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ABSTRACT 

This paper investigates ultrasound (US) radiofrequency (RF) 

signal recovery using the distributed compressed sampling 

framework. The “correlation” between the RF signals 

forming a RF image is exploited by assuming that they have 

the same sparse support in the 1D Fourier transform, with 

different coefficient values. The method is evaluated using 

an experimental US image. The results obtained are shown 

to improve a previously proposed recovery method, where 

the correlation between RF signals was taken into account 

by assuming the 2D Fourier transform of the RF image 

sparse. 

Index Terms— ultrasound imaging, compressive 

sampling, jointly sparse signal, radiofrequency signals, 

Fourier transform. 

1. INTRODUCTION

Ultrasound (US) imaging is one of the most commonly used 

medical imaging modalities. Its low cost, non-ionizing 

characteristics, ease of use and real-time nature make it the 

gold standard for many crucial diagnostic exams, especially 

in obstetrics and cardiology. However, this real-time 

property is sometimes limited by the intrinsic acquisition 

time or volume of data, especially in 3D imaging. Even in 

2D US imaging, specific applications, such as cardiac US 

monitoring or small animal experiments where speckle 

decorrelation in time is an issue, would also benefit from an 

increased frame rate.  

In this context, a few research teams have recently started to 

investigate the application of the compressed sampling (CS) 

[1] framework to ultrasound imaging. CS is a recent and 

very promising theory allowing the reconstruction of signals 

and images from relatively few acquired samples (below 

Shannon-Nyquist’s criteria). Based on two key conditions, i) 

the information has to be sparse in a known basis, ii) the 

measurements have to be incoherent with this basis, CS 

ensures an exact reconstruction with overwhelming high 

probability via L1 convex constrained optimization.  

In US imaging, the potential of CS was evaluated at 

different stages of the image formation. In [2], the 

reconstruction of raw radiofrequency (RF) signals (signals 

received by each element of the US probe) is proposed, 

based on the sparsity assumption in the waveatoms domain. 

In [3], the CS framework is integrated in the beamforming 

process, considering the US image itself being sparse. In [4], 

the CS theory is used to reconstruct bandlimited RF images 

and a random acquisition scheme allowing the reduction of 

US wave emissions is proposed. In [5,6], L1-based US 

image reconstruction methods are employed in order to 

enhance the resolution of high frame rate images obtained 

within the plane wave technique. For a detailed review and 

further details concerning the application of CS framework 

in US imaging, the reader may refer to [7]. 

In this paper, we consider the problem of post-beamforming 

RF image reconstruction from a few randomly chosen 

samples. In [4], the same issue was addressed, and the 

reconstruction was done by minimizing the L1 norm of the 

2D Fourier transform of the RF image, considered sparse 

therein. This paper focalizes on RF signal reconstruction 

based on a different assumption, of jointly sparse [8] or 

group sparse [9] signals. Herein, we proposed to jointly 

reconstruct the RF signals forming the RF image, using the 

framework of distributed compressed sensing (DCS) 

proposed in [8]. In [8], the reconstruction of an ensemble of 

jointly sparse signals is addressed and theoretical and 

experimental results show the advantages of taking into 

account such an assumption. In our work, we use the model 

that considers that all the signals to reconstruct have the 

same sparse support (in our case in the 1D Fourier domain), 

but with different coefficients. This hypothesis seems 

reasonable for US imaging, considering that the RF signals 

are bandlimited by the impulse response of the scanner. 

We should note that the same assumption of jointly sparse 

RF signals in the Fourier domain has already been exploited 

in US imaging in [6]. However, the purpose of the method 

proposed in [6] is different from several points of view. 

First, in [6] the measurements are not samples at random 

positions as in our case, but projections of raw RF signals on 

Gaussian random vectors. Second, the purpose of [6] is to 

reconstruct deconvolved images. Thus, the PSF of the 

system is considered to be known and spatially invariant. In 

our work, RF images are reconstructed without any 

knowledge about the PSF (except that it is bandlimited). 



Third, in [6], simulated raw signals obtained by plane wave 

imaging are exploited, corresponding to a medium with only 

a few scatterers. In our work, results on an experimental 

image are presented, obtained using classical US wave 

emission-reception and beamforming. 

In the following sections, our method is described and 

results on an in vivo image are provided.  

2. PROBLEM FORMULATION

Let us denote by � � ���� an US RF image formed by J RF

signals of length N samples, denoted by x1, x2,…,xJ. 

Moreover, we denote by��	 � 
� the 1D Fourier transforms

of xj, for j running from 1 to J. 

�	 � �
	��������� � ����� � � �� (1) 

The J RF signals are considered jointly S-sparse in the 1D 

Fourier domain. That means that all �	 have S non zeros

elements, at the same unknown positions, but with different 

values (in practice, RF signals may be prefiltered if needed). 

In our framework, we consider M<<N measurements for 

each RF signal, by randomly decimating xj. We denote by 

�	 � �� the measurement vector corresponding to xj.

�	 � �	
	��������� � ����� � � �� (2) 

Where��	 � ����are matrices obtained by taking randomly

M lines from the identity matrix of size�� � �.

By replacing (1) in (2), we obtain: 

�	 � �	����	 � �	�	��������� � ����� � � �� (3)

With��	 � 
��� matrices requiring the conditions imposed

by CS framework. 

In our previous work [2,4], based on the assumption that the 

2D Fourier transform of X is sparse, we recovered the RF 

image using the following optimization: 

���� 

�

!"#� $ %"& ' ("�&)!�*"�* (4) 

Where # is a random decimation mask (corresponding to

�	), Y are the measured sample (corresponding to vectors

�	), �&) is the 2D Fourier operator and ( is a parameter

weighting between sparsity and data fidelity. Note that the 

parameter ( was tuned using a re-weighted iterative

technique [10], together with a classical conjugate gradient 

descent. 

As explained in the introduction, we propose in this paper a 

different way of reconstructing the RF image X, by jointly 

recovering the RF signals 
	. Thus, the assumption of sparse

2D Fourier transform is replaced herein by the assumption 

of RF signals being sparse and having the same support 

(with different values) in the 1D Fourier domain. In the 

results section we compare our proposal to those obtained 

by solving (4). 

3. JOINTLY SPARSE SIGNAL RECONSTRUCTION

In this section, we give the main details of the recovery 

algorithm used to retrieve the J 1D Fourier transforms �	
from the J measurement vectors �	. In this scope, we use a

modified version of the Orthogonal Matching Pursuit 

algorithm adapted to jointly sparse signals [8,11]. In the 

following, the main steps of the algorithm are given. The 

variable k indicates the algorithm iterations, starting for 1 (k 

is equal to 0 at the initialization step). 

Note: The indices between parentheses indicate the 

iteration number. 

Step 1 – initialization 

Initialize all Fourier transforms corresponding to 

the J signals to 0 vectors:    

�+ 	!,* � ,
Initialize the residuals to �	$�	�+ 	:�	!,* � �	� -./0��	 � 
�
Initialize the matrices containing the selected atoms 

(after orthogonalization): 

�1 	!,* � ,

Step 2 – selection of the atom that maximizes the sum of the 

magnitudes of the projection of the residuals on the 

sampling matrices 

23 � ���� 

2 � �� 4 4 � �

�567�	!3 $ �*��	�286
9�	�29&

�

	:�
���

where the vector �	�2 stands for n-th column of

matrix �	.

Add the index of the new detected atom to the set 

of selected indices: ; � <;�23= 
Extract the new atom: 

 	!3* � �	�23
Step 3 – orthogonalize the new selected atom against the 

previous orthogonalized selected atoms  

 >	!3* �  	!3* $ ? @7 	!3*�  >	!3 $ �*8 A  	!3*B3$�
C�, �

Normalize the new selected vector 



 >	!3* �
 >	!3*

9 >	!3*9&
&

Step 4 – Update �+ 	 taking into account the new selected

vector 

�+ 	!3* � 7�1	!3*��	!3 $ �*8
Where �1	!3* is the matrix which columns are the k

selected orthogonalized vectors, corresponding to 

signal j. 

Step 5 – Update the residuals 

�	!3* � �	!3 $ �* $ �1	!3* A �+ 	!3*

Step 6 – Check for convergence 

If one of the following conditions is achieved, then 

go to step 7 

- �	!3* is larger than a give threshold

for all signals j 

- k is equal to M 

- the residual is increasing for at least 

one signal 

Otherwise, go to step 2. 

Step 7 – De-orthogonalize the solution 

See [11] for more details about the need of this 

step. 

Step 8 – Find the estimated RF signals 


D	 � ����+	��������� � ����� � � ��

4. RESULTS

In this section we show comparative results between the 

proposed approach and the method recovering the RF image 

by minimizing (4). The reconstruction results are obtained 

from an in vivo image of a human healthy thyroid. The 

image was acquired using a clinical scanner (Sonoline 

Elegra) using a 7.5-MHz linear probe (Siemens Medical 

Systems, Issaquah, WA, USA). The RF lines were band-

pass filtered and sampled at 50 MHz. 

In our experiments, we cropped the image to a 256�2048 
region, which resulted in 256 RF signals of 2048 samples 

each (J=256, N=2048). Taking into account the spectral 

content of each RF signal, we can consider their 1D Fourier 

transforms S-sparse, with S equal to 500 samples. 

The 256 RF signals were randomly decimated as shown in 

(2). In [8], it is suggested that for a large number of signals 

(� E F), (S+1) measures per signal suffice for a “perfect”

reconstruction. In our case, as in all practical experiments, 

we dispose of a limited number of signals (256). We show 

in Figure 1 the evolution of the reconstruction normalized 

root mean square error (NRMSE) between the real image 

and the reconstructed one using the method described in 

section 3, for different number of measurements M. We 

observe that in this case, 600 samples per signal are 

sufficient for a “perfect” recovery.  

Figure 1. Reconstruction using the proposed method. Recovery 

normalized root mean square error (NRMSE) evolution for varying 

number of measurements per signal. 

Note that if we replace the measurements matrices Aj in 

equation (3) by random Gaussian matrices, as suggested in 

[6], then taking 501 measurements per signal would be 

sufficient in our case (experimentally verified) for a 

“perfect” recovery. However, we consider that this way of 

measuring the RF signals is less interesting in practice. 

Note also that in the particular case presented herein, a 

separate reconstruction of each RF signal using the same 

optimization algorithm requires 750 samples per signal for a 

“perfect” recovery. 

In the following, we compare the results obtained with the 

proposed method to those obtained by minimizing (4). For 

this, we show the recovery results obtained for both methods 

using 256�600 random samples. As explained previously, 

for this decimation rate, the reconstruction with the 

proposed DCS method is “perfect”, in the sense that the 

order of magnitude of the reconstruction error is �G�HI. We

show in Figure 2 the B mode images corresponding to the 

true and reconstructed RF images. We observe that the 

method minimizing the L1 norm of the 2D Fourier transform 

provides a noisier result. The NRMSE corresponding to this 

result is 0.29 (the amplitude of the RF signals are 

normalized between -1 and 1).  

In order to better highlight the differences between the two 

results, we show in Figure 3 a zoom on a small region 

extracted from the three images in Figure 2. 

In Figure 4, we show the random samples corresponding to 

a local region extracted from one RF line and the recovery 

results obtained with both methods. As explained 

previously, with our method the NRMSE is roughly �G�HI.

For this reason, we only show the recovered RF lines, as the 

true RF line is identical to our result. 
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Figure 2. (a) B-mode image corresponding to the true RF image, 

(b) and (c) B-mode images corresponding to the recovered RF 

images with the proposed method and by minimizing (4). 

(a) 

(b) (c) 

Figure 3. Local regions extracted from Figure 2(a,b,c). 

Figure 4. Top plot: Random samples used for CS reconstruction, 

for a local region of a RF line (the discarded samples are forced to 

0). Bottom plot: recovered RF lines for both methods. The true 

initial RF line is identical to the one recovered with our method. 

5. CONCLUSION

In this paper, we proposed to use the framework of 

distributed compressive sampling for RF line recovery in 

ultrasound imaging. For this, we assumed that the RF lines 

forming a RF image have the same sparse support in the 1D 

Fourier domain, with different magnitudes and phases. We 

have shown that the results are more accurate, for the same 

number of measurements, than those obtained by 

minimizing the L1 norm of the 2D Fourier transform of the 

RF image. In this work, the measurements are considered 

samples of the RF image taken at random positions. 

However, as discussed in our previous work [4], for 

ultrasound imaging it is more convenient to reduce the 

number of RF lines, by randomly skipping part of them. In 

future work, we will evaluate the application of DCS in this 

context, by jointly recovering several RF images. 
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