
HAL Id: hal-01150334
https://hal.science/hal-01150334

Submitted on 11 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An engineering process for security patterns application
in component based models

Rahma Bouaziz, Slim Kallel, Bernard Coulette

To cite this version:
Rahma Bouaziz, Slim Kallel, Bernard Coulette. An engineering process for security patterns appli-
cation in component based models. IEEE International Workshop on Enabling Technologies: Infras-
tructure for Collaborative Enterprises - WETICE 2013, Jun 2013, Hammamet, Tunisia. pp. 231-236.
�hal-01150334�

https://hal.science/hal-01150334
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12422

To link to this article : DOI :10.1109/WETICE.2013.27
URL : http://dx.doi.org/10.1109/WETICE.2013.27

To cite this version : Bouaziz, Rahma and Kallel, Slim and Coulette,
Bernard An engineering process for security patterns application in
component based models. (2013) In: IEEE International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises -
WETICE 2013, 17 June 2013 - 20 June 2013 (Hammamet, Tunisia).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12422/
http://oatao.univ-toulouse.fr/12422/
http://dx.doi.org/10.1109/WETICE.2013.27
mailto:staff-oatao@listes-diff.inp-toulouse.fr

An engineering process for security patterns
application in component based models

Rahma Bouaziz

IRIT, University of Toulouse
Toulouse, France

rahma.bouaziz@irit.fr

Slim Kallel

ReDCAD, University of Sfax,
Sfax, Tunisia

slim.kallel@fsegs.rnu.tn

Bernard Coulette

IRIT, University of Toulouse
Toulouse, France

bernard.coulette@irit.fr

Abstract—Security engineering with patterns is currently a
very active area of research. Security patterns " an adaptation of
Design Patterns to security – capture experts’ experience in order
to solve recurrent security problems in a structured and reusable
way. In this paper, our objective is to describe an engineering
process, called SCRIP (SeCurity patteRn Integration Process),
which provides guidelines for integrating security patterns into
component-based models. SCRIP defines activities and products to
integrate security patterns in the whole development process, from
UML component modeling until aspect code generation. The
definition of SCRIP has been made using the OMG standard
Software and System Process Engineering Meta-model (SPEM).
We are developing a CASE tool to support that process.

Keywords— Component; Component based systems; Security

patterns; Process; Aspects; SPEM

I. INTRODUCTION

A software security pattern [1] is defined as a generic
well defined security solution proposed by software security
experts to solve a recurrent problem in a given context.
Using security patterns, developers can address security
issues such as authentication, access control and security.
Along with increasing popularity of security engineering
with patterns, it is necessary to provide directives and
guidelines helping system designers – who are not necessary
security experts " apply security patterns. So far, there is no
clear, well-documented and accepted process dealing with
their full integration from earliest phases of software
development until production of application code [2].

 Component-based approach is a powerful means to
develop and reuse complex systems. In this paper, we take
component based software systems as an application domain
for our approach. More precisely, this paper investigates
how security patterns can be integrated into component-
based models. Our approach assumes that the security
specialists have defined the security patterns and the
corresponding solutions. Thus, it provides software designers
with capabilities to deploy these solutions. In the context of
our application domain, we also suppose that software
designers have minimal expertise in security solution domain
(authentication, access control, etc.).

Our main goal is to propose a process, called SCRIP
(SeCurity patterRn Integration Process) and an associated
tool for automatically integrating security patterns into

component-based models, and producing an executable
secure code. This integration is performed through a set of
transformation rules. The result of this integration is a new
model supporting security concepts. It is then automatically
translated into aspect-oriented code related to security. These
aspects are then woven in a modular way within the
functional application code to enforce specified security
properties. The use of aspect technology in the
implementation phase guarantees that the application of
security patterns is independent from any particular
implementation. In order to provide a clear comprehension
of the SCRIP process, we have described it in SPEM [3].
SCRIP is a collaborative process since it is performed by
actors " playing different roles – who work together all
along the process enactment.

The paper is structured as follows: in the next section
we briefly present the SPEM standard and its main concepts.
Section III details the proposed process for security pattern
integration (SCRIP). Section IV discusses related works.
Finally, section V, concludes the paper.

II. SOFTWARE AND SYSTEM PROCESS ENGINEERING
METAMODEL (SPEM)

SPEM [3] is the software process modeling OMG
standard. SPEM meta-model allows describing software
development processes. Its purpose is also to allow processes
reuse and documentation. It is structured as both a meta-
model conforms to MOF and a UML profile.

Hereafter, SPEM terminology is used to specify the
phases, roles and steps that are used to describe the SCRIP
process. One of the most important principles of SPEM 2.0
is the distinction between MethodContent elements (mainly
TaskDefinition, RoleDefinition and WorkProductDefinition)
and Process Space (mainly Activity, TaskUse, RoleUse,
WorkProductUse). More precisely, method content elements
are generic reusable elements described via the package
MethodConent, whereas process elements reuse them via
packages ProcessWithMethods and ProcessStructure. For
example, several instances of TaskUse may reuse the same
instance of TaskDefinition. Concretely, a Process is
composed of Activities, which can contain other Activity
instances and MethodContentUse elements (Task Uses, Role
Uses, WorkProductUses).

In the following, we present the SPEM meta-classes that
are used to describe our process. TaskUse () describes a
piece of work performed by one RoleUse, which may consist
of atomic elements called Steps. RoleUse () defines
responsibilities over specific WorkProducts, which are
consumed/produced in specific activities. WorkProductUse
(generally called artifact) is anything (piece of
information, document, model, source code, etc.) produced,
consumed, or modified by a process. We also reuse the
concepts of Phase and Lifecycle – inherited from SPEM
1"which are now defined in the SPEM 2.0 plug-in. A Phase
() is a specialization of WorkDefinition such that its
precondition defines the phase entry criteria and its goal
defines the phase exit criteria.

We present below an overview of the SCRIP process.
Following sections give a detailed description of the three
phases of our process. Moreover, to complete the usual
graphical notation, we propose a textual notation – conform
to SPEM specification "to describe a process structure, as
shown below in Fig.1.

Process:
 Activity {Kind: Phase}:

 Activity {kind: Iteration}: First
 TaskUse :

 ProcessPerformer {kind: primary}
 RoleUse:
 WorkDefinitionParameter {kind : in}
 WorkProductUse:
 WorkDefinitionParameter {kind : out}
 WorkProductUse:
 Steps

 Step:
 Step:

Fig. 1. Textual SPEM 2.0 Process structure description

III. SCRIP: SeCurity PatteRn Integration Process

The security patterns integration process (SCRIP) is
composed of a sequence of phases that cover the whole
lifecycle from design to implementation.

A. Overview of SCRIP process

SCRIP is structured as three consecutive phases:
Elicitation, Modeling and Implementation. The iterative style
should be applied to every phase of our process, but due to
space limitation, we describe only one iteration in this paper.

Four process RoleUse have been identified: «Security
Specialist» who is supposed (in our applicative context) to
have some knowledge in component based engineering,
«Software designer» who is also required to have minimal
expertise in security solution domain, «Transformer» (here a
software tool) that automatically applies Security application
rules to the application model and finally «Weaver» (here a
software tool) that takes application functional code and
aspect code as input and delivers a single secure code).

The SCRIP process begins with the Elicitation phase.
WorkProductUse «Security patterns» and «Component

meta-model» are supposed to be available as inputs of this
phase. WorkProductUse «Security patterns» contains
specification and design of specific security solutions. This
WorkProductUse is used, by applying TaskUses T1.1 and
T1.2 to obtain two outputs: (1) «Security profile» which
extends the component meta-model with new concepts
related to security patterns; (2) «Security Pattern Application
Rules (SPARs)» which is a set of rules expressed in a
transformation language like ATL [4].

The Modeling phase includes two TaskUses: T2.1 and
T2.2. TaskUse T2.1 takes as input the WorkProductUse
«Component meta-model» and produces an «Application
Component Model», while T2.2 takes as inputs the
«Application Component Model» WorkProductUse obtained
from TaskUse T2.1 and the SPARs WorkProductUse
obtained from the previous phase to produce a «Secure
Application Component Model».

Finally, the implementation phase is carried out through
TaskUses T3.1, T3.2 and T3.3. TaskUse T3.1 takes as input
the «Secure Application Component Model»
WorkProductUse obtained from T2.2 and produces the
«Application functional code», while T3.2 generates «Aspect
code». T3.3 takes as inputs WorkProductUse «Application
functional code» and «Aspect code», and produces the
«Secure application code ».

To illustrate the enactment of the SCRIP process for a
given application, we have chosen a basic GPS case study in
which we identified requirements for access control to
services offered by components. In this example, we mainly
consider the management of access control to various
services offered by phone operators; especially downloading
geographic maps and managing secure access to satellites.

B. Elicitation phase

As described above, the Elicitation phase comprises two
TaskUses: TaskUse Define Security Profile (T1.1), takes as
input the WorkProductUse «Security patterns» and
«Component meta-model»; TaskUse Define Security Pattern
application rules (T1.2) takes as input the outputs of TaskUse
T1.1, i.e., «Security profile» and «Security patterns»
WorkProductsUse. To carry out the above TaskUses, several
steps are performed for each TaskUse, as we can see in Fig.2.

1) TaskUse Define Security Profile
TaskUse T1.1 (Fig.3) is performed by the RoleUse

«Security and component specialist». Inputs are «Component
meta-model» (that defines primitives and basic concepts of
model component-based applications) and «Security
patterns» (a structured way for collecting security solutions).
Several steps are necessary to produce its output
WorkProductUse that is «Security profile».

The definition of Security profile consists in mapping [5]
[6] the concepts of the chosen security patterns with concepts
of the component meta-model.

Fig. 2. SPEM2 structural diagram describing the SCRIP process for security pattern integration

As shown in Fig.3, this activity is part of Eliciting Phase
of the SCRIP process. As already mentioned, SCRIP is
highly iterative but here we only consider a single iteration
(First iteration) in order to make more understandable the
process. In Fig.3, SPEM meta-model classes, associations
and attributes are represented in simple times font while the
corresponding instances appear in bold times font.

To address the security issue for the GPS system, we
have taken as an example the RBAC pattern (Fig. 4) which
provides a solution for access control.

Process: SCRIP
 Activity {Kind: Phase}: Eliciting

 Activity {kind: Iteration}: First iteration

 TaskUse : Define Security Profile
 ProcessPerformer {kind: primary}

 RoleUse:Security and Component Specialist
 WorkDefinitionParameter {kind : in}
 WorkProductUse: Component Metamodel

WorkProductUse: Security Pattern

 WorkDefinitionParameter {kind : out}
 WorkProductUse: Security Profile

 Steps
 Step:Select a security pattern to apply

 Step:Map pattern participants with component

metamodel concepts

 Step:Identify stereotypes from pattern participants
Step: Identify metaclass to extend

 Step: Add tagged values to stereotypes
 Step: Associate stereotypes with adequate

 UML metaclasses

Fig.3. Define Security profile TaskUse (T1.1)

Fig. 4. RBAC pattern (adopted from [1])

As an example, we present in Fig.5. a subset of the
«Security UML profile» produced for Role-based Access
Control policy pattern (RBAC). It is mainly a set of
stereotypes derived from some meta-classes of the
component meta-model.

Fig. 5. UML profile for RBAC pattern

2) TaskUse Define Security Pattern Application
Rules

Fig.6 depicts the Define Security Pattern application
rules TaskUse, which is performed by the Security and
component specialist RoleUse.

Process: SCRIP
 Activity {Kind: Phase}: Elicitation

 Activity {kind: Iteration}: First iteration

 TaskUse : Define Security Patterns Application Rules
 ProcessPerformer {kind: primary}

 RoleUse:Security and Component Specialist
 WorkDefinitionParameter {kind : in}
 WorkProductUse: Security Profile

WorkProductUse: Security Patterns

 WorkDefinitionParameter {kind : out}
 WorkProductUse: Security Patterns Application Rules

 Steps
 Step:Define parametre(s) that software developer should

 input

Step:Map a set of concepts among security participants

 Step:Identify stereotypes from pattern participants
Step: Look form common roles between the to-be-applied

 pattern and the application concepts

Fig. 6. Define Security Pattern Application rules TaskUse (T 1.2)

We have defined a set of rules (SPARs for Security
Pattern Application Rules) to automate the integration of
security patterns into software components. These rules are
deduced through the relationships between security concepts
of the selected patterns and the corresponding UML profile.
These rules are applied in two steps: (1) Ensure the
correspondence between the main pattern concepts and the
correspondence model elements (specified as a component, a
connection or a port). For each security pattern, we select the
main concept that should be applied by the designer (i.e., the
name of the application artifact that corresponds to the role
of the applied security pattern). The definition of this
correspondence depends on security patterns
previouslyapplied to the same model; (2) The second step
corresponds to the mapping of other security pattern
concepts to the corresponding model elements. Concretely,
this mapping is performed by applying the respective
stereotypes defined in the corresponding UML profile. We
have implemented this mapping as a model-to-model
transformation using ATL.

Fig.7 shows an excerpt of the ATL code corresponding to
RBAC pattern application rules.

C. Modeling phase

This phase produces a secure component model after
having applied one or several security patterns to an initial
application component model. This modeling phase is
carried out by means of two TaskUse: Application Design (T
2.1) and Apply security pattern (T 2.2).

1) TaskUse Application Design
The goal of T2.1is to model the functional application

design. The «Software Designer» RoleUse carries out this
TaskUse. The designer may use the Papyrus suite tool[7], for
example, to specify his application using UML2 component
diagram. He may also use any UML profile that supports

specific component models like CCM, EJB or Fractal. The
resulting component model does not support any security
concept.

helperdef : getStereotype(p : UML2!Profile, name : String) :
 UML2!Stereotype =
p.ownedStereotype->select(s | s.name=name)->first();
rule Package {....
do {
t.applyProfile(UML2!Package.allInstances()->select(s |
s.name='RBACProfile')->first());
thisModule.entityProfile<-UML2!Package.allInstances()->
select(s | s.name=' RBACProfile ')->first();
}
rule Component {....
do{
if(s.name='SecureSattelite'){
t.applyStereotype(thisModule.getStereotype(thisModule.
entityProfile,'ProtectionObject));

}
}
rule Port{
do{
if(s.clientDependency.isEmpty() ands.owner.name='GPSTerminal'){
:t.applyStereotype(thisModule.getStereotype(thisModule.entityProfile,'Role))
}
}

Fig 7. Part of RBAC pattern application rules

Fig. 8 provides a case in point of a component-based
application using a UML component diagram for our GPS
case study. It contains five components:
 -Satellite enables to emit permanently a navigation
message containing all the necessary data for the receiver to
perform navigation calculations.
 - SecureSatellite emits secure signals.

 - GPSTerminal receives the message transmitted by the
Satellite and must have access rights to the signals sent by
SecureSatellite. It requires the map downloading service
from the Operator component.
 - Operator (Phone operator) offers the service to

download maps. It requires maps requested by members
from MapDataBase.
 -MapDataBase offers to the Operator the possibility to
have the map downloaded by the applicant.

To address the security issue for the GPS system, we
have taken as an example the RBAC pattern which provides
a solution for access control.

1) TaskUse Apply the security pattern
TaskUse T2.2 is performed to obtain a secure application

component Model (Fig. 9). This TaskUse takes as input two
WorkProductsUse: «Application Component Model» and
«Security Pattern Application Rules». The «Model2Model
transformer» RoleUse carries out this TaskUse.

Fig. 8.Component Diagram of Basic GPS system

Process: SCRIP
 Activity {Kind: Phase}: Modeling

 Activity {kind: Iteration}: First iteration

 TaskUse : Apply the security Pattern
 ProcessPerformer {kind: primary}

 RoleUse:Transformer
 WorkDefinitionParameter {kind : in}
 WorkProductUse: Application Component Model

WorkProductUse: Security Patterns Application Rules

 WorkDefinitionParameter {kind : out}
 WorkProductUse: SecureApplication Component Model

 Steps
 Step:Ensure the correspondence between the main

 pattern concepts and the corresponding model

 elements (specified as a component, a connector

 or a port)

 Step:Select the main concepts that should be applied by

 the designer

Step: Map the other security pattern concepts to the

 corresponding model elements

Fig. 9. Apply the security pattern TaskUse (T2.2)

Once steps of Activity 2.2 are executed, we get a secure
component model as output WorkProduct (Fig. 10).

Fig. 10. Secure Component Diagram of basic GPS system

D. Implementation phase

This phase is dedicated to produce a secure application
code through three TaskUse T3.1, T3.2 and T 3.3. This
implementation stage includes generating two intermediate
artifacts: the «Functional code» of the component based
application and the «Aspect code».«Security and component
specialist» and «Software designer» cooperate to define the
final secure application code as explained below in the tasks.

1) TaskUse Generate the functional code
TaskUse 3.1 aims to generate the «Functional code» of

the component based application. We reuse existing
approaches for functional code generation. Indeed several
approaches and commercial tools support the generation of
code skeleton with different technologies (EJB, .NET, C++,
etc.) from a UML component diagram, based on a set of
predefined libraries. The designer can also produce the
corresponding code by using for instance the MDA
approach. It first transforms the application component
model into a platform specific model. The corresponding
code is then generated using a model-to-text generator.

2) TaskUse Generate the aspect code
TaskUse 3.2 takes as input the secure application model

to define aspects. During this TaskUse, the «Security
specialist» and the «Software designer» RoleUses
collaborate to generate «aspect code». For each security
pattern, we propose a template to generate AspectJ code and
a helper as a set of Java classes. We generate a skeleton of
aspect code, which should be completed by the developer,
according to the functional application code generated during
the TaskUse 3.1.Pointcuts intercept the call of critical
methods, while advices ensure the functionalities of the
patterns. We generate different types of advices (around,
before, and after) depending on the security pattern.

For example, the generated aspect code for RBAC policy
is defined as following. The generated pointcut intercepts the
call of all methods performed by the system users. We
generate an around advice, which verifies before the
execution of each intercept method, that the caller (user) has
the expected role (i.e. has the access) to execute this method.

3) TaskUse Generate secure application code
TaskUse T3.3 takes as input the «application functional

code» and the «aspects code» to produce a «code for secure
application». Secure application code is obtained by weaving
aspect code resulting from the 3.2 TaskUse with the
application functional code obtained from the 3.1 TaskUse.

IV. RELATED WORKS

There are a large amount of works addressing the topic of
security design patterns applicability and usability.

Ortiz et al. [8] provide an analysis of the main works
related to security patterns. They discuss their applicability
for the analysis and design of secure architectures in real and
complex environments. Here, we sum up some of the
proposals for integration of security patterns. In [9], authors
propose a security pattern integration technique dealing with
model transformation using ATL. Moreover, authors in [10]
use Petri nets to model security patterns at an abstract level.

A methodology for integrating security patterns into all
stages of the software development lifecycle is proposed in
[11]. Other approaches [12] [13] present the use of aspect
oriented software design approach to model security patterns
as aspects and weave them into the functional model.

Concerning design pattern instantiation, S. Yau [14] uses
a formal design pattern representation and a design pattern
instantiation technique for automatic generation of
component wrappers from design patterns. In addition,
several approaches introduce their own tool-based support
for pattern instantiation. In [15] authors propose an approach
for representing and applying design patterns. In [16] authors
provide an UML profile which allows the explicit
representation of design patterns in UML models through a
model transformation approach. Authors in [17] describe an
approach for creating automated transformations that can
apply a design pattern to an existing program. In [18],
authors propose a method supporting design patterns
application in software projects, based on a semantics
defined via UML profile and model transformations.

We can conclude that most of existing approaches focus
on the application of security patterns at design level without
providing any mechanism for implementing them in
component-based applications. There is little work
concerning the full integration of security patterns from the
earliest phases of software development and providing
automatic generation of the final secure application code.
Even more, the code that applies security patterns is
generally not well modularized, as it is tangled with the code
implementing each component’s core functionality and
scattered across the implementation of different components.

To remedy these limitations we have provided a security
pattern integration process –described in SPEM "with tool
support in order to encourage developers to take advantage
from security solutions proposed in security patterns.

V. CONCLUSION AND FUTURE WORK

Security is one of the most important properties to
consider in complex systems development. A promising way
to address this issue is the application of solutions proposed
by security patterns. A large set of security patterns have
been defined by security experts. In this paper, we have
addressed the problems related to the applicability and
usability of security patterns in component-based
applications. In this context, we have proposed a structured
process, called SCRIP, to build secure component based
systems using patterns. To apply such patterns and produce
executable secure code in an iterative way, we use aspect-
oriented techniques.

As future work, we aim to provide a complete
development environment to design secure component based
application using the proposed SCRIP engineering process.

ACKNOWLEDGMENT

We would like to thank Komlan Akpédjé Kedji for his
valuable comments and suggestions.

REFERENCES
[1] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.

Buschmann, and P. Sommerlad, Security Patterns: Integrating
Security and Systems Engineering. Wiley, 2006, p. 600.

[2] P. T. Devanbu and S. Stubblebine, “Software Engineering for
Security : a Roadmap,” in Proceedings of the conference of The
future of Software engineering, 2000.

[3] “SPEM 2.0.” http://www.omg.org/spec/SPEM/2.0/.

[4] “ATL.” http://www.eclipse. org/atl/.

[5] R. Bouaziz and B. Coulette, “Applying Security Patterns for
Component Based Applications Using UML profile,” in
proceedings of the 15th IEEE International Conferences on
Computational Science and Engineering, 2012, pp. 186–193.

[6] R. Bouaziz and B. Coulette, “Secure Component Based Applications
Through Security Patterns,” in proceedings of the Workshop on
Security of Systems and Software Resiliency, 2012, pp. 749–754.

[7] “Papyrus UML.” http://www.papyrusuml.org

 [8] R. Ortiz, S. Moral-García, S. Moral-Rubio, B. Vela, J. Garzás, and
E. Fernández-Medina, “Applicability of security patterns,” in On
the Move to Meaningful Internet Systems: OTM 2010, 2010, pp.
672–684.

[9] Y. Yu, H. Kaiya, H. Washizaki, Y. Xiong, Z. Hu, and N.
Yoshioka, “Enforcing a security pattern in stakeholder goal
models,” in Proceedings of the 4th ACM workshop on Quality of
protection, 2008, pp. 9–14.

[10] V. Horvath and T. Dörges, “From security patterns to
implementation using petri nets,” in Proceedings of the 4th
international workshop on Software engineering for secure
systems, 2008, pp. 17–24.

[11] E. B. Fernandez, M. M. Larrondo-Petrie, T. Sorgente, and M.
Vanhilst, “A Methodology to Develop Secure Systems Using
Patterns,” Integrating Security and Software Engineering, 2006,
vol. 5, pp. 107–126.

[12] R. France and I. Ray, “Using Aspects to Design a Secure System,”
Proc. of the 8th IEEE International Conference on Engineering of
Complex Computer Systems, 2002, pp. 117– 126.

[13] R. F. Indrakshi Ray, “An aspect-based approach to modeling
access control concerns,” Information and Software Technology,
vol. 46, pp. 575–587, 2004.

[14] S. S. Yau, “Integration in component-based software development
using design patterns,” in Proceedings of the 24th Annual
International Computer Software and Applications Conference.
2000, pp. 369–374.

[15] G. El Boussaidi and H. Mili, “A model-driven framework for
representing and applying design patterns,” in Proceedings of the
31st Annual International Computer Software and Applications
Conference - Vol. 1-, 2007, pp. 97–100.

[16] X.-B. Wang, Q.-Y. Wu, H.-M. Wang, and D.-X. Shi, “Research
and Implementation of Design Pattern-Oriented Model
Transformation,” in Proceedings of the International Multi-
Conference on Computing in the Global Information Technology,
2007.

[17] M. Ó Cinnéide and P. Nixon, “Automated software evolution
towards design patterns,” in Proceedings of the 4th international
workshop on Principles of software evolution - IWPSE ’01, 2002,
p. 162.

[18] P. Kajsa and L. Majtás, “Design patterns instantiation based on
semantics and model transformations,” in Proceedings of the 36th
Conference on Current Trends in Theory and Practice of
Computer Science, 2010, pp. 540–551.

