
HAL Id: hal-01150345
https://hal.science/hal-01150345v1

Submitted on 11 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A robust test for nonlinear mixture detection in
hyperspectral images

Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret, José Carlos M.
Bermudez

To cite this version:
Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret, José Carlos M. Bermudez. A robust test for
nonlinear mixture detection in hyperspectral images. IEEE International Conference on Acoustics,
Speech, and Signal Processing - ICASSP 2013, May 2013, Vancouver, Canada. pp. 2149-2153. �hal-
01150345�

https://hal.science/hal-01150345v1
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 12436

To link to this article : DOI :10.1109/ICASSP.2013.6638034
URL : http://dx.doi.org/10.1109/ICASSP.2013.6638034

To cite this version : Altmann, Yoann and Dobigeon, Nicolas and 
Tourneret, Jean-Yves and Bermudez, José Carlos M. A robust test for 
nonlinear mixture detection in hyperspectral images. (2013) In: IEEE 
International Conference on Acoustics, Speech, and Signal Processing -
ICASSP 2013, 26 May 2013 - 31 May 2013 (Vancouver, Canada).  

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12436/
http://oatao.univ-toulouse.fr/12436/
http://dx.doi.org/10.1109/ICASSP.2013.6638034
mailto:staff-oatao@listes-diff.inp-toulouse.fr


A ROBUST TEST FOR NONLINEAR MIXTURE DETECTION
IN HYPERSPECTRAL IMAGES

Y. Altmann∗, N. Dobigeon and J-Y. Tourneret

University of Toulouse
IRIT-ENSEEIHT
Toulouse, France

J.C.M. Bermudez†

Federal University of Santa Catarina
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ABSTRACT

This paper studies a pixel by pixel nonlinearity detector for hyper-

spectral image analysis. The reflectances of linearly mixed pixels are

assumed to be a linear combination of known pure spectral compo-

nents (endmembers) contaminated by additive white Gaussian noise.

Nonlinear mixing, however, is not restricted to any prescribed non-

linear mixing model. The mixing coefficients (abundances) satisfy

the physically motivated sum-to-one and positivity constraints. The

proposed detection strategy considers the distance between an ob-

served pixel and the hyperplane spanned by the endmembers to de-

cide whether that pixel satisfies the linear mixing model (null hy-

pothesis) or results from a more general nonlinear mixture (alterna-

tive hypothesis). The distribution of this distance is derived under

the two hypotheses. Closed-form expressions are then obtained for

the probabilities of false alarm and detection as functions of the test

threshold. The proposed detector is compared to another nonlinear-

ity detector recently investigated in the literature through simulations

using synthetic data. It is also applied to a real hyperspectral image.

Index Terms— Nonlinearity detection, Hyperspectral images,

Linear mixing model.

1. INTRODUCTION

Identifying the macroscopic materials present in a scene as well

as their proportions in each pixel of this scene is of prime interest

when analyzing hyperspectral images. Most spectral unmixing (SU)

strategies assume that the pixel reflectances are linear combinations

of the endmembers [1–5]. However, as explained in [6], the lin-

ear mixing model (LMM) can be inappropriate for some hyperspec-

tral images, such as those containing sand, trees or vegetation areas.

Nonlinear mixing models provide an interesting alternative for over-

coming the inherent limitations of the LMM. Some nonlinear mod-

els have been proposed in the literature to handle specific kinds of

nonlinearity [7, 8]. For instance, the bidirectional reflectance-based

model studied in [9] has been introduced for intimate mixtures. The

bilinear models recently studied in [10–15] mainly focus on scatter-

ing effects observed in images with relief such as vegetation or urban

areas.

Even if the consideration of nonlinear effects in hyperspectral

images can provide more accurate results in terms of endmember

and abundance identification, nonlinear models generally require

a higher computational complexity than approaches based on the

∗Part of this work has been supported by Direction Generale de
l’Armement, French Ministry of Defence, and by the Hypanema ANR
Project ANR Project n◦ANR- 12-BS03-003.

†This work has been supported in part by Capes - Proc. 3367-11-8.

LMM. Consequently, it is clearly of interest to identify the linearly

mixed pixels in an image (which can be more easily analyzed) and

to apply more specific unmixing methods only to nonlinearly mixed

pixels. A pixel by pixel nonlinearity detector based on a polynomial

post-nonlinear mixing model (PPNMM) was recently introduced in

[8]. This detector assumed a specific nonlinear mixing model under

the alternative hypothesis. A statistical test was then proposed based

on the asymptotical properties of the estimators of the model param-

eters under the linear and nonlinear hypotheses. However, assuming

a post-nonlinear mixing model under the alternative hypothesis can

be too restrictive and can yield inaccurate detection results when

the actual mixing does not obey the specified model. This paper

addresses the problem of determining whether an observed pixel

of an hyperspectral image is a linear function of endmembers or

results from a generic nonlinear mixing. Differently from [8], the

proposed nonlinearity detector is based only on the LMM associated

with the null hypothesis. This makes the detector more robust to

the nonlinearity that defines the alternative hypothesis. Under the

null hypothesis, the linear mixture of the endmembers belongs to a

low-dimensional hyperplane. Hence, we propose to design a statis-

tical test based on the distance between the observed pixel and that

hyperplane for deciding between the null and alternative hypothe-

ses. As in [8], we assume that the endmembers contained in the

image have been estimated by a geometric endmember extraction

algorithm (EEA).

This paper is organized as follows. Section 2 introduces the

linear and nonlinear models used for hyperspectral image unmix-

ing under the null and alternative hypotheses. Section 3 derives the

distribution of the squared distance between the observed pixel and

the low-dimensional subspace containing linear mixtures of the end-

members. Section 4 derives two statistical tests for nonlinearity de-

tection depending on the prior knowledge about the noise variance

(that can be either known or unknown). Some simulation results

conducted on synthetic and real data are shown in Section 5. Con-

clusions and future works are finally reported in Section 6.

2. MIXING MODELS

Let y be the L× 1 pixel observed at L different spectral bands. The

LMM assumes that y results from a mixture of R known endmem-

bers m1, . . . ,mR as follows

y = Ma+ e (1)

where M = [m1, . . . ,mR] is the L × R endmember matrix, the

elements ar of a = [a1, . . . , aR]
T are the proportions of each end-

member in the mixture and e is an L×1 independent white Gaussian

vector such that e ∼ N
(

0L, σ
2IL

)

. The elements of the abundance



vector a satisfy the physical positivity and sum-to-one constraints

R
∑

r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R} . (2)

Consider now the hyperplane H defined by

H :

{

z

∣

∣

∣

∣

z = Ma,

R
∑

r=1

ar = 1

}

. (3)

In the noise-free case, H lies in an (R − 1)-dimensional subspace

embedding all observations distributed according to the LMM.

We also consider a general nonlinear mixing model as follows

y = Ma+ µ+ e (4)

where µ is an L × 1 deterministic vector that does not belong to

H, i.e., µ /∈ H and a satisfies the constraints (2). Note that µ

can be a nonlinear function of the endmember matrix M and/or the

abundance vector a and should be denoted as µ(M,a). However,

the arguments M and a are omitted in this paper for brevity.

Given an observation vector y, we formulate the detection of

nonlinear mixtures as the following binary hypothesis testing prob-

lem:
{

H0 : y is distributed according to (1)

H1 : y is distributed according to (4).
(5)

Using the statistical properties of the noise e, we obtain E[y|H0] =
Ma ∈ H whereas E[y|H1] = Ma+µ /∈ H. As a consequence, it

makes sense to consider the squared Euclidean distance

δ2(y) = min
z∈H

‖y − z‖2 (6)

between the observed pixel y and the hyperplane H to decide which

hypothesis (H0 or H1) is true. The next section studies the distribu-

tion of δ2(y) under the two hypotheses H0 and H1.

3. DISTRIBUTIONS OF THE SQUARED DISTANCE

UNDER HYPOTHESES H0 AND H1

We now design a statistical test for hypotheses H0 and H1 by study-

ing the distribution of δ2(y) under each hypothesis.

Under H1 (µ 6= 0) or H0 (µ = 0), given the sum-to-one con-

straint on the abundance vector, the mixing model (4) can be rewrit-

ten as

ỹ = y −mR = Kc+ µ+ e (7)

where c = [a1, . . . , aR−1]
T is (R − 1) × 1 and K = [m1 −

mR, . . . ,mR−1 −mR] is L× (R− 1). Hence, δ2(y) can be com-

puted by solving the unconstrained least squares (LS) problem

δ2(y) = min
c∈R(R−1)

‖ỹ −Kc‖2 . (8)

It is well known that the solution to this problem is given by

ĉLS =
(

K
T
K

)−1

K
T
ỹ (9)

yielding the following L× 1 residual vector ê

ê = ỹ −KĉLS

=

[

IL −K
(

K
T
K

)−1

K
T

]

ỹ

= H (µ+ e) (10)

where H = IL − K
(

KTK
)−1

KT is an L × L projection ma-

trix of rank K = L − R + 1. Using δ2(y) = êT ê and ê ∼
N

(

Hµ, σ2H
)

, straightforward computations lead to [16]

1

σ2
δ2(y)|H1 ∼ χ2

K

(

µTHµ

σ2

)

(11)

where χ2
K (λ) denotes the noncentral χ2 distribution with K degrees

of freedom and noncentrality parameter λ. The distribution of δ2(y)
under H0 can be obtained by setting µ = 0 in (11), yielding

1

σ2
δ2(y)|H0 ∼ χ2

K (0) = χ2
K (12)

where χ2
K is the χ2 distribution with K degrees of freedom. No-

tice that the distributions of δ2(y) under H0 and H1 depend on the

known matrix M but also on the usually unknown noise variance σ2

and nonlinearity vector µ. In the following we study nonlinearity

detectors constructed for known and unknown noise variance σ2.

4. NONLINEARITY DETECTION

As mentioned above, the distributions of δ2(y) under H0 and H1

depend on σ2 and on µ, which are usually unknown. We address

first the scenario in which the noise variance is known but the non-

linearity under H1 is unknown.

4.1. Known σ2, unknown µ

For known σ2, the distribution of δ2(y) is perfectly known under

H0 and partially known under H1. Thus, we use a statistical test that

does not depend on the unknown nonlinearity µ to decide between

H0 and H1. Here we propose to use the following statistical test

T =
δ2(y)

σ2

H1

≷
H0

η (13)

where η is a threshold related to the probability of false alarm (PFA)

of the test

PFA = P

[

T > η

∣

∣

∣

∣

H0

]

(14)

or equivalently,

η = F−1

χ2
K

(1− PFA) (15)

where F−1

χ2
K

is the inverse cumulative distribution function of the χ2
K -

distribution. For a given µ, the power PD(µ) of the test is

PD(µ) = 1− Fχ2
K

(λ)(η) (16)

where Fχ2
K

(λ) is the cumulative distribution function of the χ2
K (λ)-

distribution and λ = σ−2µTHµ. Notice that the probability of de-

tection (PD) PD(µ) is an increasing function of λ for a fixed thresh-

old η. This makes sense, as the higher the power µTHµ of the

nonlinearity orthogonal to H, the better the detection performance.

Moreover, the lower the noise variance, the better the nonlinearity

detection. Unfortunately, the noise variance is unknown in most

practical applications. In these cases, the test (13) cannot be used.

We study a nonlinearity detector for unknown σ2 in the next section.



4.2. Unknown σ2, unknown µ

A simple solution if σ2 is unknown is to replace the actual noise

variance in (13) by its estimate σ̂2. This yields the following test

T ∗ =
δ2(y)

σ̂2

H1

≷
H0

η (17)

where η is the threshold defined in (15). The PFA and PD of the test

(17) are then given by

P ∗
FA = P

[

T ∗ > η

∣

∣

∣

∣

H0

]

= P

[

T >
σ̂2

σ2
η

∣

∣

∣

∣

H0

]

P ∗
D(µ) = P

[

T ∗ > η

∣

∣

∣

∣

H1

]

= P

[

T >
σ̂2

σ2
η

∣

∣

∣

∣

H1

]

. (18)

The better the estimation of σ2, the closer the distributions of T
and T ∗ and thus the closer the performances of the tests (13) and

(17). Here we propose to estimate σ2 through an eigenanalysis of

the sample covariance matrix of a set of N pixels assumed to share

the same noise variance. The estimate σ̂2 is then determined as the

average of the p ≤ L smallest eigenvalues of the sample covariance

matrix. The accuracy of the estimator will depend on the choice of p,

which will be discussed in the simulation section. For a given PFA

and associated threshold η given by (14), the distribution of T ∗ is

shifted to the left if σ2 is overestimated, i.e., σ̂2 > σ2. This will lead

to a P ∗
FA of the test (17) that is lower than the PFA of the test (13).

Conversely, if σ̂2 < σ2, the distribution of T ∗ is shifted to the right

leading to P ∗
FA ≥ PFA. Thus, it seems reasonable to overestimate

σ2 to ensure P ∗
FA is upper bounded by a PFA fixed by the user. This

observation will be used in Section 5 to adjust the value of p.

5. SIMULATIONS

5.1. Synthetic data: known σ2, unknown µ

We first investigate the performance of the test (13), which assumes

σ2 known. We consider a mixture of R = 3 materials (green grass,

olive green paint and galvanized steel metal) whose spectral signa-

tures mr composed of L = 826 bands have been extracted from the

spectral libraries provided with the ENVI software [17]. The abun-

dance vector is fixed to a = [0.3, 0.6, 0.1]T and the noise variance

to σ2 = 10−3. The nonlinearity µ is set as follows

µ = ν

R−1
∑

i=1

R
∑

j=i+1

aiajmi ⊙mj (19)

where ν is a scaling factor selected from the set {0.4, 0.5, 0.6, 0.7}.

This nonlinearity corresponds to the generalized bilinear model

(GBM) studied in [13] with γi,j = ν for all (i, j). The specific form

in (19) was chosen so that the impact of the nonlinearity is governed

by a single parameter ν. Fig. 1 shows the theoretical and empirical

(N = 20000 noise realizations) receiver operating characteristics

(ROCs) [18, p. 74-75] for the test (13). Each value of ν corresponds

to a different noncentrality parameter λ for the noncentral χ2 distri-

bution, ranging from λ ≈ 49 to λ ≈ 150. These results confirm that

the performance of test (13) improves for larger values of λ (or ν).

5.2. Synthetic data: unknown σ2, unknown µ

We now study the performance of the nonlinearity detector when σ2

is replaced by its estimate σ̂2. Fig. 2 shows the ROCs of test (17) for

λ = 70 and for three values of σ̂2: 0.95σ2, σ2 and 1.05σ2. Note that
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Fig. 1. Actual (solid lines) and empirical (diamonds) receiver oper-

ating characteristics (ROCs) of the first test (known noise variance)

for ν = 0.4 (blue), ν = 0.5 (red), ν = 0.6 (green) and ν = 0.7
(black).

all ROCs coincide. However, different estimates σ̂2 correspond to

different points on the curve for a fixed PFA. For instance, if the PFA

is fixed to PFA = 0.1 and the noise variance is correctly estimated,

the corresponding PD is around PD ≈ 0.65 (see Fig. 2 (middle)). If

σ̂2 = 0.95σ2, the PFA of test (17) rises to P ∗
FA ≈ 0.41, leading to

P ∗
D ≈ 0.92. Conversely, if σ̂2 = 1.05σ2, the PFA of test (17) falls

to P ∗
FA ≈ 0.01, leading to P ∗

D ≈ 0.27.
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Fig. 2. Theoretical ROCs of the test (17) (unknown noise variance)

for σ̂2 = 0.95σ2 (left), σ̂2 = σ2 (middle) and σ̂2 = 1.05σ2 (right).

The point corresponding with PFA = 0.1 is the intersection of the

black lines.

To investigate the ability of the proposed nonlinearity detector

to detect different types of nonlinearities, we unmixed a synthetic

image composed of N = 104 pixels generated according to four

different mixing models. The R = 3 endmembers contained in this

image are the same described in Section 5.1. We considered the

following nonlinear mixing model

y(n) = Ma(n) + cos(θ)µ1(n) + sin(θ)µ2(n) + en (20)

for n = 1, . . . , N , where en is a Gaussian noise vector such that

en ∼ N
(

0L, σ
2IL

)

and

µ1(n) = b [(Ma(n))⊙ (Ma(n))] (21)

where ⊙ denotes the Hadamard product and b is a fixed real parame-

ter. The nonlinearity µ1 corresponds to the nonlinear mixing model

studied in [8] for nonlinearity detection. The L×1 nonlinearity vec-

tor µ2(n) is built to ensure that µ2(n) is orthogonal to the columns

of M and to µ1(n) with ‖µ1(n)‖ = ‖µ2(n)‖ (‖·‖ denoting the ℓ2
norm). The angle θ ∈ [0, π/2] is chosen to tune the contributions of

µ1(n) and µ2(n) while ensuring ‖cos(θ)µ1(n) + sin(θ)µ2(n)‖
2

= ‖µ1(n)‖
2

for any value of θ.

The considered set of pixels was divided into four 50× 50 sub-

images as follows. The first synthetic sub-image S1 was generated



using the standard linear mixing model (LMM) whereas the sub-

images S2, S3 and S4 were generated according to the nonlinear

mixing model (20) with b = 0.1 and θ ∈ {π/4, 3π/8, π/2}. For

each sub-image, the abundance vectors an, n = 1, . . . , 2500, were

generated uniformly in the admissible set defined by the positivity

and sum-to-one constraints. All sub-images were corrupted by an

additive white Gaussian noise of variance σ2 = 10−3 correspond-

ing to an average SNR ≈ 21dB. Table 1 shows the means and stan-

dard deviations of the noise variance estimates obtained for different

values of p (for 50 Monte Carlo runs). This table shows that fixing

p = L − R + 1 provides accurate estimates of σ2 for these ex-

amples. Fig. 3 compares the empirical ROCs constructed from the

number of pixels detected as linear and nonlinear for the different

tests (known and unknown noise variance). The empirical ROCs for

the test studied in [8] are also displayed in these figures. Fig. 3 (top

left) shows that the three detectors are able to respect the PFA con-

straint. The three other subfigures of Fig. 3 display the ROCs for

the three different values of θ. For small values of θ, the norm of the

nonlinearity projection onto the vector µ1 is large. Hence, the non-

linearity detector based on the PPNMM studied in [8] outperforms

the tests studied in this paper (top right subfigure). However, the per-

formance of test in [8] degrades as the portion of the nonlinearity that

is orthogonal to µ1 becomes predominant (bottom subfigures). The

two proposed tests (known and unknown noise variance) perform

similarly. Moreover, these two tests seem to be more robust to the

type of nonlinearity. Finally, the proposed tests (13) and (17) only

require one projection (10) of each pixel (and eventually the noise

variance estimation procedure) while the test studied in [8] requires

the minimization of a more complex cost function and the derivation

of Cramèr-Rao bounds, leading to higher computation costs when

compared to the proposed method.

S1 S2 S3 S4

L− p = 1
19.94 21.32 20.69 19.96

(±0.27) (±0.35) (±0.30) (±0.27)

L− p = 2
9.99 9.98 9.99 9.99

(±0.01) (±0.01) (±0.01) (±0.01)

L− p = 3
9.97 9.97 9.98 9.97

(±0.01) (±0.01) (±0.01) (±0.01)

L− p = 4
9.95 9.95 9.96 9.96

(±0.01) (±0.01) (±0.01) (±0.01)

L− p = 5
9.94 9.94 9.94 9.94

(±0.01) (±0.01) (±0.01) (±0.01)

Table 1. Means and standard deviations (in brackets) of the es-

timated noise variance (×10−4) for different values of p (σ2 =
10−3).

5.3. Real data

The real image considered in this section is composed of spectral

bands and was acquired in 1997 by the satellite AVIRIS over the

Moffett Field, CA. A subimage of size 50 × 50 pixels (which we

considered in previous work) was chosen to evaluate the proposed

nonlinearity detector. The scene is mainly composed of water, veg-

etation, and soil. The corresponding endmembers were estimated

by the vertex component analysis (VCA) [19] with R = 3. Fig.

4 shows an example of detection map (for PFA = 10−3) obtained

with the proposed detector. It can be seen that nonlinear mixtures are

mainly detected in the coastal area and in regions where mixtures of

vegetation and soil occur (as also observed in [13]).
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Fig. 3. Empirical ROCs of the tests (13) (red lines), (17) (blue

crosses) and the test studied in [8] (black lines) for S1 to S4.

Fig. 4. Left: Moffett Field region of interest in synthetic col-

ors. Right: Detection map obtained using the proposed detector for

PFA = 10−3. Black (resp. white) pixels correspond to pixels de-

tected as linearly (resp. nonlinearly) mixed.

6. CONCLUSIONS

This paper presented a new pixel by pixel nonlinearity detector for

hyperspectral image analysis when the noise variance is known. The

proposed detector is based on the distance between the observed

pixel and the low dimensional subspace spanned by the endmem-

bers. For unknown noise variance, a similar detector was proposed

by replacing the actual noise variance by an accurate estimator based

on eigenvalues resulting from the eigenanalysis of the sample covari-

ance matrix of a set of image pixels. The main advantages of the pro-

posed method are the absence of prior knowledge about the type of

the nonlinearity and its low computational cost. Simulations on syn-

thetic data illustrated the robustness of the method to detect various

nonlinearities. The results obtained with a real AVIRIS hyperspec-

tral image are also encouraging. Future works include the detection

of nonlinearity in the case of unknown (or partially unknown) end-

members.

7. RELATION TO PRIOR WORK

As mentioned above, one of the main properties of the proposed

nonlinearity detection method is that it does not rely on prior knowl-

edge about the type of the nonlinearity used for spectral unmixing.

Conversely, the pixel by pixel nonlinearity detector presented in [8]

assumed a polynomial form for the nonlinearity with respect to the

endmembers. We showed in this paper that the proposed detector

has clear advantages when the nonlinear mixture of the endmembers

cannot be approximated by a polynomial.
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