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Programs with Time-Predictable Properties

Zhibin Yang, Jean-Paul Bodeveix, and Mamoun Filali
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{Zhibin.Yang,bodeveix,filali}@irit.fr

Abstract. Synchronous programming models capture concurrency in
computation quite naturally, especially in its dataflow multi-clock (poly-
chronous) flavor. With the rising importance of multi-core processors in
safety-critical embedded systems or cyber-physical systems (CPS), there
is a growing need for model-driven generation of multi-threaded code
for multi-core systems. This paper proposes a build method of time-
predictable system on multi-core, based on synchronous-model devel-
opment. At the modeling level, the synchronous abstraction allows de-
terministic time semantics. Thus synchronous programming is a good
choice for time-predictable system design. At the compiler level, the
verified compiler from the synchronous language SIGNAL to our inter-
mediate representation (S-CGA, a variant of guarded actions) and to
multi-threaded code, preserves the time predictability. At the platfor-
m level, we propose a time-predictable multi-core architecture model in
AADL (Architecture Analysis and Design Language), and then we map
the multi-threaded code to this model. Therefore, our method integrates
time predictability across several design layers.

Keywords: Synchronous languages, SIGNAL, Guarded actions, Veri-
fied compiler, Multi-core, Time predictability, AADL

1 Introduction

Safety-critical embedded systems or cyber-physical systems (CPS) distinguish
themselves from general purpose computing systems by several characteristics,
such as failure to meet deadlines may cause a catastrophic or at least highly un-
desirable system failure. Time-predictable system design [1, 21, 20] is concerned
with the challenge of building systems in such a way that timing requirements
can be guaranteed from the design. This means we can predict the system timing
statically. With the widespread advent of multi-core processors in this category
of systems, it further aggravates the complexity of timing analysis.

The synchronous abstraction allows deterministic time semantics. Therefore
synchronous programming is a good choice for time-predictable system design.
There are several synchronous languages, such as ESTEREL [5], LUSTRE [12]
and QUARTZ [16] based on the perfect synchrony paradigm, and SIGNAL [4]
based on the polychrony paradigm.



An integration infrastructure for different synchronous languages has gained
a lot of interests in recent years [6, 19]. A classical solution is to use an interme-
diate representation. Guarded commands [10], also called asynchronous guarded
actions by J. Brandt et al. [6], are a well-established concept for the descrip-
tion of concurrent systems. In the spirit of the guarded commands, J. Brandt
et al. propose synchronous guarded actions [8] as an intermediate representation
for their QUARTZ compiler. As the name suggests, it follows the synchronous
model. Hence, the behavior (control flow as well as data flow) is basically de-
scribed by sets of guarded actions of the form 〈γ ⇒ A〉. The boolean condition
γ is called the guard and A is called the action. To support the integration of
synchronous, polychronous and asynchronous models (such as CAOS or SHIM),
they propose an extended intermediate representation, that is clocked guarded
actions [6] where one can declare explicitly a set of clocks. They also show how
clocked guarded actions can be used for verification by symbolic model checking
(SMV) and simulation by SystemC. [7] presents an embedding of polychronous
programs into synchronous ones. The embedding gives us access to the methods
and tools that already exist for synchronous specifications.

Fig. 1. A global view of the relation between our work and related work

For a safety-critical system, it is required that the compiler must be verified
to ensure that the source program semantics is preserved. Our work mainly
focuses on the SIGNAL language. We would like to extract a verified SIGNAL
compiler from a correctness proof developed within the theorem prover Coq
as it has been done in the GENEAUTO project for a part of the SIMULINK
compiler. Our intermediate representation is a variant of clocked guarded actions
(called S-CGA), and currently the target is multi-core code. In [23], we have
already presented the compilation of sequential code and the proof of semantics
preservation of the transformation from the kernel SIGNAL to S-CGA. There
exist several semantics for SIGNAL, such as denotational semantics based on
traces (called trace semantics) [11], denotational semantics based on tags which
puts forward a partial order view of time (called tagged model semantics) [11],
structural operational semantics defining inductively a set of possible transitions



[4, 11], etc. In [22], we have studied the equivalence between the trace semantics
and the tagged model semantics, to assert a determined and precise semantics
of the SIGNAL language. The relation between our work and related work is
shown in Fig. 1.

The contribution of this paper is to propose a build method of time-predictable
system on multi-core, based on synchronous-model development. At the model-
ing level, synchronous programming is a good choice for time-predictable system
design. At the compiler level, the verified compiler from the synchronous lan-
guage SIGNAL to our intermediate representation (S-CGA, a variant of guarded
actions) and thus to multi-threaded code, preserves the time predictability. At
the platform level, we propose a time-predictable multi-core architecture model
in AADL (Architecture Analysis and Design Language) [15], and then we map
the multi-threaded code to this model.

The rest of this paper is structured as follows. Section 2 presents the abstract
syntax and the semantics of S-CGA. Section 3 gives the multi-threaded code
generation schema from S-CGA. The time-predictable multi-core architecture
model and the mapping from multi-threaded code to that model are presented
in Section 4. Section 5 gives some concluding remarks.

2 S-CGA

In papers such as [6], clocked guarded actions has been defined as a common
representation for synchronous (via synchronous guarded actions), polychronous
and asynchronous (via asynchronous guarded actions) models. It has a multi-
clocked feature. However, in contrast to the SIGNAL language, clocked guarded
actions can evaluate a variable even if its clock does not hold [6] for supporting
the asynchronous view. Since we focus on the polychronous view, we introduce
S-CGA, which is a variant of clocked guarded actions. S-CGA constrains variable
accesses as done by SIGNAL. In this section, we first present the syntax of S-
CGA, and then we give the denotational semantics of S-CGA based on the trace
model.

S-CGA has the same structure as clocked guarded actions, but they have
different semantics.

Definition 1 (S-CGA). A S-CGA system is represented by a set of guarded
actions of the form 〈γ ⇒ A〉 defined over a set of variables X. The Boolean
condition γ is called the guard and A is called the action. Guarded actions can
be of the following forms:

(1) γ ⇒ x = τ (immediate)
(2) γ ⇒ next(x) = τ (delayed)
(3) γ ⇒ assume(σ) (assumption)

where

– the guard γ is a Boolean condition over the variables of X, their respective
clocks (for a variable x ∈ X, we denote its clock x̂), and their respective
initial clocks (denoted init(x̂)),



– τ is an expression over X,
– σ is a Boolean expression over the variables of X and their clocks.

An immediate assignment x = τ writes the value of τ immediately to the
variable x. The form (1) implicitly imposes that if γ is defined1 and its value is
true, then x is present and τ is defined. Moreover, init(x̂) exactly holds the first
instant when x is present.

A delayed assignment next(x) = τ evaluates τ in the given instant but
changes the value of the variable x at next time clock x̂ ticks.

The form (3) defines a constraint. It determines a Boolean condition which
has to hold when γ is defined and true. All the execution traces must satisfy this
constraint. Otherwise, they are ignored.

Guarded actions are composed by using the parallel operator ‖.
An S-CGA example 2 (Example 1) is shown as follows.

true ⇒ assume(ŷ1 = x̂) ẑ ∧ z ⇒ s1 = f(y1)
init(ŷ1) ⇒ y1 = 1 ŝ2 ⇒ s2 = s1 + 1
ŷ1 ⇒ next(y1) = x ŝ1 ⇒ assume(ŝ2)
true ⇒ assume(ŷ2 = x̂) ŝ3 ⇒ assume(ẑ ∧ (not z))
init(ŷ2) ⇒ y2 = 2 ẑ ∧ (not z) ⇒ s3 = f(y2)
ŷ2 ⇒ next(y2) = x ŝ4 ⇒ s4 = s3 + 2
true ⇒ assume(x̂ = ẑ) ŝ3 ⇒ assume(ŝ4)
ŝ1 ⇒ assume(ẑ ∧ z)

Definition 2 (Trace semantics of S-CGA). The trace semantics of a S-
CGA system is defined as a set of traces, that is JSCGAK = {S | ∀scga ∈
SCGA, JscgaKS = true}. We have the following semantics rules,

(1) Jγ ⇒ x = τKS =

∀i ∈ N, ĴγK
S,i

∧ JγKS,i

→ (ĴxK
S,i

∧ ĴτK
S,i

∧ JxKS,i = JτKS,i)

(2) Jγ ⇒ next(x) = τKS =
∀i1 < i2 ∈ N,

((∀i′ ∈ N, i1 < i′ < i2 → ¬ĴxK
S,i′

) ∧ ĴγK
S,i1

∧ JγKS,i1)

→ (ĴxK
S,i1

∧ ĴτK
S,i1

∧ (ĴxK
S,i2

→ JxKS,i2 = JτKS,i1))

(3) Jγ ⇒ assume(σ)KS =

∀i ∈ N, ĴγK
S,i

∧ JγKS,i → ĴσK
S,i

∧ JσKS,i

– Rule (1): when γ is present, and the value of γ is true, x and τ are both
present, and the value of x is that of τ .

– Rule (2): when γ is present and the value of γ is true at instant i1, x and τ

are present at i1, and if i2 is the next instant where x is present, then the
value of x at i2 is that of τ at instant i1.

1 An expression is said to be defined if all the variables it contains are present.
2 If two guarded actions update the same variables, the guards must be exclusive.



– Rule (3): when γ is present, and the value of γ is true, σ is present and true.

The semantics of S-CGA composition is defined as Jscga1 ‖ scga2KS =
Jscga1KS ∧ Jscga2KS .

In [23], we have already presented the translation rules from the kernel SIG-
NAL to S-CGA, and give the proof of the semantics preservation in Coq.

3 From S-CGA to Multi-threaded Code

The SIGNAL compilation process contains one major analysis called clock cal-
culus from which code generation directly follows. Moreover, the clock calculus
contains several steps, such as the synchronization of each process, i.e., an e-
quation system over clocks; the resolution of the system of clock equations; the
construction of a clock hierarchy on which the automatic code generation strong-
ly relies. Our goal here is to adapt the clock calculus to S-CGA.

Based on the semantics of S-CGA, we can get the equation system over
clocks. The general rules are given as follows.

S-CGA Clock Equations

γ ⇒ x = τ γ̂ ∧ γ → x̂ ∧ τ̂

γ ⇒ next(x) = τ γ̂ ∧ γ → x̂ ∧ τ̂

γ ⇒ assume(σ) γ̂ ∧ γ → σ̂ ∧ σ

init(x̂) → x̂ (∀x ∈ X)

As a first step, we just consider the endochrony property 3, namely we can
construct a clock hierarchy based on the resolution of the system of clock equa-
tions. The clock hierarchy of Example 1 (with three clock equivalence classes
C0, C1, and C2) is shown in Fig. 2. In the figure, for instance clk x denotes x̂.

Fig. 2. Clock hierarchy

Moreover, we construct the data-dependency graph (DDG, as shown in Fig.
3) based on the variables reading and writing.

Finally, the multi-threaded code generation is based on both the clock hi-
erarchy and the data dependency graph. First, we map the guarded actions to
threads (i.e. partitions, as shown in Fig. 3). As presented in Fig. 4, we would like
to treat the partition methods generally, this means different partition methods
(such as the vertical way [2] for a concurrent execution, the horizontal way [3]

3 The weak endochrony [14] property will be considered in the future.



Fig. 3. Data dependency graph

Fig. 4. The proof idea

for a pipelined execution, etc) don’t affect the proof (here we don’t consider
performance). Second, in each thread, we organize the guarded actions based on
the clock hierarchy. For example, the two guards in Thread2 belong to the same
clock equivalence class, so they are merged inside the same control condition
in the generated code. Third, we add wait/notify synchronization among the
threads. A code fragment of Thread2 is given as follows.

/ ∗ Thread 2 ∗ /
void step()
{
wait(Thread1);
if(C1){

s1 = f(y1);
s2 = s1 + 1; }

notify(Thread4);
}

4 Mapping Multi-threaded Code to Multi-core

To allow for static prediction of the system timing, we need time-predictable
processor architectures, thus we know all the architecture details such as the
pipeline and the memory hierarchy to analyze the execution time of programs.



Furthermore, the mapping from multi-threaded code to multi-core architectures
should be also static and deterministic.

4.1 A time-predictable multi-core architecture model

With the advent of multi-core architectures, interference between threads on
shared resources further complicates analysis. There are some recommendations
from R. Wilhelm et al. [21, 20], i.e., the better way is to reduce the time inter-
ference: (1) pipeline with static branch prediction and with in-order execution;
(2) separation of caches (instruction and data caches); (3) LRU (Least Recently
Used) cache replacement policy; and (4) access of main memory via a TDMA
(Time Division Multiple Access) scheme. In the EC funded project T-CREST 4,
M. Schoeberl et al. [18, 17] propose a new form of organization for the instruc-
tion cache, named method cache (MC), and split data caches (including stack
cache (SC), static data cache (SDC), constants data cache (CDC), and heap al-
located data cache (HC)), to increase the time predictability and to tighten the
WCET. The method cache stores complete methods and cache misses occur only
on method invocation and return. They split the data cache for different data
areas, thus data cache analysis can be performed individually for the different
areas. In our work, heap is avoided to be used because we don’t use dynamic
memory allocation in our multi-threaded code.

Based on these existing work, we would like to model a time-predictable
multi-core architecture in AADL. AADL is an SAE (Society of Automotive
Engineers) architecture description language standard for embedded real-time
systems, and supports several kinds of system analysis such as schedulability
analysis. Moreover, we have already worked on the semantics of different AADL
subsets such as [24]. So we envision how to validate semantically the mapping
from the language level to the architecture level.

Our multi-core architecture model is illustrated in Fig. 5. Inside the core,
we consider static branch prediction and in-order execution in the pipeline. A
simplified instruction set (get instruction, compute, write data, and read data)
is used. As a first step, we just consider a first level cache (i.e. without L2 and
L3). Each core is associated with a method cache, a stack cache, a static data
cache, and a constants data cache. However, the same principle of cache splitting
can be applied to L2 and L3 caches. The extension of the timing analysis for a
cache hierarchy is straight forward. Moreover, TDMA-based resource arbitration
allocates statically-computed slots to the cores.

As proposed by [9], a core is associated with an AADL processor component
and a multi-core processor with an AADL system component containing mul-
tiple AADL processor subcomponents, each one representing a separate core.
This modeling approach provides flexibility: an AADL system can contain other
components to represent cache, and shared bus, etc. For that purpose, we define
specific modeling patterns with new properties (such as Multi Core Properties).
A part of AADL specification is given in Fig. 6.

4 Time-predictable Multi-Core Architecture for Embedded Systems



Fig. 5. A time-predictable multi-core architecture model

processor core

features

MC: requires bus access cache_bus;

SC: requires bus access cache_bus;

SDC: requires bus access cache_bus;

CDC: requires bus access cache_bus;

end core;

processor implementation core.impl

properties

Multi_Core_Properties :: Branch_Prediction => Static;

Multi_Core_Properties :: Execution_Order => In_Order;

end core.impl;

system multicore

features

ExtMem: provides bus access shared_bus.impl;

end multicore;

system implementation multicore.impl

subcomponents

Core1: processor core.impl{Multi_Core_Properties :: Core_Id => 1;};
Core2: processor core.impl{Multi_Core_Properties :: Core_Id => 2;};
Cache_MC1: memory method_cache.impl{Multi_Core_Properties ::MC_Id => 1;};
Cache_MC2: memory method_cache.impl{Multi_Core_Properties ::MC_Id => 2;};
...

SBus: bus shared_bus.impl;

C2CBus1: bus cache_bus;

C2CBus2: bus cache_bus;

connections

bus access C2CBus1 -> Core1.MC;

bus access C2CBus2 -> Core2.MC;

bus access SBus -> Cache_MC1.Cache_Bus;

bus access SBus -> Cache_MC2.Cache_Bus;

...

end multicore.impl;

Fig. 6. A part of the AADL specification of the time-predictable multi-core architecture

4.2 The mapping method

To preserve the time predictability, we consider static mapping and scheduling.
Take the example shown in the last section. It generates a configuration file
(such as num of threads=4 ) in multi-threaded code generation. Moreover, we
have a manual configuration file for the time-predictable multi-core architecture



model, for example num of cores=4. Thus, we can generate a static mapping
and scheduling, for instance:

– Thread1 7→ Core1, Thread2 7→ Core2, Thread3 7→ Core3, and Thread4 7→ Core4.

– Thread1: notify(Thread2), notify(Thread3);

Thread2: wait(Thread1), notify(Thread4);

Thread3: wait(Thread1), notify(Thread4);

Thread4: wait(Thread2), wait(Thread3).

Based on the simplified instruction set (considered in the architecture model),
the multi-core code can be generated. Thanks to the mechanizations such as
method cache, split data caches, TDMA and static scheduling, the execution
time of the multi-core code can be bounded.

5 Conclusion and Future Work

With the widespread advent of multi-core processors in safety-critical embedded
systems or cyber-physical systems (CPS), it further aggravates the complexity of
timing analysis. This paper proposes a build method of time-predictable system
on multi-core, based on synchronous-model development. Our method integrates
time predictability across several design layers, i.e., synchronous programming,
verified compiler, and time-predictable multi-core architecture model. Interac-
tion among cores might also arm software isolation layers, such as the one defined
in ARINC653. Thanks to the existing work such as [9] and [13] on AADL model-
ing on multi-core architectures and their association with ARINC653, we would
like to associate our work with partitioned architectures in the future.
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