N
N

N

HAL

open science

An MDE Approach for Domain based Architectural
Components Modelling.

Rahma Bouaziz

» To cite this version:

Rahma Bouaziz. An MDE Approach for Domain based Architectural Components Modelling.. IEEE
International Symposium on Computers and Communications - ISCC, Jul 2013, Split, Croatia. pp.

1-7. hal-01150333

HAL Id: hal-01150333
https://hal.science/hal-01150333

Submitted on 11 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01150333
https://hal.archives-ouvertes.fr

- OATAO

Open Archive Toulouse Archive Cuverte

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12562

To link to this article : DOI :10.1109/ISCC.2013.6755074
URL : http://dx.doi.org/10.1109/ISCC.2013.6755074

To cite this version : Bouaziz, Rahma An MDE Approach for Domain
based Architectural Components Modelling. (2013) In: IEEE
International Symposium on Computers and Communications - ISCC,
7 July 2013 - 10 July 2013 (Split, Croatia).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12562/
http://oatao.univ-toulouse.fr/12562/
http://dx.doi.org/10.1109/ISCC.2013.6755074
mailto:staff-oatao@listes-diff.inp-toulouse.fr

An MDE Approach for Domain based
Architectural Components Modelling

Rahma Bouaziz
IRIT, University of Toulouse
118 Route de Narbonne, 31062 Toulouse, France
rbouaziz@irit.fr

ABSTRACT—Component Based Software Engineering
(CBSE) is a popular and widely adopted software engineering
paradigm that has proven his usefulness and success to
increase reusability and efficiency in various application
domains. In this paper, we propose a common metamodel of a
component to support all the requirements of CBSE taking
into account the specificities of each domain. The resulting
modeling framework serves primarily to capture the basic
concepts of concerns related to component systems
development based on the clear separation between the
development process, interactions and the domain knowledge.
As a proof of concept, we are evaluating the feasibility of our
approach through the CCM component model applied to an
use case for building systems having real-time requirements.

Keywords—Component Based Sofiware engineering, Meta-
modeling, Component Models, Model Driven Engineering.

L. INTRODUCTION

Component-Based Software Engineering (CBSE) [1]
has emerged as a promising key technology for developing
and maintaining complex systems. CBSE focuses on
building large software systems by integrating previously
existing software components. The system is constructed
by the composition and the connection of these
components. It is a good solution to optimize time and cost
of software design while still guaranteeing the quality of
the software [2] [3].

Various component models have been proposed to deal
with system complexity in industrial and academic
domains. Variety of those model's applications in
constructing systems has proved their usefulness and
success. Among these approaches, we can find general-
purpose software component models such as Enterprise
Java Beans (EJB) [6], CORBA Component Model (CCM)
[9] or, Fractal [10] which are well-established for CBSE in
generic problem domains. They provide basic mechanisms
for the specification and the composition of components.
On the other hand, to address a specific domain challenge,
specific component models like AUTOSAR [11], BIP [8],
and KOALA [7] are proposed to deal with specialized
domains like distributed, embedded or real time systems
[21].

Our first objective is to combine these two approaches —
generic and specific component models — in order to
propose a metamodel that overcome some of drawbacks

and take advantage of each approach. In other terms, we
propose a common representation of generic and specific
component models taking into account domain specific
concerns at the design level.

Model-Driven Engineering (MDE) [5] is also another
approach emerging in system development. The use of
models has become a major paradigm in software
engineering. Its use represents a significant advance in
terms of level of abstraction, continuity, generality, and
scalability. MDE is a form of generative engineering, in
which all or a part of an application is generated from
models. It looks promising since it offers tools to deal with
the development of complex systems improving their
quality and reducing their development cycles. The
development is based on metamodeling, development
process and execution platforms.

In this paper, we deal with these two technologies -
CBSE and MDE - to propose a model-based component
framework to get a common representation of component
for several domains. The main motivation of this work is
that the reuse of knowledge and expertise at high level is
fundamental to guarantee quality systems. The architecture
of the proposed component modeling framework is
composed of: (i) a Component Metamodel inspired from
the popular CBSE principles and (ii) two model levels:
domain independent and domain specific.Inspired by the
MDE methodology in which software is developed by
constructing high level models, we propose a generic
component metamodel - to capture generic concepts of
CBSE approach — and then separate domain independent
aspects of component model from those that are domain
specific.

After this introduction, the remainder of this article is
organized as follows: in Section I, we present an overview
and related works of component approach and domain
approach by reviewing the basic component model
concepts. Section III introduces the structure of the
proposed solution. After that, in Section IV, the proposed
metamodel is presented. An illustration of the approach is
presented in Section V through CCM component model.
Finally, the main achievements and future intentions are
summarized in the concluding Section V1.

II. RELATED WORKS

In this section we will focus on component approaches
presenting a short overview of the main general- purpose
component models and models targeting special domains.

A. Component Approaches

In last decades, several definitions of component have
been proposed, in this work we will adopt one of the most
commonly definition proposed by Szyperski in 2002 [12],
“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to third-party composition.”

In this sub-section, we present a review of the
component models - industrial as well as academic -studied
in this work. Among works that discuss a general-purpose
component-based systems-building technology, we take as
component technologies reference CCM, Fractal, Sofa 2.0,
EJB and UML 2.0 [13]. Abstract models defined by these
technologies are used to define an application in the form
of components that provide a number of services
(interfaces) and explaining their dependencies with their
environment.

Enterprise Java Beans (EJB) [6] developed by Sun
MicroSystems envision the construction of object-oriented
and distributed business applications. It is a software
component model for developing and deploying computing
applications that are scalable, transactional, and multi-user
secure. The model simplifies the development of
middleware by providing server support for services such
as transactions, security, database connectivity, and
component customization [24]. It is one of the most used
technologies in component-based system implementation.

Each component, in OMG CORBA Component Model
(CCM) [9] is defined by its attributes and ports. Attributes
are used for configuration and ports represent the interfaces
through which customers and other environmental elements
of an application can interact. This model component
supports four types of ports — (1) a facet (provided
interface), (2) a receptacle (required interface), (3) an event
source (emits events) and an event sink (receives events) -
and (4) attributes.

Fractal [10] component model is defined by France
Telecom R&D and INRIA. Fractal is a general purpose
component model. It uses a hierarchical component model
without connectors. Fractal component is formed of content
and a membrane. The content consists of a finite number of
components called sub-components. The membrane
consists of functional interfaces corresponding to the
functionality provided or required and control interfaces
corresponding to non-functional aspects. The interfaces of a
membrane may be internal or external. The external
interfaces are accessible from outside the component, while
the internal interfaces are only accessible to its sub-
components. Binding in the Fractal model is what allows
Fractal components to communicate. Composition is
possible through the notion of composite component-a

component that contains sub-components-. However, a
primitive component contains no sub-component.

In the SOFA 2.0 components model [17], a component
can be primitive (does not contain any sub-component) or
composite (contains sub-components). All features are
defined in the primitive components. A component is
described by its frame and architecture. The frame is a view
"black box" component. It defines the interfaces provided
and required, and eventually declares properties for
component's parameterization. The architecture reflects a
view "gray box" component. It defines the first level of
nesting in a hierarchy of components. The components are
connected by connectors. In the SOFA model, the
connectors are entities such as components. Each connector
is described in the same way that a component, i.e. by a
frame and architecture.

On the other hand, UML [13] provides a unified
notation for modeling and a standard supported by several
software engineering tools. In its 2.0 specification [11]
(adopted by OMG), UML standard provides the necessary
elements to describe both abstract architectures and
implementations based components. However, UML is a
modeling language for general purpose. Therefore, there is
a multitude of concepts in the meta-model which make it
quite complex. The component model of UML 2.0 [11]
offers various concepts to describe the components:
Component, Interface, Port and Connector.

A synthesis of the architectural elements supported by
the models discussed above is illustrated in Fig.1, i.e., for
each approach we give principle concepts.

Rinding Fract; Interface Sofa actal, EJB
pelegation Canncetor UML 2.8 Part UML 2.0, CCM
Delegetingisubsuming connector Sofa 2.8 Part UML2.0

Sub C t Sofa2.0
Cnmpanenrc ub Componen

Component A Hompnnent B

Connection CCM
Binding Fracts, Sea 2.0
Assemialy Connecter UML 2.0

JavaBean EJB

Composite Component Fracm

Primitive Component Fractall

Fig. 1. A synthesis of the concepts supported by component models
(CCM, SOFA 2.0, Fractal, and EJB) and UML 2.0

In the other hand, we can find some works that try to
propose a generic component metamodel. OpenCom, [14]
for instance, propose a generic component-based approach
for the construction of systems software. Authors assume
that a general-purpose systems-building technology should
provide only generic and fundamental functionality that is
independent of the specialist needs of any particular target
domain. They try to address the following requirements: (1)
Target domain independence and (2) Deployment
environment independence.

A generic component model (GCM) is proposed in the
MARTE [15] (Modeling and Analysis of real-time and
embedded systems) profile specification proposed by the
OMG (Object Management Group). It aims to add
capabilities to UML for the model driven development of
real-time and embedded systems.

A French national project, Flex-eWare [16], targets the
building of a common platform for component based
design of embedded systems. FCM is a meta-model
inspired from UML, Fractal and CCM. the aim of this FCM
metamodel is to unify the underlying component models
concepts. A first key objective of Flex-eWare is to federate
the two Lightweight CCM and Fractal models.

One of the major limitations of presented Generic
Component Models cited above like OpenCom and FCM is
that these models do not take into account domain specific
concerns at the design level like real time or distributed
requirements. Therefore, we propose a Generic Component
Metamodel aiming to reflect generic and specific domain
concepts.

B. Domain Approaches

There are various definitions for domain in the context
of component engineering. In this work, we adopted the
definition proposed by Crnkovic in 2011 [5]. In which a
domain is presented as an area in which application and
business domains component models are used or supposed
to be used. It indicates the specialization, or the generality
of component models.”

Authors propose a classification of the component
models in three major classes: (1) A general-purpose
component models, (2) A specialized component models
and (3) A generative component models. In this work we
will focus in both first classes.

In the previous sub-section, we considered general
purpose component models like CCM and EJB. In this
sub-section, we will present some specialized component
models like AUTOSAR [11], BIP [8], BlueArX, COMDES
11, and KOALA [7]. The main characteristic of such models
is the integration of requirements from the application
domain into the component model.

Recently, various proposals dealing with the adaptation
of CBSE to several domains have been proposed. In the
industrial field, and to integrate real-time requirements,
some companies have developed their own solutions,
adapted to their corresponding domains (e.g. Railways,
Automotive, etc). Volvo is one of these industrial
companies which use Koala, developed by Philips, and
Rubus proposed by Lundbéck ez al. [20].

Koala [7] is a component model for embedded devices
developed by Philips. Koala is inspired from the COM [32]
model and Darwin component models [28]. It’s goals are to
manage increasing complexity and diversity of software
used mostly in consumer electronics. Koala basic elements
are components defining set of provided and required
interfaces. The component model supports hierarchical
components (called compound components).

In the automotive domain, the AUTOSAR
(AUTomotive Open System AR-chitecture) consortium
[11] is the first large-scaled initiative to gather
manufacturers, suppliers and tool developers from the
automotive field to establish open and standardized
software architecture for the automotive domain enabling
component-based software design modeling. Through this
common standard, the vision of AUTOSAR is to facilitate
the exchange of solutions (including software components)

between different vehicle platforms and subsystem
manufacturers as well as between vehicle product lines. In
that sense, AUTOSAR targets the upper part of the
granularity scale of the proposed conceptual component
model.

General purpose component models - presented in the
previous sub-section - can be adopted for particular
domains as embedded, distributed systems or real time
systems- by addition of new features and functionalities.

Sofa HI [19] is an extension of SOFA 2.0 component
model targeted at high-integrity real-time embedded
systems. However, key features of SOFA HI remain
compatible with SOFA 2.0. The goal of SOFA HI is to
bring the knowledge of component systems gained from
SOFA and SOFA 2.0 development into the real-time
environment to speed up the development and lower the
costs of high-integrity systems.

The ARINC Component Model (ACM) [22] is a
component model for Hard Real Time Systems. It is an
extension of the CORBA Component Model (CCM) for
real time. ACM is steps towards a hard real-time
component model based on CCM that provides the
essential component abstraction and ARINC [18] to
provide the platform (API).

SaveComp (SaveComp component model) [23] is a
domain specific component model targeting safety-
critical ~ hard real-time embedded systems, developed at
Mailardalen University. It being developed in the project
SAVE (Component Based Design of Safety Critical
Vehicular Systems). It is designed for embedded control
applications in the automotive domain with the main
objective of providing predictable vehicular systems.
SaveCCM is a simple model that constrains the flexibility
of the system in order to improve the analysability of the
dependability and of the real-time properties [5].

The Lightweight CORBA Component Model [25]
(LwCCM) is an OMG specification standardizes the
development, configuration, and deployment of
component-based applications. LWCCM uses CORBA’s
distributed object computing model as its underlying
architecture, so applications are not tied to any particular
language or platform for their implementations.
Components in LwCCM are the implementation entities
that export a set of interfaces usable by conventional
middleware clients as well as other components.
Components can also express their intent to collaborate
with other components by defining ports- facets,
receptacles and event sources/sinks — [26].

Based on the state of the art presented above, we can
say that the difficulty became to define a sufficiently rich
and generic metamodel providing abstraction and
generality of chosen component models integrating domain
independent and domain specific levels.

11 OVERVIEW OF THE APPROACH

Taking into account related works presented bellow, the
key idea presented in this work is to propose a common
representation to target several domains of systems
applications (e.g. distributed, embedded, real time, etc.).
This representation allows us to work at a higher

abstraction level, which may significantly reduce the cost
of system engineering. Our goal is to define the component
based systems as easily and quickly as possible. To do this,
the modeling framework must include simple and known
abstractions by the software developer. Our proposed
architecture is based on models, which specify different
levels of abstraction, helping developers to manage the
inherent complexity of applications and facilitating the
communication between the different contributors of
software development. Fig. 2 presents an overview of the
proposed architecture based on different models:

Generic Component Meta-Model (GeCM). In This level
-Metamodel level (M2) — we present a generic component
metamodel that represents as its name suggests the abstract
concepts of component based approach proposed by a large
set of component models to describe software architectures.
It provides the basic modeling elements for component
based system: Component, Connector, Interface, Ports, etc.
These elements are the basis for instantiating different
component model. This metamodel is detailed in section 4.
GeCM will be used to describe both domain-independent
and domain specific models.

Domain Independent Component Model (DICM). This
model is an instance of the GeCM. This level is intended to
generically represent component independently from the
application domain. Hence, we will focus on the
representation of generic component concepts, interaction
and connection between component conforming to the
component metamodel (GeCM). Here we focus on
component models presented in the sub-section 2.1. A
DICM model is conform to the GeCM Meta-model.
Therefore each element of DICM is associated with an
element of GeCM.

Domain Specific Component Model (DSCM). This
model corresponds to a refinement of the DICM model. It
combines component specification presented in DICM and
the domain specification such real-time constraints. This
model is, at the same time, an instantiation of the Generic
Component model (GeCM) and a refinement of DICM. In
this stage the DICM is tailored to a particular application
domain e.g. real time embedded or distributed system. For
example we can build from the Fractal model (DICM)
several specific component models (DSCM) like Fractal
distributed, Fractal real-time or Fractal embedded
component models.

2 : Generic Component Metamodel

=imz2: (GeMCA)

2 $

=
: sorazo |rFmcm | cem | ess [T

_ M1

=3 :

= : <<Refne=>

= :
§ Domain Specifc Companent Model g
: (DSCM) :
Foorom® | Embeacedsysiem | Cotieares

Fig. 2. Overview of the proposed Architecture

IV. GeCM: A Generic Component
Metamodel

Based on our study of selected component models as
shown in section II, we propose GeCM. In this work, we
try to merge 1/ The component technologies: Enterprise
JavaBeans (EJB) from Sun Microsystem, 2/ The CCM
(CORBA Component Model) of the OMG, 3/ The Fractal
hierarchical component model of the ObjectWeb
consortium, 4/ The part of the UML 2.0 metamodel
concerned with the components and 5/ The SOFA 2.0
components model. GeCM provides a component model
state-of-the-art offering most features available in the
domain of component-oriented software architectures.

GeCM describes concepts and their relations needed to
represent component systems. The GeCM is based on
CBSE principles, containing the basic entities Component,
Interfaces and Connector. Fig. 3 presents the proposed
meta-model. It defines the abstractions of component
based concepts. These components will be used to describe
both Domain-Independent (DI) and Domain-Specific (DS)
models i.e., the originality is the use of the domain
independent model and the domain specific model which
are reflected in the metamodel level. In the proposed
metamodel, a system is described by a set of components
that represents the units of computation and data. The
communication mode and coordination between these
components is encapsulated in connectors. GeCM
metamodel separates the computation concept represented
by components and the interaction concept presented by
connectors.

As shown in Fig.3 the generic metamodel defines the
abstractions of component based concepts and allows the
design of generic component based applications.

In GeCM component concepts are defined as follows:

ArchitecturalElement. Is an abstract class. This class is
associated to itself, using a reflexive association “Refine”.
That’s mean that a class’s instance refine another instance
of the class. In other word, a domain specific architectural
element “Refine” a domain independent architectural
element.

Component. s a first class architectural element in a
system. It can be primitive or composite (derived from
existing components) and possesses one or more attributes.
Component communicates with its environment through an
interface with multiple ports. Those ports can be required
or provided one or more point of interaction. It can be
independently deployed and composed. Primitive
component as well as Composite Component can be
domain independent or domain specific. We note domain
independent component as DI _Composite/primitive
Component. A DS Component Refine a DI Component.

Interface. Component interacts with its environment
with Interfaces which are composed of operations. So,
larger pieces of a systems functionality may be assembled
by reusing components as parts in an encompassing
component or assembly of components, and wiring together

their required and provided interfaces. More precisely, a
component owns provided and required interfaces. A
provided interface is implemented by the component and
highlights the services exposed to the environment. A
required interface corresponds to services needed by the
component to work properly. There are two types of
interface: the operation and the port.

Achitecturalfement [1 DS architecturalElement
Refine

A [1]DI_ar(hltE(tuva\Hement Connectormplementatio

Properties

Constrints Componentthod

01 AssemblyConnector

1

Atrbutes

f—

DS AssemblyConnector

Component LA Inteface 1) [1] | Connector
—1

3 miawd] T |

| || v

e — DelegationConnector] | AssemblyComnector
CompositeComponent Pot Operaton

DI DelegationConnector

Dl Opertion 05 DelegationConnector

01 Attribue:

il

PrimitiveCompanent|

-

D1 CompositeComponent|

D1 PrimitiveComponent|

05 Pott 03 Operation

DS CompositeComponent

DS PrimitiveComponent]

Fig. 3. GeCM: A Generic Component Metamodel

Port. Is a point of interaction that expresses a potential
collaboration between two components. A port can be
domain independent or domain specific. A DS Port refine
a DI Port.

Operation. The other type of interface is operation. We
define domain independent operation which is refined by a
domain specific operation.

Connector. Is a first class architectural element that
reflects the specific features of interactions among
components in a system. It allows the interaction of the
component with it’s environment. They provide the link
between architectural elements. We distinguish two types
of connectors:

Assembly connector. Is used for construction links (to
connect interfaces of different types). A domain specific
assembly connector refines domain independent assembly
connector.

Delegation connector. Is used to link a port of the
composite component to a port of a component located
within a composite component (to connect interfaces of
same type). A domain independent delegation connector
can be refined by a domain specific delegation connector.

Constraints. Define certain rules that should be
respected in order to ensure adherence of architectural
element’s use.

Properties. Represent additional information about
component.

In addition to these classes and associations, relations
can be more precisely defined by adding constraints. These
constraints are typically expressed in OCL (Object
Constraint Language) language [27]. The set of instances of
the proposed GeCM meta-model can be restricted by
additional OCL constraints. A set of constraints are also
defined using the Object Constraint Language (OCL).
Because a lack of space we will not present OCL
constraints in this paper.

V. [llustration of the approach

To illustrate the approach, CORBA Component Model
(CCM) is presented as a Domain Independent Component
Model, (DICM) and as an instance of the proposed
component metamodel (GeCM). This component model
can be specialized for several domains as real Time,
embedded or distributed domain.

As shown in Fig. 2, at DSCM level (domain specific
level) one or several models can be built according to the
architecture described at the above level (DICM). Each
architectural element of the domain specific level is a
refinement of an element of the DICM. For example we
can build from the CCM model (DICM), the CCM real-
time component model as a domain specific model. We
present in this illustration an example of the ARINC
Component Model (ACM) which represents the refinement
ofthe CCM component model to the real-time domain.

C. CORBA Component Model

In this section, we illustrate our proposal using CORBA
Component Model (CCM) as DICM and the ARINC
Component Model (ACM) as DSCM.

1) CCM as an example of DICM

This level is intended to generically represent
component independently from the application domain.
Among existing component technologies, we studied the
OMG CORBA Component Model (CCM). Figure 4
illustrates these concepts and shows an example of how
CCM is instantiated from GeCM. As presented in Fig 4, we
can conclude that each CCM notation is an instance of
GeCM notations. For example a component is an instance
of DI PrimitiveComponent, also, port and event are
instances of DI_Port. However Connection is an instance of
DI AssemblyConnector. In CORBA Component Model
specification, a component can be derived from existing
components (composite component). A CORBA
component defines a set of ports. A component may declare
a set of attributes. Attributes can be used to configure an
instance of a CORBA component as a name, a type and a
value. An interface is characterized by a set of operations.
Connector links are provided to a used port through
interfaces. External interfaces are a required or provided
interfaces (facets or receptacles) used in component
assembly. Facets are provided interfaces that define the
services provided by the component to other components.

Receptacles correspond to the interfaces required by a
component to function in a given environment.

(GeCM) <= instancedf
Dl Pott !

: (GeCM)

| DI Primitive Companent (GeCM)
I

I

DI Attributes
Event A

I
m;tan(eOf: N

(GeCM) (GeCM)
01 Compozite Component| | DI AszemblyConnector] A

R

! instanceOf

un m

|
| I |
! | | I

instanceOf } instanceOf ! | |
| | |emitted | publihed ! !
| | |
| I
|

instanceOf

S

] 1]

L Part Component

L
ComponentAssembly| Connection i

M

|
I
|
I
:
I
I
’[1] w provided il m o
used (] Tt

Blj 1 |
(GeCM). - Interface il
DI Operation < ------1 Operaton n n Atribute

instanceOf

il

Fig. 4. . Instantiating the CCM meta-model from GeCM

2) ACM: an example of CCM refinement

This level is a refinement of the DICM, where the
specific characteristics and dependencies of the application
domain are considered. Again, DSCM is based on the
GeCM constructs, in other word DSCM is an instance of
GeCM. Different DSCM would refine DICM for each of
those target application domains. We choose to illustrate
our example using ACM component model as a refinement
of CCM component model for real time domain. As shown
in Figure 5, The CCM component model is refined into
different concepts as described in [22]:

ComponentTrigger. A number of internal methods
within a component. Typically, they are used for record
keeping and invariant checking of the component. These
methods are further qualified by filling in attributes such as
period, deadline and invariant.

ComponentHealthManager. 1t detects anomalies,
identify and isolate the fault causes of those anomalies (if
feasible), prognosticate future fault and mitigate effects of
faults- on the level of individual components.

State Variable. They are similar to attributes in CCM
but cannot be modified from outside component.

Parameters. They are configuration attributes which
once set during initialization remain constant during the life
cycle of that component

Method. All the ports - publisher, consumer, facet, and
receptacle - have to finish their unit of work within a
specified deadline. This deadline can be qualified as

HARD (strict) or SOFT (relatively lenient). A HARD
deadline violation is an error that requires intervention from
the underlying middleware. A SOFT deadline violation
results in a warning. The soft deadline warning is sent to
the component health manager. Other methods like Post-
Condition define the contract to be satisfied at the end of
the execution, Pre-condition, CallType and Read-only.

ComponentMethod| (GeCM) (CCM)
DS PrimitiveComponen{ | Component
(GeCM)
InterfaceMethod (CcM A /‘\ arefines
Interface : Instance0f InstanceOf |
T ! 1 areines
|
f ComponentTrigger
In:tanczOf: +Deadline: EDouble [1] ComponentHelthManager
sefnes + DeadineType; DeadlineTypeEnum [1
' +Invarant; Sting [1]
+ReadOnly: Boolean [1]
Method +Peiod Doube 1]
+ CallType: EEnum 1]
+ Dedline: EDouble (1]
+ DediineType: DeadlineTypeEnum 1] Enumerations
+ re Conditon Sing 1] Ds‘f\;”:)t ey DeadineTypeEnuny
+Post_Condition: String 1] e Astribute Hard
+ReadOnly: Boolean [1] 7 SOFT
Instance0,” hpstamof %ne»
. p—— «Enumeration»
arameter
Statelariable GallypeEnum
OneWay
Two Way
arefines

Fig. 5. ACM as an example of a DSCM from CCM

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an overview of
concepts -of several component based approaches among
academic and industrial fields - to build common
representation of component models for several domains.

In this way this work gives several ways to go towards
universal concepts to model components systems. Among
these concepts, we can cite the followings: (1) high level
of abstraction to capture all the facets of a component
assembly, (2) The domain independent design and (3)
The domain specific design.

We have proposed a novel approach to deal with
domain concepts in architectural level of component
application. We introduce domain concepts in model level
by deriving two models (DICM and DSCM) from the
proposed component metamodel. In other words, the
proposed generic component metamodel (GeCM) reflects
the domain independent and the domain specific levels.
Domain specific elements must not be considered as an
isolated aspect, but as an aspect present in all stages of a
system development.

We are currently working on several domains like
distributed and embedded domains to extend existing
component models. We are interesting in Fractal
refinement for real time and embedded systems. We are
also developing tools supporting the proposed approach.

The next step is to propose a flexible component meta-
model allowing both to capture and to specify interactions
via models from different domains. We believe that the
specification of interaction mechanisms using interaction
pattern [29] are suitable to build more flexible and reusable
software component system. Our goal is to embed these
patterns in UML models in the form of profiles [30], i.e. we
aim at applying interaction semantics into models through
UML profiles using an MDE process (see Fig. 6). An initial
work has been done in our team [31].

Metamodel

Model

Cinotan oo

Cinstancetd

Domain Independant
Component Model

.| Dicm | .

o a
Reafinen

X -

Domalri Specific -
Component Model Ve Ay i Ao

DSCM Profiles

Fig. 6. Overview of Interaction Patterns integration

(2]
(3]

(4]

(5]

(6]

(7

(91

[10]

(1]

[12]

[13]

[14]

VIL REFERENCES

Heinz W. Schmidt, Ivica Crnkovic, George T. Heineman, and
Judith A.editors. Component-Based Software Engineering,
10th International Symposium, CBSE 2007, Medford, MA,
USA, July 9-11, 2007, Proceedings, volume 4608 of Lecture
Notes in Computer Science. Springer, 2007.

A. W. Brown and K. C. Wallnau. The current state of CBSE.
IEEE Software, 15(5):37-46, 1998.

C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley / ACM Press, Wesley, New
York, 2002.

D. Schmidt. Model-driven engineering. in IEEE computer,
39(2):41-47, 2006.

Ivica Crnkovic, Séverine Sentilles, Aneta Vulgarakis, Michel
R. V. Chaudron: A Classification Framework for Software
Component Models. IEEE Trans. Software Eng. 37(5): 593-
615(2011)

DeMichiel, L.G. (ed.): Enterprise JavaBeans Specification,
Version 2.1. Sun Microsystems, Inc., 4150 Network Circle,
Santa Clara, California 95054, U.S.A, November 12 (2003)

R. van Ommering, F. van der Linden, J. Kramer, and J. Magee.
The Koala Component Model for Consumer Electronics
Software. Computer, 33(3):78-85, 2000.

Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling
heterogeneous realtime components in BIP. In Proc. of the 4th

IEEE International Conference on Software Engineering and
Formal Methods, pages 3—12. IEEE, 2006.

OMG, CORBA Component model,
http://www.omg.or g/technology/documents/ formal/component
s.htm

E. Bruneton, T. Coupaye, and J.B. Stefani. The fractal
component model, 2004. Version 2.0-3.

AUTOSAR Development Partnership, AUTOSAR -
Technical Overview v2.0.1, 27/06/2006, Available at

http://www.autosar.org/download/AUTOSAR_TechnicalOverv
iew.pdf

C. Szyperski, Component Software, Addison-Wesley
Professional; 2002

The Object Management Group, UML Superstructure
Speci fication v2.1, April 2006,

http://www.omg.or g/docs/ptc/06-04-02.pdf

G. Paul T. Francois J. Ackbar L. Kevin C. Geoll, B.
Gordon, U. Jo, and S. Thirunavukkarasu. A generic

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]
[33]

component model for building systems software. ACM Trans.
Comput. Syst., 26:1:1-1:42, March 2008.

OMG. A uml profile for marte: Modeling and analysis of real-
time embedded systems,beta 2.
http://www.omgmarte.or g/Documents/Specifications/08-06-
09.pdf, June 2008.

http://www.flex-eware.or g/

T. Bure's, P. Hnetynka, and F. Pl'a’sil. SOFA 2.0 :

Balancing Advanced Features in a Hierarchical Component
Model. In Proc. of SERA, 2006.

N.Diniz and J. Rufino. ARINC 653 in space. In data systems in
Aerospace. European Space Agency, May 2005.

Prochazka, M., Ward, R., Tuma, P., Hnetynka, P., Adamek, J.:
A Component-Oriented Framework for Spacecraft On-Board
Software. In: Proceedings of DASIA 2008, DAta Systems In
Aerospace, Palma de Mallorca (May 2009)

Lundbéck K-L., Lundbéack J., Lindberg M.: Component based
development of dependable real-time applications Arcticus
System.

K. Balasubramanian, N. Wang, and D. C. Schmidt. Towards
composable distributed real-time and embedded software,
IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, 0:226, 2003.

Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan.
2011. A component model for hard real-time systems: CCM
with ARINC-653. Softw. Pract. Exper. 41, 12 (November
2011), 1517-1550.

H. Hansson, M. Akerholm, I. Crnkovic & M. Toérngren,
"SaveCCM: a component model for safety-critical real-time
systems", EuroMicro Conference, Special Session Component
Models for DependableSystems, Rennes, France, Sept. 2004.

Yi Liu. 2003. Tutorial on the enterprise Javabeans (EJB)
component model. J. Comput. Small Coll. 18, 6 (June 2003),
110-111.

Object Management Group. Lightweight CORBA Component
Model RFP, realtime/02-11-27 edition, Nov. 2002.

William R. Otte, Aniruddha Gokhale, Douglas C. Schmidt,
Johnny Willemsen, “Infrastructure for component-based DDS
application development”, Proceedings of the 10th ACM
international conference on Generative programming and
component engineering, Pages: 53-62, October 2011.

Object Management Group (OMG). OCL 2.0 Specification.
http://www.omg.org/spec/OCL/2.2/, June 2005 Magee, J.,

Dulay, N., Eisenbach, S., and Kramer, J. Specifying distributed
software architectures. In Proceedings of the Fifth European
Software Engineering Conference, ESEC'95, September 1995.

C. Alexander. A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, USA., 1977.

UML Superstructure 2.0 Draft Adpted Specification,
http://www.omg.org/technology/ documents, 2004.

Rahma Bouaziz, Brahim Hamid, and Nicolas Desnos,
“Towards a better integration of patterns in secure component-
based systems design”. In Proceedings of the 2011
international conference on Computational science and Its
applications, (ICCSA'11) Vol. Part V. Springer-Verlag, Berlin,
Heidelberg, page 607-621, 2011

D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.
Petr HoSek, Pop T., Malohlava M., Hnétynka P., Bure§ T.:
Supporting real-time features in a hierarchical component
system, Tech. Report No. 2010/5, Dep. of Distributed and

Dependable Systems, Charles University in Prague, December
2010.

