
HAL Id: hal-01150344
https://hal.science/hal-01150344

Submitted on 11 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Configuration Validation for Self-configurable
Systems

Ludi Akue, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla

To cite this version:
Ludi Akue, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla. Runtime Configuration Validation
for Self-configurable Systems. IFIP/IEEE International Symposium on Integrated Network Manage-
ment - IM 2013, May 2013, Ghent, Belgium. pp. 712-715. �hal-01150344�

https://hal.science/hal-01150344
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12531

To cite this version : Akue, Ludi and Lavinal, Emmanuel and
Desprats, Thierry and Sibilla, Michelle Runtime Configuration
Validation for Self-configurable Systems. (2013) In: IFIP/IEEE
International Symposium on Integrated Network Management - IM
2013, 27 May 2013 - 31 May 2013 (Ghent, Belgium).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12531/
http://oatao.univ-toulouse.fr/12531/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Runtime Configuration Validation

for Self-configurable Systems

Ludi Akue, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla

IRIT, Université de Toulouse

118 route de Narbonne

31062 Toulouse, France

Email: {akue, lavinal, desprats, sibilla}@irit.fr

Abstract—Runtime configuration validation is a critical re-
quirement if we are to build reliable self-adaptive systems. This
paper describes a model-based approach that supports runtime
validation of candidate configurations. The approach is based
on MeCSV, a metamodel we propose, that allows a technology-
neutral specification of systems’ configurations and validity cons-
traints. A constraint-checker relying on this specification verifies
dynamically candidate configurations before their deployment.
Experimental results with a messaging platform show viable
validation overhead demonstrating the feasibility of the approach.

I. INTRODUCTION

Regardless of the management functional domain (e.g.;
fault, performance, security), self-configuration is the principal
means through which self-management is carried out. How-
ever, self-configuring functionalities should not endanger the
system’s operation otherwise they would nullify the expected
benefits. Configuration validation is therefore a critical require-
ment. Management systems should support runtime configura-
tion validation to guarantee the correctness and the safety of
reconfiguration activities and prevent erroneous behaviors from
compromising the system’s operation.

In this paper, we describe a model-based approach that
enables dynamic validation of candidate configurations. The
approach is based on MeCSV, a metamodel we propose,
dedicated to configuration specification and validation. In
particular, this metamodel includes rule specification features
to define different types of constraints used for automatic
constraint checking at runtime.

The MeCSV metamodel allows operators to define, inde-
pendently of management platforms or configuration protocols,
a reference model of their managed environment that every
valid configuration instance should conform to. Thanks to
model-driven techniques, a rule-based validator can process the
reference model at runtime for the verification of configuration
instances. More precisely, once the reference model is loaded,
the validation runs as a standalone process, computing on
request, configuration instances produced by existing mana-
gement systems, thus enriching them with a runtime configu-
ration validation capability.

One novelty of the approach is to consider runtime configu-
ration validation. More than traditional configuration validation
consisting of static structural checks, runtime configuration
validation requires an additional operational assessment of can-
didate configurations, that is, their further evaluation against
ongoing operational conditions. This type of validation is

rarely considered in existing related work since it depends
necessarily on the system’s current running state and can
therefore not be achieved at design time.

The remainder of the paper is structured as follows: we first
discuss related work in Section II, then highlight the require-
ments for building runtime configuration validation in Section
III, and how they are handled in the validation framework we
propose in Section IV. Finally, Section V exposes empirical
results with a message oriented middleware and Section VI
concludes the paper and identifies future work.

II. RELATED WORK

Most related works [1]–[4] principally provide structural
checks of configuration parameters and rarely include their
operational validation against the operational context at hand.
Our approach in contrast, aims to provide a validation frame-
work, designed specifically for runtime configuration valida-
tion addressing both structural and operational validations for
any possible application domain.

Standards like the DMTF Common Information Model
(CIM) [5] and the YANG data modeling language [6] include
constructs for configuration validation. Nevertheless, CIM re-
lated constructs (SettingData, OCL qualifiers) are not suitable
for runtime validation in their actual state, and although YANG
provides a set of constraints enforceable at runtime, it remains
specific to the Network Configuration Protocol (NETCONF),
thus not applicable to any application domain.

Our work shares common foundations with PoDIM, a lan-
guage for high-level configuration management [3]. MeCSV
and PoDIM similarly provide a platform-neutral language
with a robust constraint specification capability. However,
PoDIM considers solely structural constraints specification and
is mainly dedicated to the automation of system administration.

Configuration validation is also addressed as a Constraint
Satisfaction Problem [7], [8]. Constraints are yet structural and
static and their satisfaction occurs at design time.

III. RUNTIME VALIDATION REQUIREMENTS

This section recalls essential characteristics of runtime
configuration validation and positions our contribution in the
context of self-management solutions.

Configuration validation has always been critical to ensure
that a system’s operation meets expected requirements.

Traditional configuration validation is limited to structural
sanity checks, typically checking syntactical and type correct-
ness, checking that values remain within authorized bounds
and respect some cross-elements dependencies. We call this
type of validation structural integrity validation. A host’s
IP address that must respect the IPv4 or IPv6 format is a
simple constraint example of structural integrity validation.
This constraint can be verified at design time or runtime but
its evaluation is independent of the current runtime state.

We showed in [9] that runtime configuration validation
should exceed traditional structural sanity checks and further
assess the suitability of configurations regarding the cur-
rent operational conditions. Indeed, in the context of self-
adaptation, configurations are highly dependent on the opera-
tional conditions, and ongoing operational states can invalidate
the suitability of a candidate configuration. We call this type of
validation operational applicability validation. For example, in
addition to check that a host’s IP address is wellformed, one
can also check that this address is mapped to an interface in an
up state. This constraint can only be verified at runtime since
its evaluation is dependent on the current runtime state.

Managed Elements

Observe

Decide

Adjust

Runtime

Validation
Configuration

data
Validation

results

Operational
state data

Fig. 1. Runtime configuration validation in the self-management loop

Self-management is conceptually represented through an
autonomic control loop where a system’s operational metrics
are collected (Observe) to detect or prevent any undesirable
behavior; if need be, corrective configurations are decided (De-
cide) and deployed on the system (Adjust). Altogether, a va-
lidation function providing structural integrity and operational
applicability validations should be capable of interacting with
the Decide block for the evaluation of proposed configurations,
and with the Observe block for the retrieval of ongoing runtime
conditions of interest. As a result, this validation function will
enhance the reliability of current self-management solutions
(Fig. 1).

IV. MODEL-BASED APPROACH

We follow a model-based approach in which we define
a metamodel named MeCSV (Metamodel for Configuration
Specification and Validation) along with a runtime validation
architecture. They are presented in this section.

A. MeCSV Core Features

MeCSV is a high-level modeling language dedicated
specifically to a formal representation of configuration infor-
mation for runtime validation. As seen in Section III, the
MeCSV language serves the purpose of representing confi-
guration and monitoring information, necessary to allow our

validation solution to operate with an existing management
system, as well as providing structural and operational valida-
tion capabilities.

1) Configuration Information Description: MeCSV in-
cludes the conventional constructs for configuration descrip-
tion such as configuration parameters (name and type), their
composition and cross-references. These constructs allow to
represent the target system configuration information necessary
to understand configuration instances.

2) Operational Data Representation: Essential for the
evaluation of the operational applicability of configuration
instances, MeCSV allows for the representation of the moni-
toring view of a managed element. This allows connection to
an existing monitoring framework.

3) Dedicated Constraint Model: MeCSV enables cons-
traint definition over configuration data through two types of
constraints, Offline Constraints, equivalent of usual structural
rules and Online Constraints for the expression of operational
applicability rules whose evaluation depends on the availability
of some runtime data.

4) Expressive Constraint Management: Constraints in
MeCSV feature attributes for more expressiveness and
lifecycle management, such as “constraint level” that allows
modulation of their strictness or priority (e.g.; warning,
error) and “active” that permits to activate or deactivate them
depending on usage scenarios (e.g.; critical, non-critical).

MeCSV is currently available as a UML profile and Ecore
model [10]. Each has been tested with ECLIPSE MDT [10] and
TOPCASED [11] but can be potentially used with any UML or
Ecore modeler. An extensive description of the language can
be found in [12].

B. Target Domain Reference Model

The central objective of MeCSV is to allow the definition
of a Reference Model that every possible configuration of the
target system should conform to.

ConstraintsConstraintsConstraintsConstraints
(OCL)

Reference Model

MeCSV Metamodel

(Eclipse plugin)

ConÞg classes
(Ecore)

State

classes
(Ecore)

Human

Operator

D

E

S

I

G

N

T

I

M

E

(defines)

Eclipse MDT editor

Fig. 2. Usage of MeCSV at design time

As shown in Fig. 2, a human administrator uses the MeCSV
language at design time to define the reference model of a
given managed application domain (e.g.; an application server,
a messaging middleware or storage area networks) according
to management requirements. This reference model is to be
defined only once, however it can be modified at any time

during the management system’s life cycle to cope with the
evolution of management and system requirements.

The reference model is organized in a structural part
made of configuration and operational information that can
be represented as UML or Ecore classes, and an assertion
part containing offline and online constraints expressed in
OCL [13], a formal specification language extension to UML.
Once defined, it will be used at each dynamic reconfiguration
decision, to automatically evaluate configuration instances.

C. Prototype Architecture

Fig. 3 illustrates the architecture of the validation system
comprising a model repository and an online validator.

The model repository stores designed reference model
classes and constraints. The repository also supports the mo-
dification of reference model data and constraints at runtime
to adapt the model to evolving management requirements. The
online validator provides three capabilities: a model at runtime
execution that processes and parses reference model classes
and constraints, a dynamic constraint evaluation that handles
validation requests and checks configuration instances against
the reference model, and a validation reporting that issues an
indication that contains analyzed elements and violated cons-
traints. The validator is built upon the open source Dresden
OCL parser and interpreter [14] that we adapted to handle
MeCSV specific constructs.

Online Validator

Ref. model instances

(XMI files)

XMI MODEL
FILE

XMI MODEL
FILE
Config.

instances

current
state values

Management
system

A

D

A

P

T

E

R

Validation results

R

U

N

T

I

M

E

Model parser
(Dresden-OCL)

Reporting

Constraint evaluator
(Dresden-OCL)

Human

Operator

(edit)

Ref. Model
(Ecore, OCL)

Model repository

Fig. 3. Runtime Configuration Validation System Architecture

At runtime, the validator typically receives validation
requests containing the candidate configuration as well as
the current system’s state as XMI files (serialized model
instances conforming to the defined reference model). These
files are parsed and analyzed against the corresponding refer-
ence model, then a validation report is generated containing
constraints and configurations that have been evaluated.

The validation framework works directly on MeCSV mod-
els, thus is free from any specific management semantics.
Therefore, in order to use it with legacy management systems,
an adapter mapping particular management data models (con-
figuration and state) to their related MeCSV artifacts has to
be implemented. For example, transformation rules associating
CIM schema elements or YANG statements to the appropriate
MeCSV constructs can be implemented thus allowing any
management information model conforming to these standards
to be integrated into the validation framework.

V. PROTOTYPE EXPERIMENT

We evaluated the MeCSV validation system for the ma-
nagement of the JORAM [15] message oriented middleware
platform (MOM). We respectively tested the ability of the
MeCSV metamodel to serve as a formal specification notation,
the effectiveness of the validator in detecting errors and the
validation time. This section describes those experiments.

A. Experimental Setup

1) JORAM Platform: A MOM system is a specific class
of middleware that supports loosely-coupled communication
among distributed applications via asynchronous message
passing. JORAM provides access to a MOM platform that
can be dynamically managed and adapted, i.e., monitored
and configured for the purpose of performance, reliability
and scalability thanks to JMX management interfaces. Prin-
cipal managed elements are message servers that offer the
messaging functionalities, connection services and message
routing, destinations that are physical storages supporting
either queue-based (i.e., point-to-point) or topic-based (i.e.,
publish/subscribe) communications.

Based on a JORAM’s existing configuration XML schema,
we defined a MeCSV reference model (Fig. 4). Additionally,
we implemented a JMX adapter, capable of mapping MeCSV
constructs to the corresponding management interfaces (to
acquire or update state and configuration data).

Fig. 4. Reference model of a message queue (excerpt with profile application)

2) Evaluation scenarios: We performed our experiments
on three different platform configurations varying in size and
complexity. The first configuration (Case 1) is a centralized
messaging server offering basic message features for a total
of six configurable elements. The second (Case 2) consists of
two messaging servers (about eighteen configurable elements).
The third (Case 3) has three messaging servers and holds thirty
configurable elements.

In the same time, we implemented several client applica-
tions exchanging a high load of fictive messages to act on
the monitored metrics (e.g. servers’ average message flows,
destinations’ number of pending messages). At runtime, a
configuration manager randomly selects one configuration and
requests its validation before deployment.

To test the scalability of the validator, we defined a fourth
configuration (Case 4), made of 300 elements, that has been
programmatically tested with random state values variations.

For each proposed configuration, the validator gradually
ran validations with 10, 50 and 100 OCL constraints.

We took 100 measurements of the execution time in
milliseconds for each validation request, and computed the
arithmetic mean. The tests were run on a Intel R© CoreTM 2
Duo with 2.66 GHz and 4 Gigabytes of main memory.

B. Results and Discussions

Table I presents the validation time for each benchmark on
the four configuration scenarios.

TABLE I. PERFORMANCE RESULTS

Test case 1 Test case 2 Test case 3 Test case 4

(6 elements) (18 elements) (30 elements) (300 elements)

Validation time with 10

constraints (ms)
224.83 305.83 397.14 704.2

Validation time with 50

constraints (ms)
269 333.83 451.50 1,396.5

Validation time with

100 constraints (ms)
324 412.80 562.80 2,032.8

1) MeCSV for formal specification: the overall experiment
shows how well MeCSV enables a formal description of a
real-life system’s reference model that is successfully used to
check received configuration instances at runtime.

2) Found errors: detected operational invalidities outnum-
bered structural errors, as operational conditions are not under
control (they depend on the actual message loads generated
by client applications) confirming our assumption about the
importance of an additional operational validity assessment.

3) Validation time: the overall checking time for the three
deployed scenarios is under 600ms which is very encouraging.

A very important result lies in the effect of the number
of system’s elements and constraints on the validation time.
As shown in Table I, the execution time is not proportional
either to the number of system’s elements or to the number
of constraints. For example, while the number of elements
quintuples from case 1 (6 elements) to case 3 (30), their
average validation time ratio hardly doubles (ratio is 1.73).
Similarly, although the number of constraints increased by
ten, the average validation cost is barely multiplied by 1.5.
We can conclude that in small configurations, the number of
system’s elements or the number of constraints scarcely affects
the validation performance.

Furthermore, the error rate is not a factor impacting the
validation time. An error-free configuration takes the same
time as a highly erroneous configuration.

4) Scalability of the approach: Case 4 offers some insights
on the performance of the approach on a very large configura-
tion. The average validation time is around 2 seconds, which is
still an acceptable time for a runtime validation program. This
progression confirmed our first conclusion that the validation
performance is not proportional to the size of configurations;
system’s elements increased by 50 (from 6 elements to 300
elements) while validation time increased by less than 5.

VI. CONCLUSION AND FUTURE WORK

Enriching existing self-configuring systems with a runtime
configuration validation capability is vital to increase users’

confidence in their operation and ease their adoption. We
presented a model-based approach for the runtime validation
of candidate configurations in self-configurable systems.

We argued that this runtime validation capability should
exceed traditional validation and further include the evaluation
of candidate configurations’ consistency against running ope-
rational conditions. We then proposed a metamodel (MeCSV)
enabling vendors or administrators to specify their system’s
reference model, that is, the system’s configuration schema
including structural and runtime constraints that should be
respected. We also developed a prototype validator, which
relies on the reference model to check automatically proposed
configurations and notify inconsistencies.

The prototype experiment on a real-life messaging plat-
form shows that the validation detects constraints violation
and completes in an acceptable time even in the case of a
large configuration, thus demonstrating the feasibility of our
approach.

In future work, we intend to automate the mapping between
standard management models and MeCSV constructs, as well
as improve the reporting of validation results for their auto-
matic processing. These issues are essential to integrate our
validation solution with existing self-configurable systems.

REFERENCES

[1] A. V. Konstantinou, D. Florissi, and Y. Yemini, “Towards Self-
Configuring Networks,” in DANCE’02: DARPA Active Networks Con-

ference and Exposition, 2002.

[2] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe, “An Auto-
mated Formal Approach to Managing Dynamic Reconfiguration,” in
ASE’06: Inter. Conference on Automated Software Engineering, 2006,
pp. 37–46.

[3] T. Delaet and W. Joosen, “PoDIM: A Language for High-Level Confi-
guration Management,” in LISA, 2007, pp. 261–273.

[4] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain,
P. Murray, and P. Toft, “The SmartFrog Configuration Management
Framework,” SIGOPS Oper. Syst. Rev., vol. 43, pp. 16–25, 2009.

[5] “CIM Schema version 2.29.1 - CIM Core,” Distributed Management
Task Force (DMTF), june 2011.

[6] M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” Internet Engineering Task Force
(IETF), RFC 6020, october 2010.

[7] T. Hinrichs, N. Love, C. J. Petrie, L. Ramshaw, A. Sahai, and S. Singhal,
“Using Object-Oriented Constraint Satisfaction for Automated Configu-
ration Generation,” in DSOM, 2004, pp. 159–170.

[8] L. Ramshaw, A. Sahai, J. Saxe, and S. Singhal, “Cauldron: a policy-
based design tool,” in 7th IEEE International Workshop on Policies for

Distributed Systems and Networks, 2006, pp. 113–122.

[9] L. Akue, E. Lavinal, and M. Sibilla, “Towards a Validation Framework
for Dynamic Reconfiguration,” in IEEE/IFIP International Conference

on Network and Service Management (CNSM), 2010, pp. 314–317.

[10] “Eclipse Modeling Framework Project (EMF),” january 2013. [Online].
Available: http://www.eclipse.org/modeling/emf/

[11] “Topcased,” january 2013. [Online]. Available: http://www.topcased.org

[12] L. Akue, E. Lavinal, and M. Sibilla, “A Model-Based Approach to
Validate Configurations at Runtime,” in 4th International Conference

on Advances in System Testing and Validation Lifecycle (VALID), 2012,
pp. 133–138.

[13] “Object Constraint Language (OCL), Version 2.0,” Object Management
Group (OMG), May 2006.

[14] “Dresden OCL,” january 2013. [Online]. Available: http://www.dresden-
ocl.org/

[15] “JavaTM Open Reliable Asynchronous Messaging (JORAM),” january
2013. [Online]. Available: http://joram.ow2.org/

