshifts
The class of subshifts that are images of SFTs by a factor map is the class of sofic

subshifts. It is the smallest class of subshifts that is closed by factorization. There is a
link between sofic subshifts of dimension d and effective subshifts of dimension d+ 1.
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(a) Tiles allowing to encode computations of a Turing machine: the adjacency rules are
given by the machine’s transition table δ(s, a) = (s′, a′, d) with d determining to which
side of the tile the arrow goes, s′ the new state and a′ the letter written on the tape. q0 is
the initial state of the Turing machine. Note that there is no tile for the halting state.
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(b) Space-Time diagram of a Turing ma-
chine.

q0 a00 a01 a02 a03

a10 q1 a11 a12 a13

a20 a21 q3 a22 a23

a30 a31 a32 q7 a33

a40 a41 q4 a42 a43

a50 a51 q3 a52 a53

(c) Valid tiling by the tileset corresponding to
the Turing machine. If the Turing machine
takes no input, then the a0i are all blanks.

Figure 1: How to encode Turing machine computations in tilings. Only the valid infinite runs of the
Turing machine may tile the quarter plane without any errors when the starting tile is present, since we
forbid halting states to appear in a tile.
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Definition 1.1 (Lift). Let X be a d-dimensional subshift, then the lift X ′ of X to
dimension d + 1 is the subshift that is formed of configurations x ∈ X and that are
identical on the next component.

Particularly, the projection of the lift of X along its d first components is X.
Through lifting, one can link sofic and effective subshifts with the following theorem:

Theorem 1.1 (Hochman [8], Aubrun and Sablik [1]). A subshift is effective if and
only if its lift is sofic.

This theorem will be mainly used to transpose constructions of effective subshifts to
the sofic case, but in one more dimension.

1.4. Arithmetical Hierarchy and computability
We give now some background in computability theory and in particular about the

arithmetical hierarchy. More details can be found in Rogers [16].
Given a Turing machine M , we will note M(n)↓ when M halts on input n and M(n)↑

when it does not.
In computability theory, the arithmetical hierarchy is a classification of sets according

to their logical characterization. A set A ⊆ N is Σ0
n if there exists a total computable

predicate R such that x ∈ A⇔ ∃y1,∀y2, . . . , QynR(x, y1, . . . , yn), where Q is a ∀ or an ∃
depending on the parity of n. A set A is Π0

n if there exists a total computable predicate R
such that x ∈ A⇔ ∀y1,∃y2, . . . , QynR(x, y1, . . . , yn), where Q is a ∀ o r an ∃ depending
on the parity of n. Equivalently, a set is Σ0

n iff its complement is Π0
n.

We say a set A is many-one reducible to a set B, A ≤m B if there exists a computable
function f such that for any x, f(x) ∈ A ⇔ x ∈ B. Given an enumeration of Turing
machines Mi with oracle X, the Turing jump X ′ of a set X is the set of integers i such
that Mi halts on input i. We note X(0) = X and X(n+1) = (X(n))′. In particular 0′ is
the set of halting Turing machines.

A set A is Σ0
n-hard (resp. Π0

n) iff for any Σ0
n (resp. Π0

n) set B, B ≤m A. Furthermore,
a Σ0

n-hard (resp. Π0
n) is Σ0

n-complete (resp. Π0
n-complete) if it is in Σ0

n. An example of
Σ0

n-complete problem is 0(n). The sets in Σ0
1 are also called recursively enumerable and

the sets in Π0
1 are called the co-recursively enumerable or effectively closed sets. In this

article, we will mainly use two complete problem:

• TOTAL: this is the set of Turing machines which halt on all inputs, see example
35.3 of [11].

• COFIN: this is the set of Turing machines which halt on all inputs but a finite
number. This problem is Σ0

3-complete, see example 35.5 and lemma 36.1 of [11].

Another fact that will be used several times is that extensibility for the several classes
of subshifts we consider is Π0

1.

Lemma 1.2. Extensibility for SFTs, sofic and effective subshifts is Π0
1.

Proof. We may restrict ourselves to effective subshifts since SFTs and sofic subshifts
are effective. One may check if a pattern M is extensible step by step: at the k-th
step one enumerates k forbidden pattern and checks whether there exist a pattern of
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radius r(M) + k containing M at its center containing none of the k forbidden patterns
enumerated so far. If this algorithm halts, then M is not extensible. Otherwise we have
an infinite sequence of increasing patterns Mk from which we can extract a converging
subsequence whose limit is an extension of M containing no forbidden pattern. �

It is quite clear that deciding whether a pattern is admissible for SFTs is decidable,
while for effective shifts is Π0

1 since one needs to enumerate all forbidden patterns to
check. Admissibility for sofic shifts is also Π0

1 since they are effective.

2. Conjugacy and equality

2.1. SFTs
We prove here the Σ0

1-completeness of the conjugacy problem for SFTs in dimension
d ≥ 2, even if we fix an SFT in advance. We first prove the following lemma, which is the
first step to show that conjugacy is Σ0

1 and also proves that equality of SFTs is Σ0
1.

Lemma 2.1. Given F a local map, X and Y SFTs as inputs, deciding if F (X) ⊆ Y is
Σ0

1.

Proof. It is clear that F (X) ⊆ Y if and only if F (X) does not contain any configuration
where a forbidden patterns of Y appears.

We now show that this is equivalent to the following Σ0
1 statement: there exists a

radius r > max(rF + rY , rX) such that for any admissible r-block M of X, F (M) does
not contain any forbidden pattern in its center.

We prove the result by contraposition, in both directions. Suppose there is a con-
figuration x ∈ X such that F (x) contains a forbidden pattern. Then for any radius
r > max(rF + rY , rX), there exists an extensible, and thus admissible, pattern M of size
r such that F (M) contains a forbidden pattern in its center.

Conversely, if for any radius r > max(rF + rY , rX), there exists an admissible pattern
M of X of size r such that F (M) contains a forbidden pattern in its center, then by
compactness one can extract a converging subsequence from these forbidden patterns, its
limit x is in X and F (x) contains a forbidden pattern in its center. �

In particular, if F is the identity we obtain:

Corollary 2.2. Given two SFTs X,Y as an input, it is Σ0
1 to decide whether X = Y .

We may now prove one of the announced theorems:

Theorem 2.3. Given two SFTs X,Y as an input, it is Σ0
1 to decide whether X and Y

are conjugate.

Proof. To decide whether two SFTs X and Y are conjugate, we have to check whether
there exists two local functions F : ABrF

X → AY and G : ABrG

Y → AX such that the
global functions associated verify F|X ◦G|Y = id|Y and G|Y ◦F|X = id|X . These functions
being local, we can guess them with a first order existential quantifier. We prove that X
and Y are conjugate if and only if the following A0

1 statement is true :

7



There exist F,G and k > max(rX + rY ) + rF + rG such that F (X) ⊆ Y
and G(Y ) ⊆ X and :

• for all k-block b, if b is admissible for X, then G ◦ F (b)0 = b0

• for all k-block b, if b is admissible for Y , then F ◦G(b)0 = b0

We only prove the statement for G ◦ F the other one being identical. The proof is by
contraposition in both directions :

• Let x ∈ X be a point such that G ◦ F (x) 6= x, we may suppose that the difference
is in 0 by shifting. For all k, there exists an extensible pattern b of size k such that
G ◦ F (x)0 6= b0.

• Conversely, if there exists a sequence bk of admissible k-blocks such that G◦F (bk)0 6=
(bk)0, then by compactness we can extract a subsequence converging to some point
x ∈ X which by construction is different from its image by G ◦ F in 0.

As we have seen in Lemma 2.1 that checking whether F (X) ⊆ Y is Σ0
1, we have the

desired result. �

Theorem 2.4. For any fixed SFT X of dimension d ≥ 2, the problem of deciding whether
given Y an SFT of dimension d ≥ 2 as input, Y is conjugate (resp. equal) to X is Σ0

1-hard.

Proof. We reduce the problem from 0′, the halting problem. Given a Turing machine
M we construct a SFT YM such that YM is conjugate to X iff M halts.

Let RM be Robinson’s SFT [15] encoding computations of M : RM is empty iff M
halts1.

Now take the full shift on one more symbol than X, note it F . Let YM be now the
disjoint union of X and RM × F .

If M halts, YM = X and hence is conjugate to X. In the other direction, suppose M
does not halt, then RM × F has entropy strictly greater than that of X and hence YM is
not conjugate to X. �

Corollary 2.5. Given two SFTs X,Y of dimension d ≥ 2 as an input, it is Σ0
1-hard to

decide whether X = Y .

2.2. Sofic and effective subshifts
For effective and sofic subshifts, the complexity becomes higher: checking whether a

pattern is admissible or whether it is extensible is the same complexity-wise. It is Π0
1 in

both cases, which disallows us from using the same compactness tricks as in Lemma 2.1.

Lemma 2.6. Given two effective subshifts X,Y and a local function F , deciding if
F (X) ⊆ Y is Π0

2.

1Robinson’s SFT is in dimension 2 of course, for higher dimensions, we take the iterated lift: we take
the rules that the symbol in x± ei equals the symbol in x, for i > 2.

8



Proof. F (X) ⊆ Y if and only if the image of every extensible pattern of X is an
extensible pattern of Y , which is equivalent to the following logical sentence: For every
pattern M of radius r, M is extensible for X ⇒ F (M) is extensible for Y . Which is
clearly Π0

2. �

Corollary 2.7. Given two effective subshifts X,Y it is Π0
2 to decide whether X = Y .

Let us now prove the Π0
2-hardness of the equality problem in order to obtain the

Π0
2-completeness of it.

Theorem 2.8. Given two effective subshifts X,Y , deciding whether X = Y is Π0
2-hard.

Proof. To show that the problem is Π0
2-hard, we start from the TOTAL problem which

is Π0
2-complete. Take the following two one-dimensional effective subshifts:

• Let M be a Turing machine, XM is the subshift on two symbols {#, 0} where we
forbid all words #0n# such that M(n)↓.

• Y is the subshift on the alphabet {#, 0} where we forbid the words #0n# for all
n ∈ N such that the subshift is composed only of the orbits the two following points:

· · · 000000 · · · and · · · 000#000 · · ·

These subshifts are effective, since for any Turing machine M one can enumerate with a
Turing machine all n’s such that M(n)↓.

The two subshifts, XM and Y are equal if and only if the Turing machine M halts
on all inputs : if the machine M does not halt on n, then the subshift XM contains the
periodic point ·#0n#0n#· which is not in Y . �

Now using Theorem 1.1 allowing to lift an effective subshift of dimension 1 to a sofic
one of dimension 2, we obtain the following corollary:

Corollary 2.9. Given two sofic subshifts X,Y of dimension d ≥ 2, knowing whether
X = Y is Π0

2-complete.

We may now head back to the conjugacy problem: a straightforward adaptation of
the proof of Theorem 2.3 leads to the following upper bound:

Theorem 2.10. Given two effective subshifts X,Y as an input, it is Σ0
3 to decide whether

they are conjugate.

Only remains the hardness part, which we prove by reducing to COFIN, the set of
Turing machines that do not halt on a finite number of input only.

Theorem 2.11. Given two effective subshifts X,Y (resp. sofic of dimension d ≥ 2) as
an input, deciding whether they are conjugate is Σ0

3-hard.

Proof. We give a construction for effective subshifts of dimension 1 which can again be
lifted to sofic subshifts of dimension 2 or higher.

Given a Turing machine M , we construct two subshifts XM and YM on the alphabet
{#, 0, 1}:

9



• XM : we forbid the words #1, 1#, 10, 0#, the words #0k1 when k is not of the form
2i+1 with i ∈ N and the words #02

n+1

1 for all n such that M(n)↓. The subshift is
formed of the following biinfinite words:

· · ·###02
n+1

111 · · · with M(n)↑

· · ·###### · · ·
· · ·###000 · · ·
· · · 000000 · · ·
· · · 111111 · · ·
· · · 000111 · · ·

• YM : we forbid the words #1, 1#, 10, 0#, the words #0k1 when k is not of the form
2i+1 +2i with i ∈ N and the words #02

n+1

1 for all n such that M(n)↓. The subshift
YM is formed of the following words:

· · ·###02
n+1+2n111 · · · with M(n)↑

· · ·###### · · ·
· · ·###000 · · ·
· · · 000000 · · ·
· · · 111111 · · ·
· · · 000111 · · ·

Let us now prove that XM and YM are conjugate if and only if the set HM = {n |M(n)↑}
is finite:

⇒ If HM is finite, then there exists some integer N that bounds all its elements. Then
there clearly exists a conjugacy function F with radius rF > 2N+1 + 2N which
consists only in shifting right-infinite sequence of ones by 2n and adding 2n ones at
the beginning.

⇐ If HM is infinite, suppose there exists a conjugacy function F : YM → XM . First
note that #rF , 0rF , 1rF respectively have #, 0, 1 as images. If this were not the case,
then the words · · ·###0k111 · · · would have the same image image for k > rF and
this would contradict the injectivity of F . Now take n ∈ HM such that 2n > 2rF +1.
The point

· · ·###02
n+1+2n111 · · ·

has an image that does not belong to the subshift XM because it is of the form

· · ·###w1 · · ·w2rF 02
n+1+2n−2rFw′1 · · ·w′2rF 111 · · ·

with wi, w
′
i ∈ {#, 0, 1}.

�

Note 2.12. In the previous proof, it was only made use of the injectivity of F for the
reciprocal. This will be used in Corollary 4.5.
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3. Factorization

We will prove here that factorization is Σ0
3-complete for SFTs, sofic and effective

subshifts. To do this we will prove that the upper bound is Σ0
3 in the effective case and

that the SFT case is Σ0
3-hard, thus leading to the completeness result for all classes.

We start with two small examples to see why factorization is more complex than
conjugacy in the SFT case. Here the examples are the simplest possible: we fix the SFT
to which we factor in a very simple way, thus making the factor map known in advance.

Theorem 3.1. Let Y be the SFT containing exactly one configuration, a uniform config-
uration. Given an effective subshift X as an input, it is Π0

1-complete to know whether X
factors onto Y .

Proof. In this case the factor map is forced: it has to send everything to the only symbol
of AY . And the problem is hence equivalent to knowing whether a SFT is not empty,
which is Π0

1-complete. �

Theorem 3.2. Let Y be the empty SFT. Given an effective subshift X as an input, it is
Σ0

1-complete to know whether X factors onto Y .

Proof. Here any factor map is suitable, the problem is equivalent to knowing whether
X is empty, which is Σ0

1-complete. �

We study now the hardness of factorization in the general case, that is to say when two
SFTs are given as inputs and we want to know whether one is a factor of the other. We
prove here with Theorems 3.3 and 3.10 the Σ0

3-completeness of the factorization problem.

3.1. Factorization is in Σ0
3

Theorem 3.3. Given two effective subshifts X,Y as an input, deciding whether X factors
onto Y is Σ0

3.

Proof. The subshift X factors onto Y iff there exists a factor map F , a local function,
such that F (X) = Y . This forces one existential quantifier, and the result follows from
the next lemma and Lemma 2.6 which prove that deciding whether F (X) = Y is Π0

2. �

Lemma 3.4. Given two effective subshifts X,Y and a local map F as an input, deciding
if Y ⊆ F (X) is Π0

2.

Proof. We prove here that the statement Y ⊆ F (X), that is to say, for every point
y ∈ Y , there exists a point x ∈ X such that F (x) = y, is equivalent to the following
Π0

2 statement: for any pattern m, if m is extensible for Y , then F−1(m) contains an
extensible pattern for X. This statement is Π0

2 since checking that m is extensible is Π0
1.

We now prove the equivalence. Suppose that Y ⊆ F (X), then any extensible pattern
m of Y appears in a configuration y ∈ Y which has a preimage x ∈ X. Thus m has an
extensible preimage in X. This proves the first direction.

Conversely, suppose all extensible patterns m of Y have extensible preimages in X.
Let y be a point of Y , then we have an increasing sequence mi of extensible patterns
converging to y. All of them have at least one extensible preimagem′i. By compactness, we
can extract from this sequence a converging subsequence, note x its limit. By construction
x is a point of X and a preimage of y.

�
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3.2. Factorization is Σ0
3-hard

We give two proofs here for the Σ0
3-hardness of factorization : one for effective subshifts

in dimension one and one for SFTs in dimension d ≥ 2. The proof for SFTs gives us
completeness for all classes, SFTs, sofic and effective subshifts, but only for dimensions
d ≥ 2. Also, the proof for effective subshifts in dimension one gives the ideas that will be
refined to get the proof for SFTs.

3.2.1. Effective subshifts
Theorem 3.5. Given two effective subshifts X,Y as an input, it is Σ0

3-hard to decide
whether X factors onto Y .

Proof. We reduce the problem to COFIN, the set of Turing machines that do not halt
on a finite set of inputs.

Given a Turing machine M , we construct two effective subshifts XM and YM such
that XM factors onto YM if and only if the set of inputs on which M does not halt is
finite:

• XM is defined on the alphabet2 {#,W,R, 0, 1, B} and is constituted of the following
points and their orbits:

· · ·###Wn+10BBB · · · with M(n)↑
· · ·###Wn+11BBB · · · with M(n)↑

· · ·WWWbBBB · · · with b ∈ {0, 1}
· · ·###WWW · · ·
· · ·###RRR · · ·
· · ·###### · · ·
· · ·WWWWWW · · ·
· · ·RRRRRR · · ·
· · ·BBBBBB · · ·

XM is effective since the only “complex” forbidden patterns to enumerate are those
of the form #WnbB with b ∈ {0, 1} with M(n)↓ and the other forbidden patterns
are the two symbol ones that follow:

0#, 1#,W#, B#, R#,
0W, 1W,BW,RW,
WR, 0R, 1R,BR,
00,#0, R0, 10, B0,
11,#1, R1, 01, B1,

#B,WB,RB

• YM is defined on the alphabet {#,W, 0, 1, B} and consists of the following points

2W stands for white, B for blue and R for red.

12



and their orbits:

· · ·###0Wn+1BBB · · · with M(n)↑
· · ·###1Wn+1BBB · · · with M(n)↑

· · ·###bWWW · · · with b ∈ {0, 1}
· · ·WWWBBB · · ·
· · ·######
· · ·BBBBBB · · ·
· · ·WWWWWW · · ·

It is quite clear that YM is an effective subshift.

We will call the {0, 1} symbols decorations : they will appear at most once in a configuration
and only in some configurations of XM . Hence when we will talk about the decoration of
a configuration, we will mean the only {0, 1} symbol of this configuration.

Now let us check that XM factors onto YM if and only if the set of inputs on which
M does not halt is finite:

⇒ Suppose the number of inputs on which M does not halt is finite, then there exists
an upper bound N on all of these inputs. We may take a factor map of radius
N + 3, which shifts the decoration that is at the end of the W ’s to the beginning
(i.e. just after the # symbols). It also maps the · · ·###WWW · · · configuration
to the · · ·###0WWW · · · configuration and the · · ·###RRR · · · configuration
to the · · ·###1WWW · · · configuration, we can deduce the other mappings easily
from these. Note that we had to add the configuration · · ·###RRR · · · to XM in
order to palliate to the missing decoration when the word W · · ·W becomes infinite,
i.e. the limit case.

⇐ Suppose the number of inputs on which M does not halt is infinite and that there
exists a factor map F from XM onto YM of radius r. Since there are points of
the form · · ·###bWn+1BBB · · · in YM for n’s that are arbitrarily large, the
r-blocks # · · ·#, W · · ·W and B · · ·B must have #, W and B as images. But
since the factor map is of radius r, then for all n > r such that M(n)↑, the points
· · ·###Wn+10BBB · · · and · · ·###Wn+11BBB · · · of XM necessarily have the
same image: · · ·###bWn+1BBB · · · . Thus, the points · · ·###bWn+1BBB · · ·
of YM have no preimage in XM by F and F cannot be a factor map.

�

3.2.2. Finite type
The idea of the proof for SFTs of dimension d ≥ 2 is similar, but this time we have to

explicitly encode the computations in the SFT, since there is no way anymore to "hide"
them in the forbidden patterns.

To do this, we use a simpler version of the construction introduced in [9], which could
actually have already been used in it3. This construction introduced a new way to put

3It would in particular have led to a lower constant in Theorem 4.4.
13



1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40

Figure 2: The tileset T .

Turing machine computations in SFTs. In particular, the base construction has exactly
one point (up to shift) in which computations may be encoded. It will in particular
behave nicely when submitted to local maps.

T-structures. We construct in this section an SFT in which exactly one configuration up
to shift forms a sparse grid. It has the property that whenever two subshifts are based on
it, and one factors onto or embeds into the other one, then the grid configurations have
to be mapped to grid configurations. This is achieved by using the tileset T of Figure 2.

First, note that the configuration represented in figure 3, that we will call α, is in T .
Configuration α forms a grid in which we can encode computations as we will see later.
We will also see that it is the only one containing an infinite grid and how to encode
computations in it.

Before proving anything, let us set the vocabulary that will be used to describe the
SFT XT .

• Tile 30 is the corner tile.

• Tiles 20 and 27 are the end tiles.

14



Figure 3: Configuration α: the unique valid tiling by T in which there are 2 or more vertical lines.

• Tiles 30, 32, 33 and 34 are the start tiles.

• A horizontal line is connex horizontal alignment of tiles containing a vertical black
line (tiles 5, 6, 7, 17, 21, 24, 25, 26, 31, 35, 36, 37). It may be terminated by start
tiles on its left and by end tiles on its right.

• A vertical line is a connex vertical alignment of tiles containing a black or blue
vertical line (tiles 13, 14, 15, 16, 18, 19, 22, 23, 28, 32, 33, 34, 38). It may be
terminated on top by tiles 5, 21, 26 and on bottom by tiles 6, 20, 25, 27, 30, 36, 37.

• A diagonal is a connex diagonal alignment (positions (i, j), (i+ 1, j+ 1), . . . ) of tiles
among 4, 11, 12.

• A square of size k is an extensible pattern of support J0, k+1K2 such that {0}×J1, kK
and {k+ 1}× J1, kK are vertical lines and J1, kK×{0} and J1, kK×{k+ 1} horizontal
lines. A square does not contain a horizontal/vertical line in the subpattern of
support J1, kK2. Remark that the colors above and below a horizontal line differ and
that this forces a square to contain a diagonal at positions (i, i), for 0 < i < k+1 and
a counting signal (see next bullet point) somewhere in between the two horizontal
lines. A row of squares is a horizontal alignment of squares.

• A counting signal is a connex path of tiles among 3, 7, 10, 12, 14, 19, 22, 32, 33,
38, such that the red signal is connected. It may be started (on the left) only by
tiles 30, 32 and ended (on the right) by tiles 7, 21. The counting signal counts the
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number of squares on each row and forces this number to be exactly the height of
these squares.

• An increase signal is formed by a path of tiles among 7, 14, 22, 23, 24, 25, 26, 27,
30, 31, 32, 36, 38, such that the blue signal is connected. This signal forces squares
to increase their size by exactly one on the row right above. And thus to increase
their number by one also.

Let us first notice that whenever the corner tile appears in a point, this point is
necessarily a shifted copy of α, the point of figure 3: the corner tile forces tile 33 to appear
above it and tiles 31 and then 27 to appear on its right. These tiles enforce the existence
of the first square of size 1, i.e. the first row. The increase signal forces the first square of
the row above to be of size 2, and so on...

Lemma 3.6. SFT XT admits at most one point, up to translation, with two or more
vertical lines. This is the α configuration represented in figure 3.

Proof. Let x be a point containing two horizontal lines, these two lines necessarily face
each other: either they are infinite, or they end on the left, in which case they end on
the same column, start tiles being necessarily all in the same column, start tiles being all
in the same column because of the color on their left. We may suppose that there is no
other horizontal line in between and that they are at distance k + 1.

Since the sides above and below a horizontal line do not have the same color, there
must necessarily be one or more diagonals in between. Each diagonal forces vertical lines
thus forming squares of size k. Furthermore, these squares are necessarily cut horizontally
by a counting signal, which moves above exactly once each time it crosses a vertical line.
This guarantees that there are exactly k squares in this row and thus that it is not infinite.

The increase signal necessarily appears on the vertical line formed by the right side of
the bottommost square and forces the existence of squares of size k + 1 in the row above
and of size k − 1 ≥ 1 in the row below. The increase signal also forces squares to appear.
The corner tile will appear at the bottom left corner of the only square of size 1 of the
bottommost row. �

One may notice that if the corner tile appears at position (0, 1) then there are horizontal
lines of length (k + 1)k + 1 which start at positions

(
0, k(k+1)

2

)
: theses lines form the

bottom border of a row of k squares, one may also see that the increase signal draws a
parabola.

Lemma 3.7. Besides the α configuration, the SFT XT contains points formed of uniform
zones (one tile only) except for three infinite strips of finite width : a vertical strip, a
horizontal strip and a diagonal SW-NE strip. See figure 5.
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Figure 4: The configurations of XT \ {α}, the subscripts indicate that vertical lines, horizontal lines and
signals may be at different distances.
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Figure 5: Uniform quarter- and eighth-planes in non-α-configurations.

Proof. Lemma 3.6 states that there is one configuration at most (up to shift) that
has two horizontal lines or more. The other configurations necessarily have one of the
following shapes:

• There is a horizontal line, in which case there can be at most one vertical line above
and/or one vertical line below, otherwise there would necessarily be squares and
hence two horizontal lines. There can also be a counting signal arbitrarily far above
and/or below.

• There is no horizontal line, then there is at most one vertical line. An increase
signal may again appear on the left and/or on the right.

All the points of XT are shown in figures 3 and 4. �

Corollary 3.8. SFT XT is countable and all its configurations are computable from a
single Turing machine.

Let’s see now how to encode computations inside the α configuration. First note that
on each square’s bottom line, there is at most one vertical line ending: suppose that the
corner tile is at abscissa 0, then on the kth row, containing exactly k squares of size k,
the vertical lines are at abscissa i(k + 1), for 0 ≤ i ≤ k and in the row above the vertical
lines are at abscissa i(k + 2) with 0 ≤ i ≤ k + 1. Since

(i− 1)(k + 2) < i(k + 1) < i(k + 2) for 0 < i ≤ k + 1,

this is true for all squares, except for the leftmost ones for which the first vertical line is
the same. So one may see α as a grid, for which the number of intersections increases of 1
for each row, see Figure 6.

Now, if we want to encode computations in T , we can use a classical encoding of
Turing machines as Wang tiles, with the tile starting the computation on the corner.
Since the grid grows, the Turing machine will never run out of space.

Our reductions will use SFTs based on this construction, they will be feature a different
tilings on its grid. We qualify an SFT which is basically T with a tiling on its grid as
having T -structure.

Definition 3.1 (T -structure). We say an SFT X has T -structure if it is a copy of T to
which we superimposed new symbols only on the symbols representing the horizontal/vertical
lines and their crossings.
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1 2

3 4
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3 4

Figure 6: How the grid of α may be seen as a regular grid. In particular, one can see how information
may be transmitted from one intersection to its neighbors.

Note that an SFT may have T -structure while having no α-configuration: for instance
if you put a encode computations of a Turing machine that always halts and produce an
error when it halts.

The reduction. The next lemma states a very intuitive result, that will be used later,
namely that if an SFT with T -structure factors to another one, then the structure of each
point is preserved by factorization. Furthermore, it shows that the factor map can only
send a cell to its corresponding one, that is to say cell of the preimage has to be in the
window of the image.

Lemma 3.9. Let X,Y be two SFTs with T -structure, such that X factors onto Y . Let
r be the radius of the factor map, then any α-configuration of Y is factored on by an
α-configuration of X shifted by v, with ‖v‖∞ ≤ r.

Proof. By Lemma 3.7 we know that non-α configurations have two uniform (same sym-
bols everywhere) quarter-planes and four uniform eighth-planes, as seen on Figure 7. The
two north east eighth-planes are not uniform in configuration α. Thus these configurations
cannot be factored on α.

It remains to prove the second part: that in the factoring process the α-structure is
at most shifted by the radius of the factorization. We do that by reductio ad absurdum,
suppose that an α-configuration x of X is mapped to an α-configuration y of Y and shifts
it by v = (vx, vy), with ‖v‖∞ > r. Without loss of generality we may suppose that vx > r
and vy > 0 and that the corner tile of the preimage is at position (0, 1). We are now
going to show that this is not possible.

For all k ∈ N∗ there is a square with lower left corner at (2k2 +k, 2k2 +k), see Figure 8
on the left. Inside this square, there are two (k − 1) × (k − 1) uniform smaller square
subpatterns, see Figure 8 on the right. Now take k such that k > (‖v‖∞ + 2r + 1). By
hypothesis, there is a vertical line symbol t at zp = (2k2 + 2k+ 1, 2k2 + k) on x, and thus
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v

h

(a) The uniform quarters and eights of planes
of the non-α configurations. The horizontal and
vertical distances h and v between these planes
correspond to the distances between lines and
signals.

v

hr r

r

r

(b) The image by F of these uniform subplanes
still is uniform, note that it has been amputated
of strips of width r, the radius of F .

Figure 7: The images of non-α configurations are necessarily non-α configurations. The white zones
represent the zones which are not uniform.

at zi = (2k2 + 2k+ 1 + vx, 2k
2 + k+ vy) on y. We know x|zi+Br

has image t, and by what
precedes that x|zi+Br

= x|zi+(1,0)+Br
since they are both uniform, therefore, there should

be two t symbols next to each other in y at zi and zi + (1, 0). This is impossible.

�

Theorem 3.10. Given two SFTs X,Y as an input, deciding whether X factors onto Y
is Σ0

3-hard.

For this proof, we will reduce from the problem COFIN, which is known to be Σ0
3-

complete, see Kozen [11]. COFIN is the set of Turing machines which run infinitely only
on a finite set of inputs, as stated earlier.

Proof. Given a Turing machine M , we construct two SFTs XM and YM such that XM

factors on YM iff the set of inputs on which M does not halt is finite. We first introduce
an SFT ZM on which both will be based. It will have T structure. Above the T base, we
allow the cells of the grid to be either white or blue according to the following rules:

• All cells on a same horizontal line are of the same color.

• A blue horizontal line may be above a white horizontal line, but not the contrary.

We now allow computation on blue cells only. The Turing machine M is launched
on the input formed by the size of the first blue line (in number of cells). We forbid the
machine to halt.
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k − 1

k − 1

k

k − 1

2k

(2k2 + k, 2k2 + k)

Figure 8: For every k ∈ N∗, the square starting at position (2k2 + k, 2k2 + k) is of the form on the right.
We can see that there are two uniform (k− 1)× (k− 1) square subpatterns at (2k2 + 2k+ 2, 2k2 + k+ 1)
and (2k2 + k + 1, 2k2 + 2k + 2) respectively.

n

n

Figure 9: Computation on input n in the SFT Z, the blue zone contains the computation, and its
distance from the corner tile corresponds to the input.

So for each n on which M does not halt, there is a configuration with white cells until
the first blue diagonal appears, then computation occurs inside the blue cone, see Figure 9
for a schematic view. If M halts on n, then there is no configuration where the first blue
line codes n. By compactness, there is of course a configuration with only white lines. If
M is total, then the only α-configuration in ZM is the one with no blue horizontal lines.

Now from ZM , we can give XM and YM :

• XM : Let Z ′M be a copy of ZM to which we add two decorations 0 and 1 on the
blue cells only, and all blue cells in a configuration must have the same decoration.
Now XM is Z ′M to which we add a third color, red, that may only appear alone,
instead of white and blue (one can see this as adding a copy of the configurations
with only white horizontal lines). No computation is superimposed on red.

• YM is a copy of ZM where we decorated only the corner tile with two symbols 0
and 1.

We now check that XM factors onto YM iff M does not halt on a finite set of inputs:

⇒ Suppose the set of inputs on which M does not halt is finite: there exists N such
that M halts on every input greater than N . The following factor map F works:
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– F is the identity on ZM . Note that the additional copy of T is also sent to the
component ZM .

– F has a radius big enough so that if its window is centered on the corner tile, it
would cover the beginning of a computation on input N , that is rF > N2 +N .

– An α-configuration x of XM is sent on the same α-configuration y in YM .
For the decorations, when there is a computation on x, the factor map can
see it and gives the same decoration to the corner tile of y. When there is
no computation, the factor map doesn’t see a computation zone and gives
decoration 0 to the corner tile. The configuration with only white diagonals
and decoration 1 of YM is factored on by the α-configuration colored in red
contained in XM .

Note that this also works when M is total.

⇐ Conversely, suppose M does not halt on an infinite set of inputs, and that there
exists a factor map F with radius r: Lemma 3.9 states that all α-configurations of
YM are factored on by α-configurations of XM . Now, there is an infinite number of
α-configurations with corner tile decorated with 0 (resp. 1) in YM , they all must be
factored on by some α-configuration of XM . Still by Lemma 3.9, the corner tile of
the preimage must be in the window of the corner tile of the image. However, there
can only be a finite number of configurations in which the symbols in this window
differ. So the α-configurations of XM factor to a finite number of α-configurations
of YM with one of the decorations. This is impossible.

Note that the construction of XM and YM from the description of M is computable
and uniform. The reduction is thus many-one. �

4. Embedding

4.1. SFTs
We prove now Theorem 0.5 stating that the embedding problem for SFTs is Σ0

1-
complete for SFTs. We start with an analogue of Lemma 3.9 :

Lemma 4.1. Let X,Y be two SFTs with T -structure, such that X embeds into Y . Let r be
the radius of the embedding, then any α-configuration of X is mapped to an α-configuration
of Y shifted by v, with ‖v‖∞ ≤ r.

Proof. First note that the uniform points of X must be mapped to uniform points of
Y . So all different uniform points, and thus all uniform patterns of support Br, have
different images. Now an α-configuration of X has arbitrarily large uniform areas, as
seen in Lemma 3.9, see also Figure 8. These uniform areas alternate, so their image also
alternates when they are sufficiently large. The only configurations that have increasingly
large alternating uniform areas are α-configurations. So α-configurations of X are mapped
to α-configurations of Y . The proof that these mappings do not shift the T -structure by
more than r is exactly the same as in Lemma 3.9. �

Lemma 4.2. Let X and Y be two SFTs, it is Σ0
1 to check whether X embeds into Y .
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Proof. To decide whether X embeds into Y , we have to check if there exists an injective
local function F : X → Y . Such a function being local, it can be guessed with a first order
existential quantifier. To check that it is an embedding, we have to check that F (X) ⊆ Y
and that for all x1, x2 ∈ X, x1 6= x2 ⇒ F (x1) 6= F (x2). We know from Lemma 2.1 that
checking F (X) ⊆ Y is Σ0

1. We now show that the second part is also Σ0
1 by showing that

the two following statements are equivalent.

• There exist x1, x2 ∈ X such that x1 6= x2 and F (x1) = F (x2).

• For all r > max(rF , rX), there exist two r-blocks M1 and M2 such that M1,M2 are
extensible and (M1)0 6= (M2)0 and F (M1) = F (M2).

It is clear that the second statement is Π0
1 and that the first statement is the negation of

the definition of injectivity. Now to the proof of their equivalence:

• Suppose there exist two different points x1, x2 ∈ X such that F (x1) 6= F (x2), we
may assume x1 and x2 differ in 0 by shifting. For all r > max(rF , rX), the central
r-blocks M1,M2 of x1, x2 are extensible and differ in 0

• Suppose now that for all r > max(rF , rX) there exist two extensible r-blocks
Mr

1 ,M
r
2 differing in 0 and such that F (Mr

1 ) = F (Mr
2 ). By the pigeonhole principle,

there is an infinity of Mr
1 which have the same symbol in 0 and thus of Mr

2 without
this symbol in 0. Take these subsequences of Mr

1 and Mr
2 , by compactness we can

extract converging subsequences from them which converge to two points x1, x2 ∈ X
with different symbols in 0. These two points have the same image, by construction.

�

Lemma 4.3. Given two SFTs X,Y as an input, deciding whether X embeds into Y is
Σ0

1-hard.

We will use a reduction from the halting problem, the set of Turing machines that halt
on a blank input, and a construction based on a T -structure, as before.

Proof. Given a Turing machine M , we construct two SFTs XM and YM such that XM

embeds into YM iff the Turing machine M halts. Both SFTs have as a base an SFT ZM

with a T -structure, in which we encode computations of M . Let us describe ZM : ZM is
only T on which we directly encode the computation of M , it may eventually reach a
halting state in which case the remaining space is given a new color, say blue. So our
SFT ZM can take two different forms : if the machine M halts, then a blue zone appears,
if it does not halt, then this zone does not appear.

• Now XM is ZM for which we add a decoration to the corner tile, 0 or 1, so there
are two different grid points in any case, whether the machine M halts or not.

• YM is ZM for which we add a decoration to the halting state only (it appears at
most once), there are two different grid points only when the machine M halts.

Let us check now that XM embeds into YM if and only if M halts.
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⇒ When the machine M halts, XM embeds into YM : the radius of the embedding
r is the distance between the halting state and the corner, the decoration of the
corner is just translated to the halting state. All the rest remains unchanged. Note
that there are less non α-configurations in XM than in YM : they are the same
except for the configurations containing exactly one horizontal line and two vertical
lines with a halting state at their crossing. They have different decorations in YM
but not in XM .

⇐ When the machine M does not halt, there are two different α-configurations in XM

up to shift, while there is only one in YM , so they must have the same image.

�

4.2. Effective and sofic shifts
Lastly, we prove Theorem 0.6:

Lemma 4.4. It is Σ0
3 to decide given two effective subshifts X,Y whether X embeds in

Y .

Proof. To decide whether X embeds into Y one needs to decide whether there exists
F such that F (X) ⊆ Y and for all x1, x2 ∈ X, x1 6= x2 ⇒ F (x1) 6= F (x2). Guessing F
and checking whether F (X) ⊆ Y is Σ0

3, as a consequence of Lemma 2.6, while checking
the injectivity part remains Σ0

1: as for the SFT case, this is equivalent to negating the
following statement which remains Σ0

1 in the effective case:

• For all r > max(rF , rX), there exist two r-blocks M1 and M2 such that M1,M2 are
extensible and (M1)0 6= (M2)0 and F (M1) = F (M2).

�

And a corollary of the proof of Theorem 2.11, we obtain the Σ0
3-hardness for effective

subshifts.

Corollary 4.5. Given X,Y two effective subshifts, it is Σ0
3-hard to decide whether X

embeds in Y .
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