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MultiScale Wavelet p-Leader based Heart Rate Variability Analysis for Survival Probability Assessment in CHF Patients

A priori discrimination of high mortality risk amongst congestive heart failure patients constitutes an important clinical stake in cardiology and involves challenging analyses of the temporal dynamics of heart rate variability (HRV). The present contribution investigates the potential of a new multifractal formalism, constructed on wavelet p-leader coefficients, to help discrimination between survivor and non survivor patients. The formalism, applied to a high quality database of 108 patients collected in a Japanese hospital, enables to assess the existence of multifractal properties amongst congestive heart failure patients and to reveal significant differences in the multiscale properties of HRV between survivor and non survivor patients, for scales ranging from approximately 60 to 250 beats.

I. INTRODUCTION

Congestion Heart Failure: Discriminating Survivors from Non-Survivors. Human Heart Rate Variability (HRV) is known to fluctuate in a highly irregular and complex manner that reflects the health status of patients. The analysis of HRV fluctuations can notably be used to discriminate healthy subjects from patients suffering from congestive heart failure (CHF). However, despite significant recent advances in therapy, CHF is a difficult condition to manage in clinical practice and mortality remains unacceptably high. Medical studies have consistently reported a significant decrease in mortality for patients equipped with implantable cardioverterdefibrillators or undergoing resynchronization therapy. Risk stratification for deciding a priori which patients should benefit from such treatments therefore constitutes a stake of major clinical importance. Identification of high-risk patients with CHF remains a difficult and challenging task with current available methods. It has thus recently received growing academic interest and research efforts (cf., e.g., [START_REF] Nolan | Prospective study of heart rate variability and mortality in chronic heart failure : Results of the united kingdom heart failure evaluation and assessment of risk trial[END_REF]- [START_REF] Kiyono | Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF]). Related works. After the seminal contribution [START_REF] Akselrod | Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control[END_REF] that stimulated the massive use of spectral analysis for HRV characterization, the benefits of using alternative tools dedicated to non linear, non Gaussian and non stationary analyses were investigated (cf., e.g., [START_REF] Bansal | A review of measurement and analysis of heart rate variability[END_REF], [START_REF] Rajendra | Heart rate variability: a review[END_REF] and reference therein). In the last two decades, evidence was gathered that the temporal dynamics of HRV fluctuations are well described by fractal, or scaling, properties, characterized notably by 1/f power spectra [START_REF] Kobayashi | 1/f Fluctuation of heartbeat period[END_REF]- [START_REF] Peng | Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[END_REF], multifractality [START_REF] Ivanov | Multifractality in human heart rate dynamics[END_REF], [START_REF]Behavioral-independent features of complex heartbeat dynamics[END_REF], or non Gaussian distributions with fat tails [START_REF] Kiyono | Critical scale-invariance in healthy human heart rate[END_REF], [START_REF] Kiyono | Multiscale probability density function analysis: Non-Gaussian and scale-invariant fluctuations of healthy human heart rate[END_REF]. It has been shown that the alterations of such properties can be associated with certain diseases and can thus be used as diagnostic tools [START_REF] Ivanov | Multifractality in human heart rate dynamics[END_REF], [START_REF] Hayano | Increased non-Gaussianity of heart rate variability predicts cardiac mortality after an acute myocardial infarction[END_REF]. For instance, an increased departure from Gaussianity (in HRV increments computed on a 25s scale) is associated with an increased cardiac mortality risk in a cohort of acute myocardial infarction (AMI), with a predictive power independent of other HRV indices [START_REF] Hayano | Increased non-Gaussianity of heart rate variability predicts cardiac mortality after an acute myocardial infarction[END_REF]. Furthermore, departures from Gaussianity have been shown to be relevant in the evaluation of increased mortality risk in CHF patients [START_REF] Kiyono | Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF] and compared against fractal exponent and variance in beat interarrival times reported in [START_REF] Makikallio | Fractal analysis and time-and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure[END_REF]. Goals, contributions and outline.

In this context, the present contribution aims at investigating to which extent multiscale and multifractal analysis enables to help discriminating between survivor and non-survivor CHF subjects. It relies on the use of a new tool, the wavelet p-leader multifractal formalism, very recently proposed in [START_REF] Leonarduzzi | Extending multifractal analysis to negative regularity: p-exponents and p-leaders[END_REF]- [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF] and briefly defined in Section III. This statistical analysis tool is expected to yield better estimation performance and to show significant robustness in quantifying the scaling properties of real world data [START_REF] Leonarduzzi | Extending multifractal analysis to negative regularity: p-exponents and p-leaders[END_REF]. It is applied to a high quality database, described in Section II, consisting of 24h HRV data for 108 CHF patients collected at Fujita Health University Hospital, Japan. Results are presented and discussed in Section IV, in terms of compared multiscale behaviors, powers of statistical tests and Kaplan-Meier Survival Curves. Conclusions are drawn in Section V, also discussing of future works.

II. DATABASE

Database. A cohort of 108 CHF patients was enrolled at Fujita Health University Hospital, Japan, during years 2000-2001. The cohort was constituted of 61 male and 47 female subjects, with age ranging from 21 to 92 (average 66.1 ± 14.8) years. Of these patients, 39 (36.1 %) died within the follow-up period of 33 ± 17 months (range 1-59 months). Medication status before hospital discharge did not significantly differ between survivor (SV) and non-survivor (NS) patients. Clinical details for these CHF patients were previously reported in [START_REF] Kiyono | Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF]. Data. For each patient, a 24-hour Holter ECG recording was collected prior to Hospital discharge. R peaks were extracted and thoroughly reviewed for outlier removal and detection error correction. When atrial or ventricular premature complexes occurred, they were handled by median interpolation using two successive beats. It has also been checked that no sustained tachyarrhythmias were present in HRV recordings. The corresponding RR inter-arrival time values, denoted as X ≡ {x n , n = 1, . . . , N }, are analyzed as a time series, without resampling on a regular time grid. III. WAVELET P-LEADER FORMALISM Multifractal analysis. Multifractal analysis aims at characterizing the fluctuations along time n of the local regularity of a signal X, classically measured by the Hölder exponent h, by means of the so-called multifractal spectrum D(h) (cf. [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] for a theoretical introduction). D(h) can be further described using multifractal parameters (e.g., the multifractal exponents described below.) It has already been massively used to analyze HRV both in adults [START_REF] Ivanov | Multifractality in human heart rate dynamics[END_REF], [START_REF] Lopes | Fractal and multifractal analysis: A review[END_REF] and fetuses [START_REF] Doret | Multifractal analysis of fetal heart rate variability in fetuses with and without severe acidosis during labor[END_REF], [START_REF] Jaffard | Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis[END_REF]. Numerous declinations of multifractal formalisms (the practical counterpart of multifractal theory that actually enables to compute the multifractal parameters) were proposed and compared (cf. [START_REF] Lopes | Fractal and multifractal analysis: A review[END_REF] for a review). Notably, declinations of the (discrete) wavelet transform have proven to yield some of the most relevant multifractal formalisms (cf. e.g. [START_REF] Jaffard | Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis[END_REF]- [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF]). The present contribution relies on a new tool, referred to as the wavelet p-leader formalism, that has been theoretically introduced in [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF] and recently studied in [START_REF] Leonarduzzi | Extending multifractal analysis to negative regularity: p-exponents and p-leaders[END_REF], [START_REF] Leonarduzzi | p-exponent and p-leaders[END_REF]. Wavelet coefficients. Let ψ denote the mother wavelet, characterized by a strictly positive integer N ψ defined as ∀n = 0, . . . , N ψ -1, R t k ψ(t)dt ≡ 0 and R t N ψ ψ(t)dt = 0 and referred to as the number of vanishing moments.

The (L 1 -normalized) discrete wavelet transform coefficients d X (j, k) of X are defined as d X (j, k) = ψ j,k |X , with {ψ j,k (t) = 2 -j ψ(2 -j t -k)} (j,k)∈N 2 .
For detailed introductions to wavelet transforms, readers are referred to e.g., [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF]. Wavelet p-leaders.

The p-leaders are defined as local L p -norms of the fractional integral of order γ of wavelet coefficient,

2 jγ d X (j, k), L (p,γ) (j, k) = 2 j λ j ′ ,k ′ ⊂3λ j,k |2 j ′ γ d j ′ ,k ′ | p 2 -j ′ 1/p , (1) 
with λ j,k = [k2 j , (k+1)2 j ) and 3λ j,k = m{-1,0,1} λ j,k+m . The parameter γ ≥ 0 must be chosen to ensure a minimal regularity constraint (cf. [START_REF] Leonarduzzi | Extending multifractal analysis to negative regularity: p-exponents and p-leaders[END_REF]- [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF] for theoretical developments). Parameter p can be freely chosen in a range p ∈ (0, p 0 ) where p 0 is implicitly defined by

η(p 0 ) + γp 0 = 0, (2) 
with 1/n j nj k=1 |d X (j, k)| p ∼ K p 2 jη(p) , 2 j → 0.
The p-leaders enable to measure the fluctuations of the local regularity of X, quantified by its p-exponents h p , and to infer the corresponding multifractal parameters (cf. [START_REF] Leonarduzzi | Extending multifractal analysis to negative regularity: p-exponents and p-leaders[END_REF]- [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF] for details, beyond the scope of this contribution.) Cumulants. The quantities used in this work for characterizing the multiscale and multifractal properties of X are the cumulants C (p,γ) m (j) = Cum m ln L (p,γ) (j, •) of the variables ln L (p,γ) (j, k), commonly used for multifractal analysis [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF], [START_REF] Castaing | Log-similarity for turbulent flows[END_REF]. For X with perfect fractal properties (such as selfsimilar or multifractal processes), it can be shown that [START_REF] Castaing | Log-similarity for turbulent flows[END_REF]:

C (p,γ) m (j) = ν (p,γ) m + c (p,γ) m ln 2 j . (3) 
When applied to exactly self-similar processes, c 

IV. RESULTS AND DISCUSSIONS

p-leaders multiscale HRV analysis.

To apply the pleader multifractal formalism, parameters γ and p need to be selected. First the wavelet coefficients d X (j, k) are computed from the 24h RR interarrival time series for each subject. Inspection shows that for most subjects Condition (2) can not be satisfied with γ = 0 for any p 0 > 0. This provides us with a first and crucial information regarding HRV and scaling: Multifractal analysis can not in general be applied to HRV data without the a priori recourse to a fractional integration of small yet non zero order to ensure minimal regularity. The value γ = 0.5 is found sufficient to ensure minimal regularity for all subjects. To simplify the characterization of the entire database, this value is used for all subjects.

With this choice for γ, the p-leaders L (p,γ) (j, k), the logcumulant functions C (p,γ) m (j) and the exponents c (p,γ) m can be computed for p ∈ (0, p 0 ), where p 0 varies amongst subjects but p 0 ≥ 4 for all subjects. It is found that p = 1 yields the optimal classification between SV and NS subjects. Interestingly, this low value of p matches the theoretical results reported in [START_REF] Leonarduzzi | Extending multifractal analysis to negative regularity: p-exponents and p-leaders[END_REF], [START_REF] Leonarduzzi | p-exponent and p-leaders[END_REF] showing that estimation performance generically improve with decreasing p. All results reported below are thus computed with parameters (p, γ) = (1, 0.5).

Furthermore, it is chosen here to analyze cumulants up to order m = 3, i.e., C (j) corresponding respectively to the mean, the variance and (essentially) the skewness of ln L (p,γ) (j, •).

Statistical discrimination between NS and SV patients.

To assess the discriminative power of p-leaders for the temporal dynamics of NS versus SV CHF patients, Wilcoxon rank-sum tests are used together with Kaplan Meier Cumulative Survival Curves (KMSC), following the methodology in [START_REF] Kiyono | Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF]. KMSC curves are obtained by choosing a threshold for a chosen attribute (say c

(1,0.5) 1

) and splitting the population into two groups of predicted NS and predicted SV with attributes above and below this threshold, respectively. Over the follow-up period, the population of a group decreases each time one of its members dies such that with an ideal discrimination, the population of the predicted SV class would remain constant while that of the predicted NS class would decay to zero. Differences between the decrease of the curves for the two groups are assessed by the Mantel-Haenszel Logrank test: Let n SV and d SV (resp., n N S and d N S ) denote the total number of subjects and the number of deaths occurring in class SV (resp., NS). Let d = d SV +d N S , n = n SV + n N S . Under the null hypothesis that the survival curves of the two classes are equal, the test statistic 
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Log-cumulants C

(1,0.5) m (j) as functions of the log of the scale and discrimination between SV and NS patients. Left column: C

(1,0.5) m (j) for m = 1, 2, 3 from top to bottom. Right column: log 10 (pvalue) for each octave j (a value below the threshold 1.30 (dashed horizontal black line) indicates a p-value smaller than 0.05 and thus a significative difference between SV and NS).

Z = n 2 (n-1)(dSV -nSV d/n) 2 nSV nNS d(n-d) ∼ χ 2
1 follows a chi-squared distribution with 1 degree of freedom.

Furthermore, we assess classification performance in terms of Sensitivity and Specificity. Discriminative power of multifractal properties. Fig. 1 shows log-cumulants C

(1,0.5) m (j) as functions of (log 2 of) the analysis scale a = 2 j , and calls for the following comments.

First, it can be observed that, both for NS and SV, all three log-cumulant functions C

(1,0.5) m (j) (Fig. 1, left column) display satisfactory linear behavior across scales 2 3 ≤ a ≤ 2 7 . This indicates that HRV temporal dynamics display scaling properties across groups of 8 to 128 beats. This partially matches with previous analysis of RR interarrival time series reporting scaling in range of 10 to 1000 beats [START_REF] Peng | Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[END_REF]. Such scaling have often been quantified via the so-called α 2 scaling parameter when measured by Detrended Fluctuation Analysis (DFA) (cf. e.g., [START_REF] Kiyono | Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF] and references therein). Note that the slope c

(1,0.5) 1

of the function C

(1,0.5) 1

(j) can be understood as a robust estimator for α 2 . Thorough theoretical and practical comparisons between DFA and p-leaders will be detailed in a forthcoming study.

Second, the fact that the slopes c

(1,0.5) 1

differ (Fig. 1, top left) indicates a clear difference in the self-similar temporal dynamics between SV and NS subjects. Accordingly, Fig. 2 (top right) shows that KMSC computed from c

(1,0.5) 1 has a moderate discriminative power, slightly below the significance level 0.05.

Third, multifractal exponents c

(1,0.5) 2

and c

(1,0.5) 3

, measured from the linear behaviors across scales of the second and third log-cumulant functions, C
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(Fig. 1, middle and bottom left), are observed to clearly depart from 0, a strong evidence that scaling in RR interarrival HRV time series possess multifractal properties, both for SV and NS patients. The range (or power) of the fluctuations of regularity of RR interarrival HRV time series is identical for NS and SV patients. Yet, no significant change in the multifractal temporal dynamics conveyed by c

(1,0.5) 2 and c

(1,0.5) 3 is evidenced between NS and SV patients. Accordingly, KMSC computed from them (Fig. 2, middle and bottom right, respectively) show no discriminative power. Discriminative power of multiscale properties. Multifractal analysis consists of a demanding model as it relies on the assumption that data follow [START_REF] Kiyono | Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF]. To alleviate such assumptions, log-cumulant functions C

(1,0.5) m (j) can be examined at each scale a = 2 j independently, regardless of whether (3) is satisfied or not. These are referred to as the multiscale properties of data (to distinguish from multifractal properties induced by (3)) and provide a measure for the non Gaussian characteristics of p-leaders at each scale j.

First, it is observed that the function C

(1,0.5) 1

(j) (Fig. 1, top right) clearly discriminates between SV and NS temporal dynamics for scales a = 2 j ranging from 2 6 ≃ 60 to 2 10 ≃ 1000 beats. Interestingly, C

(1,0.5) 1 (j) for NS patients is systematically below that of SV patients, indicating a clear decrease in the overall power (or variance) of the RR inter-arrival times HRV time series. This thus materializes a decrease in the overall variability of heart rate, generally considered a sign of bad health. Accordingly, KMSC computed from C

(1,0.5) 1 (j = 7) (Fig. 2, top left) indicate a high discriminative power between NS and SV patients.

Second, the functions C

(1,0.5) 2

(j) (Fig. 1, middle left) show no significant change between NS and SV at any scale and the KMSC computed from C

(1,0.5) 2 (j = 7) (Fig. 2, middle right) indicates little to no discriminative power.

Third and foremost, the third log-cumulant function (skewness type) C

(1,0.5) 3 (j) (Fig. 1, bottom left) is observed to significantly differ for scales ranging from 2 4 ≃ 20 to 2 10 ≃ 1000 beats. The KMSC computed from C

(1,0.5) 3

(j = 7) (Fig. 2, bottom left) reflect this fact and show highly significative discriminating power between NS and SV patients.

These observations confirm multifractal analysis: There exist clear yet subtle changes in multiscaling properties of RR interarrival HRV time series. Changes in C

(1,0.5) 1 (j = 7) indicate changes in the power (or variance) of the time series themselves, a significant decrease being manifest for NS patients; The absence of change in C

(1,0.5) 2 (j = 7) indicates that the range of the fluctuations of ln L (p,γ) (j, •) at any scale does not differ between NS and SV patients; Conversely, the change in C

(1,0.5) 3

(j = 7) indicates a strong positive asymmetry of the fluctuations of ln L (p,γ) (j, •) for NS patients. In equivalent terms, the fluctuations of the time series of NS patients are characterized by the same variance but stronger power law like heavy tails and stronger departure from log-normal tails as those of SV patients.

V. CONCLUSIONS

Making use of the recently proposed p-leader wavelet coefficients multifractal formalism, the multifractal and multiscale properties of RR interarrival HRV time series temporal dynamics of survivor and non-survivor congestion heart failure patients were compared. For both classes of patients, clear scaling and multifractal properties are evidenced. While a (weakly) significant difference is observed for the selfsimilar scaling exponent c

(1,0.5) 1

, no clear differences are evidenced for the multifractal exponents c , for scale A = 2 7 ≃ 100 beats. Equivalent results are obtained with scales 2 6 or 2 8 corresponding to ≃ 60 or ≃ 250 beats. These results are strongly consistent with (and slightly outperform) those reported in [START_REF] Kiyono | Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure[END_REF] where a significant departure from Gaussianity for detrended increments of the RR interarrival HRV time series is found around a scale of 40 beats.

It comes as a surprising result that the third log-cumulant function yields significant differences when the second one does not, while they are both related to the non-Gaussianity of the data. The differences of the third log-cumulant indicate a subtle change in the heavy tails of the fluctuations that will be further investigated. This preliminary analysis will be further continued by comparing against age-sex matched healthy subjects. Also, the 24h data enables us to study potential differences between awake and sleep phases.

(p,γ) 1

 1 is tied to the self-similar exponent as c (p,γ) 1 = H + γ. It is thus generically referred to as the self-similarity exponent. Exponents c (p,γ) m , m ≥ 2, do not depend on γ and are directly related to the multifractal properties of data, thus referred to as multifractal exponents. Making use of (3), the exponents c (p,γ) m can be estimated by linear regressions of the sample cumulants C (p) m (j) against ln 2 j , for j ∈ [j 1 , j 2 ].
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