
HAL Id: hal-01150342
https://hal.science/hal-01150342

Submitted on 11 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized Approach to Evolve the Structure of
Metamorphic Robots

Tarek Ababsa, Noureddine Djedi, Yves Duthen, Sylvain Cussat-Blanc

To cite this version:
Tarek Ababsa, Noureddine Djedi, Yves Duthen, Sylvain Cussat-Blanc. Decentralized Approach to
Evolve the Structure of Metamorphic Robots. IEEE Symposium on Artificial Life - ALIFE 2013, Apr
2013, Singapore, Singapore. pp. 74-81. �hal-01150342�

https://hal.science/hal-01150342
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12449

To link to this article : DOI :10.1109/ALIFE.2013.6602434
URL : http://dx.doi.org/10.1109/ALIFE.2013.6602434

To cite this version : Ababsa, Tarek and Djedi, Noureddine and
Duthen, Yves and Cussat-Blanc, Sylvain Decentralized Approach to
Evolve the Structure of Metamorphic Robots. (2013) In: IEEE
Symposium on Artificial Life - ALIFE 2013, 16 April 2013 - 19 April
2013 (Singapore, Singapore).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12449/
http://oatao.univ-toulouse.fr/12449/
http://dx.doi.org/10.1109/ALIFE.2013.6602434
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Decentralized Approach to Evolve the Structure of

Metamorphic Robots

Tarek ABABSA, Noureddine DJEDI

LESIA Team, Computer Science Department

University Mohamed Khider

Biskra, ALGERIA

ababsatarek@yahoo.fr , n.djedi@univ-biskra.dz

Yves DUTHEN, Sylvain CUSSAT BLANC

Vortex Team (IRIT)

University Toulouse 1-Capitole

Toulouse, FRANCE

Yves.Duthen@univ-tlse1.fr , sylvain.cussat-blanc@irit.fr

Abstract—Metamorphic robots are robots that can change their

shape by reorganizing the connectivity of their modules to adapt

to new environments, perform new tasks, or recover from

damages. In this paper we present a decentralized method for

structural evolving of a class of lattice-based simulated

metamorphic robots in a static environment. These robots are

considered as a set of crystalline (compressible) modules that are

able to connect or disconnect one from each another or even

exchange information and energy with the neighbor modules in

order to form various structures/patterns dynamically. Our

approach is spited in two layers: in the first layer a genetic

algorithm is used to generate a number of well suited target

configurations based on current information perceived from

environment, while in the second layer a PacMan-like algorithm

is used to make a plan for modules movement to transform the

robot from its current pattern to the target pattern emerged in

first layer.

Keywords— Metamorphic Robots; Multi-Cellular Structures;

Self-Configuration; Genetic Algorithm; PacMan Algorithm.

I. INTRODUCTION

A metamorphic robot is a robot that consists of a large
number of autonomous units able to self-organize into an entire
structure (morphology) better suited to the environment in
which the robot is deployed, or to a specified task that is better
accomplished by a specified morphology. The units are a set
of mechatronic modules that are able to connect or disconnect
one from each another or even exchange information and
energy with the neighbor modules.

The locomotion of several modules from position to
position over their neighbors changes the whole shape of the
robot [1,2,8,11,12]. For example, a self-configured modular
robot may reconfigure itself into a thin, linear shape to
facilitate passage through a narrow tunnel, transform into an
emergency structure such as dam, shield, bridge, or even
surrounding and carrying objects.

Metamorphic robots are usually constituted from identical
units that have the same physical structure and able to do
computational and communication functionalities. These units
must have also enough degrees of freedom to be able to move
over neighbor units so that gives the whole robot the ability of

self-reconfiguration and the opportunity to self-repairing by
replacing damaged units with operational ones [2].

What makes metamorphic robots more attractive in the
research field of artificial life than the robots with fixed
morphology is that in addition to the perception, the actuation
and the control abilities of the robots with fixed morphology, a
metamorphic robot is also able to adapt its shape through units
reorganization and the updating of their connectivity in order to
survive in new situations, supports a new mechanical
operations or even recover from failure. Some potential
applications of metamorphic robots include:

• Navigation and obstacle avoidance in a massive
constrained environments or strongly unstructured
environments.

• Studying evolutionary structures that consist of
autonomous modules.

• Object surrounding and isolation for microscopic
manipulations.

Modular self-reconfigurable robotic systems that are
composed of many modules are expected to have the following
properties:

a) Versatility: metamorphic self-reconfigurable robots are
potentially more adaptive to the environment than
conventional robots thanks to the ability to reconfigure
modules which allows the robot to change its
morphology according to its tasks or its current special
situation.

b) Robustness: since each unit of the robot is able to move
over neighbor units, the whole robot can also
autonomously expel faulty modules outside the robot
structure leading to what we call self-repairing.

c) Low Cost: Self-reconfigurable robotic systems may
substantially reduce robot cost thanks to the self-
reconfiguration that can make a range of complex
machines from one set of modules.

The versatility in potential capabilities of self-
reconfigurable modular robot is influenced with degrees of

freedom added to its modules, but also increases mechanical
and computational complexities.

The advantages of metamorphic self-reconfigurable robots
have not yet been fully realized, thus their interest is not only
when we consider multiple tasks that require passing from
several morphologies or when the working environment is not
fully determined. The field of metamorphic robots addresses
the design, the manufacturing, the motion-planning and the
control of autonomous machines with variable morphologies,
this type of machines is much desired to do operations in a not
fully-known environments.

The objective of our work is to develop a decentralized
method that can evolve the structure of a crystalline based
metamorphic robot using the computing capacity of each
module of the system. Experimenting this method within a
metamorphic robot whose goal is to surround a known target
object dropped in the environment, the task requires a set of
reconfiguration to the robot shape in order to emerge water-
flow like behavior to go through a tunnel that separates the
target object position and the initial position of the robot. Our
approach is spited in two layers: the first layer uses a genetic
algorithm in each module of the system to randomize and
evolve a population of the system reconfigurations while the
second layer is charged to broadcast the best configuration over
the system modules and next uses a PacMan-like Algorithm to
establish the reconfiguration.

II. RECONFIGURATION APPROACHES OF

MODULAR ROBOTS

Robot assembly and metamorphosis is part of a robotic
challenge defined in the FP7 project Replicator where the main
problem in this type of systems is the motion planning of the
modules and their reorganization, in other words how to
transform a given configuration (X) into a target configuration
(Y) only using legal moves for each module of the system
[10,11,12,13, 17].

Several centralized and decentralized researches had been
the subject to deal with this kind of problems; the most of these
researches may be classified on the two axes described
thereafter.

A. Centralized and decentralized complexity of self-

reconfiguration

In the centralized self-configuration approach, the sequence
of legal reconfiguration moves for each module is determined
by a computational model that is performed by only a central
processing unit; these moves are used to transform the initial
configuration of the robot into a target configuration.

According to [1], the experimentation of self-configuration
with this strategy requires O(n

2
) computation time, while the

amount of computation performed by each module in a
distributed implementations is O(n). In the distributed self-
configuration, the computation is not performed by a central
processing unit, because all the units have the same description
and every unit is involved in the computation process.

B. Transition Graph Based Reconfiguration (TGBR)

Robot metamorphosis is presented at the most abstract level
as a reconfiguration problem using a graph rewriting grammar
to generate the robot shapes (configurations). The idea of this
centralized approach is to build a transition graph where the
nodes represent possible configurations of the whole robot and
the edges represent the elementary moves required to transform
the global structure from configuration (Ca) to the
configuration (Cb) where {a,b} are two states of the system
[8,11,12, 17]. The temporal dynamics of the system are well
described by this approach; however its implementation is very
expensive in memory and time computation when used to the
systems that have a large number of modules (leads to a
combinatorial explosion).

n C(n)

1 1

2 3
3 11

4 44
5 186

6 814

7 3.652
8 16.689

9 77.359
10 362.671

11 1.716.033
12 8.182.213

Fig. 1. Left: TGBR of three hexagonal modules (n=3), Right: Number
of possible configurations C(n) depending on the number of modules (n).

For example, if we consider the case of the hexagonal
modules detailed in [11], the number of possible configurations
is given in the table of figure 1. Within this approach, we can
see that the size of the graph is exponential to the number of
the modules that makes the robot (see the table of figure 1).
The left part of the figure 1 shows the TGBR formal definition
of three hexagonal modules, where the vertices {a,b,...,k} are
the possible states (possible configurations shown in figure 2)
of the system and the legs are the system transitions from a
state to another.

Fig. 2. Possible configurations using three hexagonal modules.
The corresponding TGBR is shown in figure 1 (left).

An improvement of TGBR approach is done later by Ulrik
P. Schultz in [8]: the author used an approach based on
distributed finite state automata to represent all possible
configurations. A copy of the automata is distributed to all

n = number of modules.

C(n) = number of possible configurations.

G=(V,E) / E={a,b,c,d,e,f,g,h,i,j,k}

V= {

(a,k),(a,j),(a,b),(a,d),

(b,h),(b,i),(b,e),(b,a),

(c,f),(c,e),(c,h),(c,i),

(d,i),(d,e),(d,h),(d,a),

(e,d),(e,g),(e,k),(e,b),(e,j),(e,c),

(f,c),(f,k),(f,j),(f,g),

(g,i),(g,e),(g,f),(g,h),

(h,g),(h,k),(h,c),(h,b),(h,j),(h,d),

(i,g),(i,b),(i,c),(i,d),

(j,a),(j,h),(j,f),(j,e),

(k,f),(k,h),(k,a),(k,e)}

a b c d e f

g h i j k

modules of the robot, but each module runs only the states it
has to address. The role of the finite state automata is to switch
the control over modules thanks to a communication protocol
used to share active states and the identity of the modules
selected to run these states.

C. Heuristics Based Reconfiguration

Murata et al. built a self-configurable machine [13]; in fact
this machine is a real reconfigurable modular robot. The
reconfiguration of this machine is done by random locals
locomotion of its modules. The implementation of this
approach is easy because it doesn’t require much parameters,
however the convergence is slow because it uses a random
strategy for motion planning, therefore this approach is more
convenient and can’t be used for a variety of complex
problems.

Gregory S. Chirikjian [2] tried out self-reconfigurable
robots in hexagonal lattice environment where each cell of the
lattice has only one of the three states (1) empty, (2) occupied
by a single module, (3) occupied by an obstacle. The author
defined a geometric quantity (d) to measure the distance
between two cells of the hexagonal lattice and it is used to
calculate the rate of modules attraction toward the target. This
quantity is calculated as following:

1. d(A,B)>0

2. if A=B then d(A,B) = 0

3. d(A,B) = d(B,A)

4. d(A,B) + d(B,C) >= d(A,C)

The evolution of structure configuration is based on the
motion planning to move modules from one position to another
by the fact that the target acts as an attractor of the modules.
The modules in this experimentation are influenced by an
artificial potential field that makes every module feeling
artificial force to move, this force is inversely proportional to
the distance between the module and the target [2].

A. Pamecha et al. used Chirikjian’s model to develop a
reconfiguration algorithm based on simulated annealing in
order to improve the quality of reconfiguration by increasing
the degree of similarity between initial and target
configurations, the higher and lower bounds of steps required
for the reconfiguration are also formulated [14].

D. Rus and M. Vona [15] developed a centralized planning
algorithm called “the melt-grow planner” to control self-
reconfiguration of metamorphic robots by using a muscle-like
actuation mechanism. This algorithm was developed for
systems with unit-compressible modules, such as the
crystalline robots.

Zhang et al. [16] developed several heuristic algorithms to
solve planning of parallel locomotion of modules for modular
robots.

Z. Butler and S. Byrnes introduced PacMan algorithm in
[9] as an efficient approach to plan and fulfill self-
reconfiguration of crystalline robots. The efficiency of this
approach is due to its ability to be parallelized. In fact the
PacMan algorithm gives to each module of the system the

opportunity to perform computation and planning requirements
to make parallel self-reconfiguration from initial configuration
to the target one using only local communications between
modules.

III. DISCOVERING THE TOPOLOGY OF LATTICE-

BASED METAMORPHIC ROBOTS

The structure topology of metamorphic robots is defined by
both the spatial location of each module and the physical links
between modules.

In the first stage of our approach, we need to discover the
initial robot topology by distributing the perceived information
over all the units to emerge a global vision of the whole
structure and initialize the morphology generator (see section
IV) that will evolve this structure into a more suitable one.

The structural discovering must only uses local
communications; therefore the modules have to keep the whole
structure in a connected state (no fragmentation must be
occurred) during all the time steps of the simulation.

In this work we consider the crystalline units to form our
metamorphic robot where the number of units is known in
advance.

Each module (i) has an adjacency matrix (Mi) with a size of
(n*n) where (n) is the number of modules forming the robot.
To discover the robot topology, modules use message
propagation mechanism based on two primitives of
asynchronous communication “Send(Mi, Destination)” and
“Receive()” (figure 3) to achieve the next constraints:

• The local vision (perception) of the module (k) is
encoded in an adjacency sub-matrix that encodes the
next three values : Mk[i,j] = 0 if cell (i,j) is empty,
Mk[i,j] = 1 if cell (i,j) is occupied by a module and
finally Mk[i,j] = 2 if cell (i,j) is occupied by obstacle.

• Each module perceives the environment to get local
vision about both environment and robot morphology
by extending free arms of the module. If the extension
is done without physical contact then the first cell in
the same direction is empty, otherwise the physical
contact identify if there is a module or an obstacle.

• If sub-matrix Mk that encodes the local vision of the
module (k) is updated then the module should send the
updated matrix to neighbor modules.

Fig. 3. Propagation of local perception over modules of the metamorphic
robot. The red cells represent 4 connected modules, while the blue
cells represent empty cells perceived by the modules and the white

cells represent the unperceived cells in the environment.

a b

c d

a b

c d

a b

c d

b: Send({a,b,c}, {a,c})

d: Send({d,c}, {c})
Update(Ma,Mc)

a{a,b,c}

b{a,b,c}
c{a,b,c,d}

d{c,d}

a: Send({a,b,c}, {b})
c: Send({a,b,c,d}, {b,d})

Update(Mb,Md)

a(a,b,c)
b(a,b,c,d)

c(a,b,c,d)

d(a,b,c,d)

b: Send({a,b,c,d}, {a,c})

d: Send({a,b,c,d}, {c})

Update(Ma)
a(a,b,c,d)

b(a,b,c,d)

c(a,b,c,d)
d(a,b,c,d)

The next algorithm shows the implementation of these
constraints to ensure the propagation of local perceptions over
the modules.

The bordered code segments must be executed in mutual
exclusion because of the shared variables.

ALGORITHM Discover_Topology

Foreach module (i) in the system do

 Create new process (P1) with the next segment code:

Updatei false;

 While true do

M Receive();

if Mi – M 0 then

Mi Mi + M;

Updatei true;

 End if

 End While

End Foreach

Foreach module (i) in the system do

Create new process (P2) with the next segment code:

 Fill the matrix Mi with neighbor modules;

Updatei true;

 While Mi is not fulfilled do

 if Updatei = true then

 Send(Mi, list of neighbor modules);

Updatei false;

 End if

 End While

End Foreach

This algorithm explains the dynamic of the information
propagation over the modules, in fact the role of the process P1
injected in module (i) is to receive local information
“adjacency sub-matrix” sent by the process P2 injected in
module (j ; i j) and cumulates this information to have a richer
vision about the whole robot. While the role of the process P2
is to detect changes in the local vision established by the
process P1, and if there are changes in local vision then the
module must inform all its neighbors.

From this mechanism emerges a global vision of the
metamorphic robot and gives each module of the system the
ability to have a full description of the robot’s topology and its
surrounding environment using only a set of simple local
communications.

IV. DECENTRALIZED APPROACH TO EVOLVE

METAMORPHIC ROBOT STRUCTURE

In this paper we have adopted a decentralized approach to
evolve the structure of metamorphic robots. It consists of a set
of autonomous units that have the same properties, so the
nature of the system does not imply the existence of a
supervisor module: all modules have the same functional level
and they can all participate in the evolution of the whole
structure.

In the second stage of our work, we propose to use an
“online” evolutionary search of the next configuration using a
genetic algorithm and the robotic modules as parallel
computers. Looking to the exploitation of the computing
capacity of each module of the system, we attempt to
parallelize the genetic algorithm in order to reduce the
computation time. The genetic algorithms tend to be easy to
parallelize thanks to their structure.

Different version of parallel genetic algorithms had been
the subject of several studies thanks to the appearing of parallel
machines and computer networks.

Mainly there are two models of parallel genetic algorithms,
master-slave model and island model [4]. In our work the
results are obtained using our proper framework developed in
JAVA initially to parallelize Ray-Tracer Algorithm. This
framework makes a heterogeneous computer network (where
each machine runs java virtual machine) looked as a
supercomputer with a shared memory and multiple processing
units that can run a set of parallel algorithms (the efficacy of
our framework is not the subject of this work).

A copy of the same genetic algorithm is implemented in
each unit of the system to perform its distribution following the
island model, where the initial population is divided into
several sub-populations that are processed separately by a set
of interconnected computing units.

The master process creates (n) occurrences of the same
process that performs a copy of the genetic algorithm,
progressing in separate machines within the required
parameters as it is shown in figure 4. Each process evolves its
local population independently until it decides (according to a
predetermined criterions) to migrate some best genome
(proportional to the size of the local population) into a selected
process. The receiver process adds the new genome to its
population and eliminates the worst ones (the size of local
population must be respected).

This strategy of parallelization makes it easy to perform a
genetic algorithm within a large population in size, and gives
result in a reasonable duration.

It is observed that a proper size for sub population must be
correctly selected because a subdivision in sub-populations of a
too small size leads to non-reliable genetic algorithms. Indeed a
population must also contain enough diversified genomes so
that the search space can be well explored and the result
returned is more interesting.

Fig. 4. Island architecture to parallelize Genetic Algorithm,

i=1 LocalPopulationi = T

To reduce the system complexity, we consider a static
environment modeled by a lattice of 2D cells, where each cell
has the interior architecture shown in figure 5 and may be in
one of the following states:

1) Empty: that can be filled by a single module as it goes
along.

2) Occupied by a module: and it become empty if the
inside module moves into one of the neighbor cells.

3) Occupied by an obstacle: while considering static
environment, this state remains unchanged during all time steps
of the simulation.

Fig. 5. The diagram of our evolutionary approach.

In the present work, the proposed approach is spited in next
three stages: evolving modules configuration, domination of
new structural information and reconfiguration to the new
pattern.

A. Evolving modules configuration using Genetic Algorithm

In this stage, each module uses its computational capacity
to run a distributed genetic algorithm to search the next
configurations better adapted to the environment where the best
one is the configuration that maximizes the fitness function (in

this work the fitness function is defined as the euclidean
distance between the center of gravity of the robot and the
target object that has to be surrounded).

.

Fig. 6. Genome structure that represents a configuration of (n)
modules.

Initially, each module of the system must have the
following genetic information: initial population where the
genomes encode both the links between modules and the
position of each module in the environment. A fitness function
is defined to calculate the importance of each genome. A
model of the genome is shown in the figure 6.

Considering a metamorphic robot of (n) modules, a set of
genomes with a size of (n) genes are randomly created and
diversified as much as possible. Each genome should also be
well-formed (it must encode unfragmented robot structure)
where each gene of the genome contains the next two integer
fields:

• Identifier field (id): to identify each module of the
system.

• Discret coordination field (i,j): to encode the discret
positions in the lattice based environment.

The links between modules are deduced by using neighbor
rules (all the neighboring modules are linked together).

The genetic operations (crossover, mutation) are applied
only for discrete coordination field, while the identifier field
remains always unchanged.

B. The domination of new structural information

After a number of iterations, each module of the system
retrieves the best genome of its local population, this genome
encodes the current best configuration evolved by this module.
A message of domination request that contains this genome is
created and sent to the neighbor modules that will process this
message using the fitness function to measure the importance
of the genome encapsulated, and in particular they must deal
with the following five situations:

1) If the extracted genome has a higher fitness than the

best one in the local population then, first suspend the genetic

algorithm progressing inside the module, next add this genome

to the local population and diffuse the same message to

neighbor modules that will do the same operation. At this

moment each sender module must wait for the

acknowledgement answer from the modules contacted in order

to answer positively to the domination request of the initiator.

2) If the fitness is smaller, ignore the received message

and create a message of “genome migration”, in which the

best genome of the local population is encapsulated. Next,

respond negatively to the domination request with this

Task Requirements Domination request

Genetic

Algorithm

Evolved

Configurations

Config 1

Config 2

Config p

Returning Best

Configuration

Perception

Layer 1

Generate a Set of Configurations

by evolutionary algorithms

Layer 2

Establish best

Configuration

Genotype-

Phenotype

mapping

PacMan –Like

Algorithm

Environment

Master

Local population 1

GA 1

Local population 2

GA 2

Local population n

GA n

n-1 n 1 2 3 4 5

id i j

message. This operation is executed without suspending the

progress of the genetic algorithm.

3) If the answer to the domination request is negative, then

extract the encapsulated genome from the received message

(this genome is the best of the local population at the moment

of the request repercussion), add the genome to the local

population, and send the acknowledgment message to the

initiator module (module initially requests the domination).

4) If (n-1) acknowledgment messages are gathered within

a particular module then the module must report the

domination of the new configuration using propagation of the

dominated message to allow the modules startingthe

reconfiguration stage.
If a module receives a message of domination (this message

contains the geometric description of the conventional best
configuration) then it cancels the processing of other messages,
sends this message to the neighbor modules, and starts the
reconfiguration process.

C. Reconfiguration to the target pattern

The reconfiguration to the new pattern is the last stage of
our approach. At this stage, we used a PacMan-Like algorithm
[9] as it is a parallel planning algorithm used to reconfigure
crystalline robots.

In fact, the PacMan algorithm was inspired by the video
game of the same name; this algorithm is parallelized and
reused by Zack Bulter et al [9]. It uses a specific data structures
called “pellets” as a way of marking the path that each module
should follow to perform its part of reconfiguration. An
example of application of the PacMan algorithm is illustrated
on figure 7. Once the pellets are distributed, the modules start
their asynchronous virtual locomotion where each module
switches its identifier with the neighbor module found in the
direction along its path of the reconfiguration. The moving
module must also consume pellets of its identifier as shown in
the next PacMan algorithm.

Fig. 7. An example of using PacMan algorithm to transform the
configuration (A) to the configuration (B).

The figure 6 shows that the PacMan approach lets several
modules to do simultaneous moves, which prevents the
occurrence of a deadlock or structure fragmentation. To

recover this problem, the following constraints must be
applied:

• The switching of identifiers between modules must be
executed in mutual exclusion.

• At the end of its displacement, each module must
diffuse a message that indicates the end of PacMan
algorithm to all the modules, to inform them that it
successfully reaches its final destination.

Each module of the system starts again stage A (Evolving
configuration by GA) if the number of the received messages
that indicate the end of the PacMan algorithm equals to the
total number of the modules.

ALGORITHM PackMan

Foreach module (i) of the system do

 if exist neighbor(i) that have the same identifier pellet then

 Select this module

 if module (i) is contracted then

• Switch identifier of module (i) with the selected
module.

 else

• Contract module (i) toward the selected module.

• Switch identifier of module (i) with the selected
module.

 End if

 End if

 if module (i) is contracted then

 if module (i) is in final position or it has just crossed a

module (j) then

• Extract module (i) toward the direct of the module (j).

 End if

 End if

 if module (i) reaches the final position then

• Diffuse the “end of PacMan Algorithm” message
to all modules.

 End if

End Foreach

The bordered code segments must be executed in mutual
exclusion to avoid deadlock. The following algorithm shows a
method for spreading pellets over the modules of the system.

ALGORITHM Pellets-Spreading

Foreach module (i) of the system do

 if module (i) is not in the target configuration then

• Establish the locomotion path of the module (i) to
move from current position to the proper position in
the target configuration using Dijkstra algorithm to

perform the shortest path in order to reduce the cost
of the reconfiguration.

• Each path is modeled using representation by
successors and the models are pushed on a stack
where each field has two sub-fields (the identifier of
the moving module and its successor that represents
the direction of pellets spreading).

• Put a unitary quantity of pellets coupled with the
identifier of the stack-owner module removed from
the top of the stack, next send the remaining stack to
the successor module.

 End if

End Foreach

V. RESULTS AND DISCUSSION

Initially, the crystalline units are gathered in an entire
connected structure (no fragment must be occurred), where
each module has to perform a genetic algorithm in order to
randomize and evolve the whole structure.

To ensure the autonomy of modules, we used a grid of 4x4
computers to perform the computation of the parallel genetic
algorithm, where each machine acts as the computing unit of a
module. A mechanism of communication inter-modules is
implemented using the SOCKETs of BERKLEY.

The following parameters are used to get the results shown
in figure 8:

• Selection: Tournament selection.

• Mutation rate: 5%.

• Crossover rate: 60%.

• Sub-population size: 60 genomes.

• Migration: 5% from the size of sub-population.

Fig. 8. The evolution of a metamorphic self-reconfigurable robot
during its movement in a tunnel from left to right to surround the

yellow square.

To demonstrate our approach, we assumed that the robot
should surround an object on the environment.

Knowing the object position we define the fitness function
as the distance (D) between the object and the center of gravity
of the robot. So the quantity (D) must be minimized as much as
possible to ensure the best surrounding of the object.

The environment is simulated as a 2D lattice matrix
composed from 23x8 cells as shown in figure 8, where 23 cells
represent obstacles (black cells) and the metamorphic robot is
represented by 4x4 red cells. The green calls represent the
perceived cells while the yellow cell represents the object to be
surrounded.

Figure 8 shows instances of simulation of the metamorphic
robot evolution that moves from left to right while going
through a tight tunnel to surround the object represented by the
yellow square.

During this simulation, we can clearly observe in all time
steps the changes in the morphology of the robot while doing
its evolution so that it can adapt to the environment to achieve
its goal. This evolution is emerged by the co-operation of all
the modules that evolve population of possible configurations
and make an agreement (using domination request) to apply the
best one.

We can also observe a kind of directed locomotion
behavior of the whole structure emerges from the successive
configurations of the metamorphic robot. This locomotion is
expected because the search space of the genetic algorithm
integrates and disintegrates dynamically the perceived cells for
each configuration which create not only a local vision for each
module (the green cells represent the vision field of the
modules) but also a local vision of the whole evolutionary
structure(by propagating information) thus the emerging
behavior is well-adapted to the environment because the
evolved structure is strongly influenced by the information
perceived from the environment.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented a decentralized approach that
evolves the configuration of metamorphic robots composed
from crystalline modules.

This approach mainly uses PacMan-like algorithm coupled
with a genetic algorithm.

In fact the local information propagation over modules
emerges a full-description of the structural topology of the
metamorphic robot in each module. This description is
indispensable to perform a distributed genetic algorithm using
modules as computational units, because each unit of the
system is an autonomous module that has a computational
capacity though limited but it is sufficient to perform genetic
operations “crossover, selection, mutation” because these
operations are relatively simple.

This first stage invokes an evolutionary process that is
distributed over the modules of the robot using the information
perceived from environment and shared between these
modules. The second stage uses a reconfiguration algorithm

(PacMan algorithm) to change the robot structure from the
current configuration to the one defined in the first stage.

The evolutionary algorithm used in this work is
decentralized, which ensures theoretically the continuity of the
evolutionary process even if there are faulty modules.

A directed movement behavior emerges from the different
reconfigurations of the metamorphic robot: this behavior can
be studied in a future work to get the most possible hidden
potential of evolutionary structures.

REFERENCES

[1] G. Aloupis & al, “Linear Reconfiguration of Cube-Style Modular
Robots”. ISAAC'07 Proceedings of the 18th international conference on
Algorithms and computation, pp. 208-219, 2007.

[2] G. S. Chirikjian, “Kinematics of a metamorphic robotic system”. In
IEEE International Conference on Robotics and Automation
Proceedings, Volume 1, pp. 449-455, 1994.

[3] S. Cussat-Blanc, H. Luga & Y. Duthen, “Artificial Embryogeny and
Grid Computing”, Genetic and Evolutionary Computation (GECCO
2008), Atlanta, July 2008.

[4] A. Bertoni & M. Dorigo. “Implicit parallelism in genetic algorithms”.
Artificial Intelligence, 61(2), pp. 307-314, 1993.

[5] A. Bethke, “Comparison of Genetic Algorithms and Gradient-based
Optimizers on Parallel Processors”: Efficiency of Use of Processing
Capacity. The University of Michigan, College of Literature, Science,
and the Arts, Computer and Communication Sciences Dept, 1976.

[6] J. Grefenstette, “Parallel adaptive algorithms for function optimization”.
Vanderbilt University, Nashville, TN, Tech. Rep. CS-81-19 (1981).

[7] R. Hauser & R. Manner, “Implementation of standard genetic algorithm
on MIMD machines”. Parallel Problem Solving fron Nature, PPSN 3,
pp. 504-513, 1994.

[8] U. P. Schultz, M. Bordignon & K. Stoy, “Robust and Reversible Self-
Reconfiguration”, The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, St. Louis, USA, October 2009.

[9] Z. Butler, S. Byrnes & D. Rus. “Distributed motion planning for
modular robots with unit-compressible modules”. In Proc. Of the Int'l
Conf. on Intelligent Robots and Systems, 2001.

[10] A. Abrams & R. Ghrist. “State complexes for metamorphic robot
systems”. Intl. J. of Robotics Research, 23(7) , pp. 809-824, 2004.

[11] G. Chirikjian & A. P. Chirikjian, “Bounds for self-reconfiguration of
metamorphic robots”, in Proceedings IEEE ICRA, vol.2, pp. 1452-
1457, 1996.

[12] D. Christensen & al, “A Unified Simulator for Self-Reconfigurable
Robots”, In 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nice, France, pp. 22-26, 2008.

[13] S. Murata et al., “Self-Assembling Machine”, in Proceedings of the
IEEE International Conference of Robotics & Automation., San Diego,
California, pp. 441- 448, 1994.

[14] A. Pamecha & al., “Design and Implementation of Metamorphic
Robots”, in Proceedings of the 1996 ASME Design Engineering
Technical Conference and Computers in Engineering Conference, Aug
1996.

[15] D. Rus & M. Vona, “Self-reconfiguration Planning with Compressible
Unit Modules” in Proceedings of the 1999 IEEE International
Conference on Robotics & Automation, Detroit, Michigan, vol.4, pp.
2513 - 2520, 1999.

[16] Y. Zhang & al., “Distributed Control for 3D Shape Metamorphosis”,
Autonomous Robots Journal, Vol. 10, Issue 1, pp. 41-56, 2001.

[17] A.C. Van Rossum & J. H. Van Den Herik, “Designing Robotic
Metamorphosis”. In Proc. of the 22nd Benelux Conference on Artificial
Intelligence (BNAIC-2010), Luxembourg, 2010.

