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The scattering of a plane acoustic wave by an infinite elastic cylinder of elliptical cross

section is studied from a modal formalism by emphasizing the role of the symmetries.

More precisely, as the symmetry is broken in the transition from the infinite circular

cylinder to the elliptical one, the splitting up of resonances is observed both theoret-

ically and experimentally. This phenomenon can be interpreted using group theory.

The main difficulty stands in the application of this theory within the framework of

the vectorial formalism in elastodynamics. This method significantly simplifies the

numerical treatment of the problem, provides a full classification of the resonances

and gives a physical interpretation of the splitting up in terms of symmetry breaking.

An experimental part based on ultrasonic spectroscopy complements the theoretical

study. A series of tank experiments is carried out in the case of aluminium elliptical

cylinders immersed in water, in the frequency range 0 ≤ kr ≤ 50, where kr is the

reduced wave number in the fluid. The symmetry is broken by selecting various

cylinders of increasing eccentricity. More precisely, the greater the eccentricity, the

higher the splitting up of resonances is accentuated. The experimental results provide

a very good agreement with the theoretical ones, the splitting up is observed on

experimental form functions and the split resonant modes are identified on angular

diagrams.
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I. INTRODUCTION

The scattering by objects of simple shapes has been extensively studied during the last

50 years. Most of the work performed on scattering by cylindrical objects has focused on the

restricted case of cylinders having a circular cross section1. In comparison, little attention

has been given to the more general case of the elliptical cylindrical geometries2, especially

in the experimental field. Experimental results for scatterers of non circular cross section

can be found in3,4. More recently, Léon et al.5,6 used a modal formalism for investigating

the acoustic scattering by elastic cylinders of arbitrary cross section immersed in a fluid and

compared their theoretical and experimental results.

Various methods can be applied to treat the scattering problem in the case of non cir-

cular geometry. The theoretical studies based on the expansion in Mathieu functions7–9 are

well suited for elliptical cylinders but in elastodynamics, one has to deal with alternative

methods because Helmholtz equation does not separate in elliptical coordinates, due to the

existence of longitudinal and transverse waves10,11. The T-matrix method is efficient to deal

with elastic scatterers in any noncircular cylindrical geometries11–15. The modal formalism

applied in5 by Léon et al. is close to this approach. We can also cite the boundary integral

methods based on the Green’s function approach, leading to the so-called Fredholm integral

equations16,17 and a method involving conformal mappings, the Fourier Matching Method,

described by DiPerna and Stanton18.

The present work deals with the scattering of a plane acoustic wave by infinite elastic

cylinder of elliptical cross section from a modal formalism associated with symmetry con-

siderations. The problem is studied theoretically, numerically and experimentally. Interest

is focused on the splitting up of resonances which occurs when the symmetry is broken in

the transition from the circular cylinder to the elliptical one. In terms of group theory, this

corresponds to the symmetry breaking O(2) → C2v. This splitting up has been numerically

observed for the first time by Moser and Überall19. More recently, Chinnery and Humphrey

discussed about mode splittings and level crossings in the study of the acoustic resonances

of water-filled cylindrical shells of elliptical cross section3. However, none of these authors

provides an explanation or analytical description to this phenomenon. Ancey et al20–22 have

highlighted and explained the splitting up of resonances in the elliptical geometry using

a method involving group theory23. This technique has been also used to study multiple
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scattering24,25. The main advantages of this method stand in (i) the uncoupling of the

equations, (ii) the classification of resonances, (iii) the highlighting of the splitting up of

resonances and its interpretation in terms of symmetry breaking and (iv) the improvement

in numerical computations.

The paper is organized as follows. In section II, the geometry of the problem is presented

and algebraic considerations are recalled, particularly the symmetry transformations. In

section III, a modal formalism in polar coordinates combined with group theory is applied

to express the boundary conditions. They lead to four infinite systems of equations, each one

associated with a given irreducible representation of the symmetry group C2v. The scattering
problem is uncoupled and these systems can be solved numerically by truncation and used to

obtain the resonances, the elastic displacement, the scattered pressure and the far field form

function. Numerical and experimental results are investigated in section IV. The numerical

evaluations of resonances and backscattered total form functions are carried out in the

cases of aluminium elliptical cylinders immersed in water. A series of experiments based on

ultrasonic spectroscopy is performed and the results are compared with the theoretical ones

in a quite good agreement. The splitting up of resonances is observed on both theoretical and

experimental form functions. The amplitudes of the elastic displacement and the scattered

pressure are computed and plotted, they also highlight the mode splittings. Finally, angular

diagrams confirm experimentally the identification of the resonant mode studied. In section

V, the interest of the method used in this paper is highlighted and future extensions in

scattering and elastodynamics are suggested.

II. POSITION AND GEOMETRY OF THE PROBLEM

A. Position of the problem

The scattering of plane acoustic wave by an infinite elastic cylinder of elliptical cross

section is studied. The cylinder is immersed in a homogeneous fluid of density ρf and sound

velocity c. The elastic medium is characterized by the density ρs and the longitudinal and

transverse velocities cL and cT . We introduce the wave numbers kL = ω/cL and kT = ω/cT ,

where ω is the angular frequency. The time dependence e−iωt is assumed throughout the

paper. The z-axis is taken parallel to the axis of the cylinder and (ρ, θ) are the polar
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coordinates in a plane perpendicular to z. The propagation vector k of the incident plane

wave is perpendicular to the z-axis and forms an angle α with the x-axis. Then we shall

assume that the problem is independent of the z-coordinate and thus reduces to a two-

dimensional one. The geometry as well as the notations used are displayed in Fig. 1. The

boundary is a closed elliptical curve described by the radius r(θ) with a continuously turning

outward normal n(θ) defined by

n(θ) = nρeρ + nθeθ (1)

with

nρ =
1− e2 cos2 θ

√

1 + e2(e2 − 2) cos2 θ
, nθ =

e2

2

sin 2θ
√

1 + e2(e2 − 2) cos2 θ
(2)

and

r(θ) =
b√

1− e2 cos2 θ
(3)

where e2 = 1− b2

a2
defines the eccentricity e (Fig. 1).

eρeθ

a

b

θ

n(θ)

x

y

r(θ)

Elastic medium

α

k

ρs cL cT

Homogeneous fluid

ρf c

FIG. 1. Geometry of the problem.

The incident wave is expressed in terms of acoustic pressure as

pinc =

+∞
∑

n=−∞

inJn(kρ)e
in(θ−α) (4)

The scattered pressure must statisfy the Sommerfeld’s radiation condition at infinity. Then,

it can be expressed as

ps =
+∞
∑

n=−∞

inAS
nH

(1)
n (kρ)einθ (5)

where AS
n are unknown coefficients to be determined.
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The elastic displacement u is expressed using the Helmholtz decomposition:

u = −∇φ +∇ ∧ψ (6)

where φ and ψ = ψez are the scalar and vectorial potentials respectively associated with

the longitudinal and transverse fields. The scalar potentials φ and ψ satisfy the Helmholtz

equations ∇2φ + k2Lφ = 0 and ∇2ψ + k2Tψ = 0. Since the longitudinal and transverse fields

in the elastic elliptical cylinder have no singularity in the neighbourhood of the origin, they

can be expanded in terms of Bessel functions as

φ =
1

ρsω2

+∞
∑

n=−∞

AL
nJn(kLρ)e

inθ, ψ =
1

ρsω2

+∞
∑

n=−∞

AT
nJn(kTρ)e

inθ (7)

where Aj
n are unknown coefficients with j ∈ {L, T}. Finally, from the Helmholtz decompo-

sition Eq. (6), the elastic displacement reads

u = uρeρ + uθeθ =

(

−∂φ
∂ρ

+
1

ρ

∂ψ

∂θ

)

eρ +

(

−1

ρ

∂φ

∂θ
− ∂ψ

∂ρ

)

eθ. (8)

B. Symmetry considerations

We use a method based on group theory20,22,24. The infinite elliptical cylinder is invariant

under four symmetry transformations:

(i) E, the identity transformation (θ → θ),

(ii) C2, the rotation through π about the Oz axis (θ → π + θ),

(iii) σx, the mirror reflection in the plane Oxz (θ → −θ),

(iv) σy, the mirror reflection in the plane Oyz (θ → π − θ).

These four transformations form a finite group, called C2v, which is the symmetry group of

the infinite elliptical cylinder23. The action of these transformations on the basis vectors eρ

and eθ is given by

E(eρ) = eρ; C2(eρ) = eρ; σx(eρ) = eρ; σy(eρ) = eρ (9a)

E(eθ) = eθ; C2(eθ) = eθ; σx(eθ) = −eθ; σy(eθ) = −eθ (9b)

and, on any scalar function f(ρ, θ),

Ef(ρ, θ) = f(ρ, θ), C2f(ρ, θ) = f(ρ, π + θ), σxf(ρ, θ) = f(ρ,−θ), σyf(ρ, θ) = f(ρ, π − θ).

(10)
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TABLE I. Character table of C2v.

C2v : E C2 σx σy

A1 1 1 1 1

A2 1 1 -1 -1

B1 1 -1 1 -1

B2 1 -1 -1 1

Four one-dimensional irreducible representations labelled A1, A2, B1, B2 are associated

with this symmetry group C2v. In a given representation, the group elements E, C2, σx and

σy are represented by 1 × 1 matrices given in the corresponding row of the character table

(Table I) .

Following the method presented in Ref. 24, any scalar function f(ρ, θ) can be expressed

as a sum of functions belonging to the four irreducible representations of C2v:

f(ρ, θ) = fA1(ρ, θ) + fA2(ρ, θ) + fB1(ρ, θ) + fB2(ρ, θ), (11)

where fRi, Ri ∈ {A1, A2, B1, B2}, satisfy

fA1 =
1

4
(E + C2 + σx + σy)f (12a)

fA2 =
1

4
(E + C2 − σx − σy)f (12b)

fB1 =
1

4
(E − C2 + σx − σy)f (12c)

fB2 =
1

4
(E − C2 − σx + σy)f. (12d)

More recently22, in the vectorial context of elastodynamics, it has been shown that any

vectorial function, expressed in the polar coordinates system as f(ρ, θ) = fρeρ + fθeθ can be

split over the four irreducible representations of C2v:

f(ρ, θ) = fA1(ρ, θ) + fA2(ρ, θ) + fB1(ρ, θ) + fB2(ρ, θ), (13)

with

fA1 = fA1

ρ eρ + fA2

θ eθ (14a)

fA2 = fA2

ρ eρ + fA1

θ eθ (14b)

fB1 = fB1

ρ eρ + fB2

θ eθ (14c)

fB2 = fB2

ρ eρ + fB1

θ eθ. (14d)
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TABLE II. Multiplication table for a function belonging to a given irreducible representation.

× A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

It should be noted that the scalar components of a vector function in a given irreducible

representation do not necessarily belong to the same representation (see Eqs. (14)).

In the following, the symmetry decompositions Eqs. (11) and (13) will be applied to both

scalar (acoustic pressure) and vectorial functions (elastic displacement) respectively. We will

deal with scalar functions of the form (see acoustic pressure Eqs. (4) and (5), longitudinal

and transverse fields Eq. (7) )

f (ρ, θ) =

+∞
∑

n=−∞

fn (ρ) e
inθ (15)

Using the action of the transformations on the function f (Eq. (10)) and fRi given by Eqs.

(12), one can write the scalar decomposition (Eq. (11)) with

fA1 (ρ, θ) =
1

4

+∞
∑

n=−∞

(1 + (−1)n) (fn (ρ) + f−n (ρ)) e
inθ (16a)

fA2 (ρ, θ) =
1

4

+∞
∑

n=−∞

(1 + (−1)n) (fn (ρ)− f−n (ρ)) e
inθ (16b)

fB1 (ρ, θ) =
1

4

+∞
∑

n=−∞

(1− (−1)n) (fn (ρ) + f−n (ρ)) e
inθ (16c)

fB2 (ρ, θ) =
1

4

+∞
∑

n=−∞

(1− (−1)n) (fn (ρ)− f−n (ρ)) e
inθ. (16d)

Restriction to the fundamental domain The use of group theory allows us to restrict

the study to the so-called fundamental domain which reduces to θ ∈ [0, π/2] (see Fig. 2).

This constitutes a great improvement from both theoretical and numerical point of view. Of

course, the physical quantities of interest can be determined for the full domain from simple

symmetry considerations (Eqs. (11) and (13)).
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FIG. 2. Fundamental domain.

III. SOLVING THE SCATTERING PROBLEM

A. Boundary conditions

In order to determined the resonances and the unknown coefficients, the boundary con-

ditions

(i) Continuity of the normal displacement u · n(θ) = 1
ρfω2∇(pinc + ps) · n(θ)

(ii) Continuity of the stress t = σ · n(θ) = − (pinc + ps)n(θ)

are applied at the surface ρ = r(θ) of the scatterer. According to the expressions of n(θ),

uρ and uθ given by Eqs. (1) and (8) respectively, they read

(i)
(

−∂φ
∂ρ

+
1

ρ

∂ψ

∂θ

)

nρ+

(

−1

ρ

∂φ

∂θ
− ∂ψ

∂ρ

)

nθ =
1

ρfω2

(

∂ (pinc + ps)

∂ρ
nρ +

1

ρ

∂ (pinc + ps)

∂θ
nθ

)

(17)

with pinc and ps given by Eqs. (4) and (5) respectively.

(ii)

tρeρ+tθeθ = (σρρnρ + σρθnθ) eρ+(σρθnρ + σθθnθ) eθ = − (pinc + ps) (nρeρ+nθeθ) (18)

i.e.,

σρρnρ + σρθnθ = − (pinc + ps)nρ (19a)

σρθnρ + σθθnθ = − (pinc + ps)nθ (19b)
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The components of σ in circular cylindrical coordinates are obtained from the strain

tensor26, Hooke’s law, and the Helmholtz equation for the scalar potential φ

σρρ = λk2Lφ− 2µ

(

∂2φ

∂ρ2
+

1

ρ2
∂ψ

∂θ
− 1

ρ

∂2ψ

∂ρ∂θ

)

, (20a)

σρθ = σθρ = µ

(

−2

ρ

∂2φ

∂θ∂ρ
+

1

ρ2
∂2ψ

∂θ2
+

1

ρ

∂ψ

∂ρ
− ∂2ψ

∂ρ2
+

2

ρ2
∂φ

∂θ

)

, (20b)

σθθ = λk2Lφ+ 2µ

(

− 1

ρ2
∂2φ

∂θ2
− 1

ρ

∂2ψ

∂θ∂ρ
− 1

ρ

∂φ

∂ρ
+

1

ρ2
∂ψ

∂θ

)

. (20c)

The boundary conditions (i) and (ii) can now be expressed separately in each irreducible

representation. We note that n(θ) defined by Eq. (1) belongs to A1 for obvious symmetry

considerations, thus its components nρ and nθ respectively belong to A1 and A2 under the

property Eq. (14a). Then, we use the latter property, the multiplication table (Table II)

and we note that the derivative by respect to θ acts as a multiplication by some function

belonging to the representation A2. In order to write Eqs. (17) and (18) in each irreducible

representation Ri, one deduces from these rules, that φ, ps and pinc have to belong to R1

(resp. R2) while ψ has to belong to R2 (resp. R1). Here, R stands for A or B exclusively.

In what follows, the infinite sums appearing in Eqs. (4), (5) and (7) are reduced using

Eqs. (16) and for clarity, we define

∑

n even

fn =

+∞
∑

r=0

f2r, and
∑

n odd

fn =

+∞
∑

r=0

f2r+1. (21)

Moreover, the unknown coefficients A
(Ri)L
n , A

(Ri)T
n , A

(Ri)S
n are respectively written AL

n , A
T
n ,

AS
n , their dependence to a given irreducible representation is implicit.

Solving the scattering problem requires to overcome the angular dependence. Then, the

expressions involving r(θ) and n(θ) are expanded in Fourier series by setting

Fn(θ) =
+∞
∑

p=−∞

fn,pe
ipθ, with fn,p =

1

2π

∫ π

−π

Fn(θ)e
−ipθdθ. (22)

In Eq. (22), the restriction to the fundamental domain and the parity of Fn(θ) permits

one to reduce the domain of integration from [−π, π] to [0, π/2] and the sum over p from

[−∞,+∞] to [0,+∞] with p even (A1, A2) or p odd (B1, B2). Then, we obtain, for each
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irreducible representation, a system of equations of the form

∑

n,p

γnγp
[

AL
nML

n,p + AT
nMT

n,p + AS
nMS

n,p

] cos pθ

sin pθ
=

∑

n,p

γnγpMinc
n,p

cosnα cos pθ

sinnα sin pθ

(A1, B1)

(A2, B2)

∑

n,p

γnγp
[

AL
nN L

n,p + AT
nN T

n,p + AS
nN S

n,p

] cos pθ

sin pθ
=

∑

n,p

γnγpN inc
n,p

cosnα cos pθ

sinnα sin pθ

(A1, B1)

(A2, B2)

∑

n,p

γnγp
[

AL
nPL

n,p + AT
nPT

n,p + AS
nPS

n,p

] sin pθ

cos pθ
=

∑

n,p

γnγpP inc
n,p

cos nα sin pθ

sin nα cos pθ

(A1, B1)

(A2, B2)
.

(23)

where γi, i ∈ {n, p}, is the Neuman factor defined by γ0 = 1 and γi = 2 for n > 0. The

matrices Mj
n,p,N j

n,p and Pj
n,p, j ∈ {L, T, S, inc}, are the Fourier coefficients. The detailed

calculations for each irreducible representation are given in Appendix A.

B. Physical quantities of interest

The scattering of a plane acoustic wave by an infinite elastic cylinder of elliptical cross

section reduces to the solution of equations Eqs. (A5), (A9), (A13), (A17), an infinite set

of infinite systems of linear complex algebraic equations. Each system is associated with a

given irreducible representation of C2v. The unknown scattering coefficients are uncoupled

due to symmetry considerations, this greatly simplifies the treatment of the problem. Then

the systems of equations can be numerically solved by truncation and used to obtain i) the

resonances, ii) the elastic displacement, iii) the scattered pressure and iv) the far field form

function.

1. Determination of resonances

The resonances are determined by solving the characteristic equation for each represen-

tation Ri

det MRi = 0 (24)

in the complex kr-plane, where kr is the reduced wave number in the fluid27, and they

are naturally classified according to the irreducible representations Ri. M
Ri is the matrix

obtained from the systems of equations Eqs. (A5), (A9), (A13) and (A17).
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2. Elastic displacement

The elastic displacement Eq. (8) can be expressed in each irreducible representation Ri

using the vectorial decompositions Eqs. (14) and the potentials Eqs. (A1), (A6), (A10) and

(A14). Then we get

uA1 =
1

ρsω2

∑

n even

γn

[(

−kLAL
nJ

′

n(kLρ) + i
n

ρ
AT

nJn(kTρ)

)

cos(nθ)eρ

+

(

−ikTAT
nJ

′

n(kTρ) +
n

ρ
AL

nJn(kLρ)

)

sin(nθ)eθ

]

(25)

uA2 =
1

ρsω2

∑

n even

γn

[(

−ikLAL
nJ

′

n(kLρ)−
n

ρ
AT

nJn(kTρ)

)

sin(nθ)eρ

+

(

−kTAT
nJ

′

n(kTρ)− i
n

ρ
AL

nJn(kLρ)

)

cos(nθ)eθ

]

(26)

uB1 =
2

ρsω2

∑

n odd

[(

−kLAL
nJ

′

n(kLρ) + i
n

ρ
AT

nJn(kTρ)

)

cos(nθ)eρ

+

(

−ikTAT
nJ

′

n(kTρ) +
n

ρ
AL

nJn(kLρ)

)

sin(nθ)eθ

]

(27)

uB2 =
2

ρsω2

∑

n odd

[(

−ikLAL
nJ

′

n(kLρ)−
n

ρ
AT

nJn(kTρ)

)

sin(nθ)eρ

+

(

−kTAT
nJ

′

n(kTρ)− i
n

ρ
AL

nJn(kLρ)

)

cos(nθ)eθ

]

(28)

The displacement normal modes can then be obtained by computing |uRi|.

3. Scattered pressure and Far field form function

The scattered pressure Eq. (5) can be expressed in each irreducible representation Ri

using pRi
s given by Eqs. (A2), (A7), (A11) and (A15).

The form function FF∞ is defined by

FF∞ = lim
r→∞

√

aeff
a

√

2ρ

a

∣

∣

∣

∣

ps
pinc

∣

∣

∣

∣

(29)
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with aeff =
√

a2+b2

2
and ps = pA1

s + pA2

s + pB1

s + pB2

s obtained from the scalar decomposition

Eq. (11). Equivalently, by taking the limit of each component of the scattered pressure, one

obtains.

FF∞ =
∣

∣FFA1

∞
+ FFA2

∞
+ FFB1

∞
+ FFB2

∞

∣

∣ (30)

with

FFA1

∞
=

2

a

√

aeff
πk

e−iπ/4
∑

n even

γnA
S
n cos(nθ) (31a)

FFA2

∞
=

2i

a

√

aeff
πk

e−iπ/4
∑

n even

γnA
S
n sin(nθ) (31b)

FFB1

∞
=

4i

a

√

aeff
πk

e−3iπ/4
∑

n odd

AS
n cos(nθ) (31c)

FFB2

∞
= −4

a

√

aeff
πk

e−3iπ/4
∑

n odd

AS
n sin(nθ). (31d)

IV. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENT

A. Numerical considerations

The numerical determination of the physical quantities described above (except for the

resonances) requires the evaluation of the unknown coefficients AL
n , A

T
n , A

S
n for each irre-

ducible representation Ri. These coefficients are obtained by solving the truncated complex

linear systems Eqs. (A5), (A9), (A13), (A17). Regarding the resonances, we recall that they

are determined by solving the characteristic equation Eq. (24). Since the matrices involved

in these computations are of infinite dimensionality, some truncation order N must be per-

formed in order to generate a numerical solution. The chosen truncation order depends on

the dimensionless reduced wave number ka (a is the semi-major axis of the elliptical cylin-

der) and it has been numerically investigated. With the help of group theory, the matrices

involved in our problem are of dimension (N × N). This constitutes a great improvement

compared with the coupled problem (without group theory) that involves (2N × 2N) ma-

trices.

Further the numerical enhancements, the main advantage of group theory is to obtain

uncoupled equations that can be solved separately for each irreducible representation. This

leads to a full classification of the resonances and this provides consequently a physical

12



TABLE III. Characteristics of the transducers.

Central frequency Bandwith (−12dB) Radiating surface diameter

V389 f ≈ 475 kHz 250 kHz . f . 700 kHz 4 cm

kr ≈ 15 8 . kr . 22

V392 f ≈ 870 kHz 400 kHz . f . 1300 kHz 4 cm

kr ≈ 28 13 . kr . 41

interpretation in terms of symmetry. Furthermore, computations can also be carried out at

high frequency.

B. Experimental set-up

A series of experiments have been performed in the case of scattering of acoustic waves

from aluminium Ag4mc ( ρs = 2670 kg.m−3 ; cL = 6277m.s−1 ; cT = 3162m.s−1 ) elliptical

cylinders of length 40 cm and for various ratios b/a (0.9640 - 0.9051 - 0.7616 - 0.6351 - 0.5370)

immersed in a water tank (190 cm×130 cm×90 cm - ρw = 1000 kg.m−3, cw = 1482.7m.s−1).

It should be noted that the cylinders are machined at constant perimeter in order to keep an

identical travel time for any circumferential wave, whatever the ratio b/a. The transducers

are PANAMETRICS models whose characteristics are summarized in the table III. The

distance between the cylinders and the transducers is 60 cm; it is sufficient to ensure the far

field condition.

The experimental results are obtained by ultrasonic spectroscopy. Two types of measure-

ments are performed:

a. Monostatic set-up The experimental form functions have been carried out in the

monostatic configuration. The ultrasonic transducers are used both for emission and recep-

tion (backscattering). This method consists of using short ultrasonic pulses for excitation

and calculating the Fourier transform of the gated-averaged signal reflected from the ellip-

tical cylinders. The received signal is amplified, averaged, sampled and stored in order to

perform further calculations by Fast Fourier Transform. The amplitude spectra measured

are then normalized by those obtained form a perfectly reflecting surface (water surface).

This permits one to overcome the frequency response of the transducers. By this way, the
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theoretical and experimental results can be directly compared.

b. Bistatic set-up The experimental bistatic acoustic patterns (angular diagrams) have

been carried out in the bistatic configuration. Two transducers are used, one acts as an

emitter and the other one as a receiver. The incident angle is fixed, while the recording

angle turns around the cylinder. A sinusoidal pulse of fixed frequency is sent to the emitter.

The duration of this pulse has to be large enough to ensure the establishment of a steady

state in the scatterer while avoiding interferences between the emitted and the scattered

signals. An amplitude measurement is performed in the free response of the scatterer once

the emission has been stopped.

Plane wave insonation and symmetry considerations The scatterer is insonified by an

acoustic plane wave under various angles of incidence α. According to the value of α, the

total pressure p = pinc+ ps is not invariant under all the symmetry transformations given in

section IIB and summarized in the character table I.

- α = 45◦ (oblique incidence): p only satisfies the identity E. This way, we obtain the

resonances and the scattered pressure in all the irreducible representations.

- α = 90◦ (minor axis incidence): p only satisfies the identity E and the mirror reflection

σy. Then, we obtain the resonances and the scattered pressure in the two irreducible

representations A1 and B2.

- α = 0◦ (major axis incidence): p only satisfies the identity E and the mirror reflection

σx. Then, we obtain the resonances and the scattered pressure in the two irreducible

representations A1 and B1.

C. Comparison between numerical and experimental results

The experimental form functions are compared with the theoretical ones calculated from

Eq. (30) on Figs. (3-9). A very good agreement between theory and experiment is observed

in the operating range of the transducers (Table III) and beyond28. The numerous rapid

variations of sharp characteristic shape, predicted theoretically, are observed experimentally.

They are associated with the elastic resonances plotted in the complex kr-plane. As the
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problem is uncoupled over the 4 irreducible representations of C2v, a full classification of

these resonances is provided.

We focus now on the splitting up of resonances that can be interpreted in terms of

symmetry breaking. The circular cylinder symmetry is broken by selecting various elliptical

cylinders of decreasing ratio b/a. The resonances of the circular cylinder are associated with

resonant modes labelled by (n, ℓ) in the usual modal formalism. They are tracked as it is

deformed to the elliptical one, by keeping the perimeter constant. In order to illustrate the

deformation, the considered ellipse and the circle are superimposed in Figs. (3-9).

In Figs. 3 and 4, we emphasize the splitting up of resonances by linking the deep peaks

appearing on both theoretical and experimental form functions in oblique incidence (Figs.

3a and 4a) with the resonances located in the complex kr-plane29 (Figs. 3b and 4b). Among

the split modes observed, interest is focused on the mode (1,3) split in B1 and B2, and the

mode (2,4) split in A1 and A2. It should be noted that both real and imaginary parts of the

resonances separates, and

- for any even angular index n, the resonances are split in the two irreducible represen-

tations A1 and A2,

- for any odd angular index n, the resonances are split in the two irreducible represen-

tations B1 and B2.

Bistatic scattering patterns have been also investigated on Figs. 3c and 4c. The time

harmonic frequencies of the plane incident wave are chosen equal to the computed resonance

frequencies of the four distinct selected modes. The angle of incidence is fixed following the

symmetry considerations described above for the total pressure. The position of the emitting

transducer is represented by a plain square symbol on these angular diagrams. The results

obtained correspond to the scattered pressure and they permit one to identify unambiguously

the modes (1, 3)B1, (1, 3)B2, (2, 4)A1 and (2, 4)A2. Finally, the computed amplitudes of the

elastic displacement and the scattered pressure, for each normal mode, are plotted on Figs.

3d and 4d. The angular diagrams are in a good agreement with the scattered pressure

computed for each representation and normalized by the incident pressure.

Once the symmetry is only just broken (See Fig. 3), the splitting up of resonance is clearly

observed theoretically and experimentally. Only group theory permits one to highlight this
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phenomenon and to link the split modes with the initial degenerated mode of the circular

cylinder.
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FIG. 3. Elliptical cylinder of ratio b/a = 0.9640. (a) Comparison between theoretical and

experimental form functions in oblique incidence α = 45◦. (b) Location of the computed scattering

resonances in the complex kr-plane. (c) Experimental bistatic scattering patterns. (d) Computed

amplitudes for the elastic displacement and the normalized scattered pressure.
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FIG. 4. Elliptical cylinder of ratio b/a = 0.9051. (a) Comparison between theoretical and

experimental form functions in oblique incidence α = 45◦. (b) Location of the computed scattering

resonances in the complex kr-plane. (c) Experimental bistatic scattering patterns. (d) Computed

amplitudes for the elastic displacement and the normalized scattered pressure.

Figs. 5 and 6 show an excellent agreement between experimental and theoretical re-

sults, and emphasize the influence of the insonation described in the paragraph related to

symmetry considerations of the section IVB . More precisely,
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- on Fig. 5, only the resonances belonging to A1 and B2 appear on both theoretical and

experimental form functions for an angle of incidence equal to 90◦,

- on Fig. 6, only the resonances belonging to A1 and B1 appear on both theoretical and

experimental form functions for an angle of incidence equal to 0◦.
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FIG. 5. Elliptical cylinder of ratio b/a = 0.9051. (Top) Comparison between theoretical and

experimental form functions for an angle of incidence equal to 90◦ (minor axis). (Bottom)

Location of the computed scattering resonances in the complex kr-plane.
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FIG. 6. Elliptical cylinder of ratio b/a = 0.9051. (Top) Comparison between theoretical and

experimental form functions for an angle of incidence equal to 0◦ (major axis). (Bottom)

Location of the computed scattering resonances in the complex kr-plane.

Figs. 7 and 8 show a very good agreement between theory and experiment for small

values of the ratio b/a (large eccentricities). Although the numerical computations to de-

termine the resonances have been also carried out in case of large eccentricities when rapid

variations of the curvature radius occur, the identification of modes splitting becomes in-

creasingly difficult. Indeed, numerous resonances are too attenuated to be observed on the

form functions since the absolute value of their imaginary part increases.

Finally, a very good agreement is also provided in high frequency domain (up to kr = 50)

between experimental and theoretical form functions on Fig. 9.
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FIG. 7. Comparison between theoretical and experimental form functions for an elliptical cylinder

of ratio b/a = 0.6351 in oblique incidence (α = 45◦).
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FIG. 8. Comparison between theoretical and experimental form functions for an elliptical cylinder

of ratio b/a = 0.5370 in oblique incidence (α = 45◦).
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FIG. 9. Comparison between theoretical and experimental form functions for an elliptical cylinder

of ratio b/a = 0.7616 in oblique incidence (α = 45◦) for an extended frequency range.

V. CONCLUSION AND PERSPECTIVES

The scattering of a plane acoustic wave by infinite elastic cylinder of elliptical cross sec-

tion has been studied from a modal formalism, including symmetry considerations of the

scatterer. The use of group representation theory leads to an infinite system of algebraic

equations for each irreducible representation A1, A2, B1, B2, where the unknown scattering

coefficients are uncoupled. A classification of resonances of the infinite elastic elliptical cylin-

der has been provided: they lie in four distinct families associated with the four irreducible

representations of the symmetry group C2v of the infinite elliptical cylinder. The splitting

up of resonances is emphasized and algebraic considerations permit to understand this phe-

nomenon. This method significantly simplifies the numerical treatment of the problem and

provides a physical interpretation in terms of symmetry. The computations can be carried
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out at high frequency and also in case of large eccentricities when rapid variations of the

curvature radius occur.

Furthermore, a series of experiments based on ultrasonic spectroscopy has been per-

formed in the case of aluminium cylinders of elliptical cross section for various eccentricities

immersed in water. The experimental form functions are compared with the theoretical

ones. The sharp minima corresponding to resonances as well as the variation of the form

function due to the interference phenomenon are observed experimentally in a quite good

agreement with the theory. Angular diagrams have been also investigated; they confirm

experimentally the identification of the mode studied.

The same approach can be also applied to three-dimensional problems such as acoustic

scattering by a spheroid, or the study of inner resonant modes of a spheroid in elastody-

namics. In both cases, it would be interesting to observe the splitting of resonances in

the transition from a sphere to a spheroid due to the symmetry breaking O(3) → D∞h,

theoretically and experimentally. For this purpose, an experimental part will be added

to the theoretical studies by ultrasonic spectroscopy for the scattering problem and laser

vibrometry for the elastodynamics problem.

Appendix A: System of equations for each irreducible representation

1. Representation A1

We express the the boundary conditions in the irreducible representation A1. From the

rules expressed in section IIIA, one deduces that φ, ps and pinc have to belong to A1 while

ψ has to belong to A2. Using Eqs. (16a) and (16b), one obtains

φA1 =
1

ρsω2

∑

n even

γnA
L
nJn (kLρ) cos(nθ), ψA2 =

i

ρsω2

∑

n even

γnA
T
nJn (kTρ) sin(nθ) (A1)

pA1

s =
∑

n even

inγnA
S
nH

(1)
n (kρ) cos(nθ), pA1

inc =
∑

n even

inγnJn (kρ) cos(nα) cos(nθ) (A2)
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where γn is the Neumann factor defined by γ0 = 1 and γn = 2 for n > 0. Then, the boundary

conditions expressed by Eqs. (17) and (19) read

∑

n even

γn[A
L
n(−aLn cos (nθ)nρ + bLn sin (nθ)nθ) + iAT

n (−aTn cos (nθ)nρ + bTn sin (nθ)nθ)

+ inAS
n(−aSn cos (nθ)nρ + bSn sin (nθ)nθ)] =

∑

n even

γn[i
n cos(nα)(−aincn cos (nθ)nρ + bincn sin (nθ)nθ)]

(A3a)

∑

n even

γn[A
L
n(c

L
n cos (nθ)nρ + dLn sin (nθ)nθ) + iAT

n (c
T
n cos (nθ)nρ + dTn sin (nθ)nθ)

+ inAS
n(c

S
n cos (nθ)nρ)] =

∑

n even

γn[i
n cos (nα) (cincn cos (nθ)nρ)] (A3b)

∑

n even

γn[A
L
n(e

L
n sin (nθ)nρ − fL

n cos (nθ)nθ) + iAT
n (e

T
n sin (nθ)nρ − fT

n cos (nθ)nθ)

+ inAS
n(e

S
n cos (nθ)nθ)] =

∑

n even

γn[i
n cos (nα) (eincn cos (nθ)nθ)] (A3c)

where the structural functions ajn, b
j
n, c

j
n, d

j
n, f

j
n, e

j
n j ∈ {L, T, S, inc} are given in Appendix

B. To overcome the angular dependence, the functions Fn(θ) in parenthesis appearing in

Eqs. (A3) are expanded in Fourier series by setting

Fn(θ) =

+∞
∑

p=−∞

fn,pe
ipθ, with fn,p =

1

2π

∫ π

−π

Fn(θ)e
−ipθdθ. (A4)

In Eq. (A4), the restriction to the fundamental domain and the parity of Fn(θ) permits

one to reduce the domain of integration from [−π, π] to [0, π/2] and the sum over p from

[−∞,+∞] to [0,+∞] with p even. Then Eqs. (A3) lead to the final equations
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∑

n,p even

γnγp
[

AL
nα

L
n,p + iAT

nα
T
n,p + inAS

nα
S
n,p

]

cos(pθ) =
∑

n,p even

γnγp
[

in cos(nα)αinc
n,p

]

cos(pθ)

(A5a)
∑

n,p even

γnγp
[

AL
nβ

L
n,p + iAT

nβ
T
n,p + inAS

nβ
S
n,p

]

cos (pθ) =
∑

n,p even

γnγp
[

in cos (nα)βinc
n,p

]

cos (pθ)

(A5b)
∑

n,p even

γnγp
[

AL
nξ

L
n,p + iAT

n ξ
T
n,p + inAS

nξ
S
n,p

]

sin (pθ) =
∑

n,p even

γnγp
[

in cos (nα) ξincn,p

]

sin (pθ)

(A5c)

where the Fourier coefficients α
(j)
n,p, β

(j)
n,p, ξ

(j)
n,p, j ∈ {L, T, S, inc} are given in Appendix C.

Proceeding by a similar way, we obtain mutatis mutandis the final equations for the

representations A2, B1 and B2.

2. Representation A2

We express the boundary conditions in the irreducible representation A2 using

φA2 =
i

ρsω2

∑

n even

γnA
L
nJn (kLρ) sin(nθ), ψA1 =

1

ρsω2

∑

n even

γnA
T
nJn (kTρ) cos(nθ) (A6)

pA2

s = i
∑

n even

γni
nAS

nH
(1)
n (kρ) sin(nθ), pA2

inc =
∑

n even

γni
nJn (kρ) sin(nα) sin(nθ) (A7)
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given by Eqs. (16a) and (16b). They read

∑

n even

γn[A
L
n(a

L
n sin (nθ)nρ + bLn cos (nθ)nθ) + iAT

n (a
T
n sin (nθ)nρ + bTn cos (nθ)nθ)

+ inAS
n(a

S
n sin (nθ)nρ + bSn cos (nθ)nθ)] = −

∑

n even

iγn[i
n sin (nα) (aincn sin (nθ)nρ + bincn cos (nθ)nθ)]

(A8a)

∑

n even

γn[A
L
n(c

L
n sin (nθ)nρ − dLn cos (nθ)nθ) + iAT

n (c
T
n sin (nθ)nρ − dTn cos (nθ)nθ)

+ inAS
n(c

S
n sin (nθ)nρ)] = −

∑

n even

iγn[i
n sin (nα) (cincn sin (nθ)nρ)] (A8b)

∑

n even

γn[A
L
n(e

L
n cos (nθ)nρ + fL

n sin (nθ)nθ) + iAT
n (e

T
n cos (nθ)nρ + fT

n sin (nθ)nθ)

− inAS
n(e

S
n sin (nθ)nθ)] =

∑

n even

iγn[i
n sin (nα) (eincn sin (nθ)nθ)] (A8c)

where the structural functions ajn, b
j
n, c

j
n, d

j
n, f

j
n, e

j
n j ∈ {L, T, S, inc} are given in Appendix

B. Then, Eqs. (A8) lead to the final equations

∑

n,p even

γnγp
[

AL
nκ

L
n,p + iAT

nκ
T
n,p + inAS

nκ
S
n,p

]

sin (pθ) = −
∑

n,p even

iγnγp
[

in sin (nα) κincn,p

]

sin (pθ)

(A9a)
∑

n,p even

γnγp
[

AL
nη

L
n,p + iAT

nη
T
n,p + inAS

nη
S
n,p

]

sin (pθ) = −
∑

n,p even

iγnγp
[

in sin (nα) ηincn,p

]

sin (pθ)

(A9b)
∑

n,p even

γnγp
[

AL
nζ

L
n,p + iAT

nζ
T
n,p − inAS

nζ
S
n,p

]

cos (pθ) =
∑

n,p even

iγnγp
[

in sin (nα) ζ incn,p

]

cos (pθ)

(A9c)

where the Fourier coefficients κ
(j)
n,p, η

(j)
n,p, ζ

(j)
n,p, j ∈ {L, T, S, inc} are given in Appendix C.

3. Representation B1

We express the boundary conditions in the irreducible representation B1 using

φB1 =
2

ρsω2

∑

n odd

AL
nJn (kLρ) cos(nθ), ψB2 =

2i

ρsω2

∑

n odd

AT
nJn (kTρ) sin(nθ) (A10)
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pB1

s = 2
∑

n odd

inAS
nH

(1)
n (kρ) cos(nθ), pB1

inc = 2
∑

n odd

inJn (kρ) cos(nα) cos(nθ) (A11)

given by Eqs. (16c) and (16d). They read

∑

n odd

[AL
n(−aLn cos (nθ)nρ + bLn sin (nθ)nθ) + iAT

n (−aTn cos (nθ)nρ + bTn sin (nθ)nθ)

+ inAS
n(−aSn cos (nθ)nρ + bSn sin (nθ)nθ)] =

∑

n odd

[in cos(nα)(−aincn cos (nθ)nρ + bincn sin (nθ)nθ)]

(A12a)

∑

n odd

[AL
n(c

L
n cos (nθ)nρ + dLn sin (nθ)nθ) + iAT

n (c
T
n cos (nθ)nρ + dTn sin (nθ)nθ)

+ inAS
n(c

S
n cos (nθ)nρ)] =

∑

n odd

[in cos (nα) (cincn cos (nθ)nρ)] (A12b)

∑

n odd

[AL
n(e

L
n sin (nθ)nρ − fL

n cos (nθ)nθ) + iAT
n (e

T
n sin (nθ)nρ − fT

n cos (nθ)nθ)

+ inAS
n(e

S
n cos (nθ)nθ)] =

∑

n odd

[in cos (nα) (eincn cos (nθ)nθ)] (A12c)

where the structural functions ajn, b
j
n, c

j
n, d

j
n, f

j
n, e

j
n j ∈ {L, T, S, inc} are given in Appendix

B. Then, Eqs. (A12) lead to the final equations

∑

n,p odd

[

AL
nα

L
n,p + iAT

nα
T
n,p + inAS

nα
S
n,p

]

cos(pθ) =
∑

n,p odd

[

in cos(nα)αinc
n,p

]

cos(pθ) (A13a)

∑

n,p odd

[

AL
nβ

L
n,p + iAT

nβ
T
n,p + inAS

nβ
S
n,p

]

cos (pθ) =
∑

n,podd

[

in cos (nα) βinc
n,p

]

cos (pθ) (A13b)

∑

n,p odd

[

AL
nξ

L
n,p + iAT

nξ
T
n,p + inAS

nξ
S
n,p

]

sin (pθ) =
∑

n,podd

[

in cos (nα) ξincn,p

]

sin (pθ) (A13c)

where the Fourier coefficients α
(j)
n,p, β

(j)
n,p, ξ

(j)
n,p, j ∈ {L, T, S, inc} are given in Appendix C.

4. Representation B2

We express the boundary conditions in the irreducible representation B2 using

φB2 =
2i

ρsω2

∑

n odd

AL
nJn (kLρ) sin(nθ), ψB1 =

2

ρsω2

∑

n odd

AT
nJn (kTρ) cos(nθ) (A14)
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pB2

s = 2i
∑

n odd

inAS
nH

(1)
n (kρ) sin(nθ), pB2

inc = 2
∑

n odd

inJn (kρ) sin(nα) sin(nθ) (A15)

given by Eqs. (16c) and (16d). They read

∑

n odd

[AL
n(a

L
n sin (nθ)nρ + bLn cos (nθ)nθ) + iAT

n (a
T
n sin (nθ)nρ + bTn cos (nθ)nθ)

+ inAS
n(a

S
n sin (nθ)nρ + bSn cos (nθ)nθ)] = −

∑

n odd

i[in sin (nα) (aincn sin (nθ)nρ + bincn cos (nθ)nθ)]

(A16a)

∑

n odd

[AL
n(c

L
n sin (nθ)nρ − dLn cos (nθ)nθ) + iAT

n (c
T
n sin (nθ)nρ − dTn cos (nθ)nθ)

+ inAS
n(c

S
n sin (nθ)nρ)] = −

∑

n odd

i[in sin (nα) (cincn sin (nθ)nρ)] (A16b)

∑

n odd

[AL
n(e

L
n cos (nθ)nρ + fL

n sin (nθ)nθ) + iAT
n (e

T
n cos (nθ)nρ + fT

n sin (nθ)nθ)

− inAS
n(e

S
n sin (nθ)nθ)] =

∑

n odd

i[in sin (nα) (eincn sin (nθ)nθ)] (A16c)

where the structural functions ajn, b
j
n, c

j
n, d

j
n, f

j
n, e

j
n j ∈ {L, T, S, inc} are given in Appendix

B. Then, Eqs. (A16) lead to the final equations

∑

n,p odd

[

AL
nκ

L
n,p + iAT

nκ
T
n,p + inAS

nκ
S
n,p

]

sin (pθ) = −
∑

n,podd

i
[

in sin (nα) κincn,p

]

sin (pθ) (A17a)

∑

n,p odd

[

AL
nη

L
n,p + iAT

nη
T
n,p + inAS

nη
S
n,p

]

sin (pθ) = −
∑

n,p odd

i
[

in sin (nα) ηincn,p

]

sin (pθ) (A17b)

∑

n,p odd

[

AL
nζ

L
n,p + iAT

nζ
T
n,p − inAS

nζ
S
n,p

]

cos (pθ) =
∑

n,p odd

i
[

in sin (nα) ζ incn,p

]

cos (pθ) (A17c)

where the Fourier coefficients κ
(j)
n,p, η

(j)
n,p, ζ

(j)
n,p, j ∈ {L, T, S, inc} are given in Appendix C.

Appendix B: Structural coefficients

The structural functions involving Bessel functions are angular dependent. They are

given by
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aSq =
ρs
ρf
xH(1)

q

′

(x), bSq =
ρs
ρf
qH(1)

q (x), cSq = x2TH
(1)
q (x), eSq = cSq

aLq = xLJ
′

q(xL), bLq = qJq(xL), cLq = (x2T − 2q2)Jq(xL) + 2xLJ
′

q(xL),

dLq = 2q(xLJ
′

q(xL)− Jq(xL)), fL
q = (2x2L − x2T − 2q2)Jq(xL) + 2xLJ

′

q(xL), eLq = dLq

aTq = −qJq(xT ), bTq = −xTJ ′

q(xT ), cTq = 2q(xTJ
′

q(xT )− Jq(xT ))

dTq = (x2T − 2q2)Jq(xT ) + 2xTJ
′

q(xT ), eTq = dTq , cTq = fT
q

aincq = −ρs
ρf
xJq

′(x), bincq = −ρs
ρf
qJq(x), cincq = −x2TJq(x), eincq = cincq

(B1)

where x = kr(θ), xj = kjr(θ), j ∈ {L, T}, q ∈ N (even for A1 and A2 or odd for B1 and B2).
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Appendix C: Fourier coefficients

The Fourier coefficients are evaluated on the restricted fundamental domain, they are

numerically calculated from the following expressions

α(j)
q,r =

2

π

∫ π/2

0

(

−a(j)q cos (qθ)nρ + b(j)q sin (qθ)nθ

)

cos (rθ) dθ j ∈ {L, T, S, inc} (C1)

β(j)
q,r =

2

π

∫ π/2

0

(

c(j)q cos (qθ)nρ + d(j)q sin (qθ)nθ

)

cos (rθ) dθ j ∈ {L, T} (C2)

β(j)
q,r =

2

π

∫ π/2

0

(

c(j)q cos (qθ)nρ

)

cos (rθ) dθ j ∈ {S, inc} (C3)

ξ(j)q,r =
−2i

π

∫ π/2

0

(

e(j)q sin (qθ)nρ − f (j)
q cos (qθ)nθ

)

sin (rθ) dθ j ∈ {L, T} (C4)

ξjq,r =
−2i

π

∫ π/2

0

(

ejq cos (qθ)nθ

)

sin (rθ) dθ j ∈ {S, inc} (C5)

κ(j)q,r =
−2i

π

∫ π/2

0

(

a(j)q sin (qθ)nρ + b(j)q cos (qθ)nθ

)

sin (rθ) dθ j ∈ {L, T, S, inc} (C6)

η(j)q,r =
−2i

π

∫ π/2

0

(

c(j)q sin (qθ)nρ − d(j)q cos (qθ)nθ

)

sin (rθ) dθ j ∈ {L, T} (C7)

η(j)q,r =
−2i

π

∫ π/2

0

(

c(j)q sin (qθ)nρ

)

sin (rθ) dθ j ∈ {S, inc} (C8)

ζ (j)q,r =
2

π

∫ π/2

0

(

e(j)q cos (qθ)nρ + f (j)
q sin (qθ)nθ

)

cos (rθ) dθ j ∈ {L, T} (C9)

ζ (j)q,r =
2

π

∫ π/2

0

(

e(j)q sin (qθ)nθ

)

cos (rθ) dθ j ∈ {S, inc} (C10)

(q, r) ∈ N
2 (even for A1 and A2 or odd for B1 and B2).
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29We limit the imaginary part of the complex kr-plane to −0.2. The resonances having a

larger absolute value of their imaginary part are too attenuated to be observed on the form

function.
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