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Introduction

The length of pregnancy is defined as the time between the spontaneous fertilization of the oocyte and spontaneous delivery following labor. However, despite the simplicity of the definition, the estimation of the physiological length of pregnancy is a challenging problem since both the time origin and the time of onset of labor are only partly observed. Several events may occur during pregnancy and interfere with its physiological course prior to spontaneous labor, such as medical induction of labor or cesarean section, intrauterine fetal death or any fetal or maternal medical condition that leads to delivery before its "physiological" time.

Using time-to-event terminology, the time to spontaneous labor is therefore randomly rightcensored. Right-censored data, in its standard presentation, involves independent observations ((X j ∧ C j ), 1 X j ≤C j ) for j = 1, . . . , n where the variable X denotes the true time between the origin and the occurrence of the event of interest and the variable C denotes the true time between the origin and the occurrence of censoring. We classically assume that X and C are independent.

As stated above, the time of fertilization (the time origin) is ill-observed and can never be directly measured, except in the very special case of in vitro fertilization, which we do not consider here, as this case cannot be considered as physiological. In practice, in spontaneous pregnancies, the time of onset of pregnancy is predicted either from the last menstrual period, by simply adding 14 days or, better, by the sonographic measurement of the length of the embryo in the first trimester.

Because it is not directly observed and estimated from biological data, the time of fertilization is known up to an error, the magnitude of which is of several days, regardless of the method.

In this paper, we consider the problem of censored data prone to measurement error. As the time origin of pregnancy is known up to an additive (random) error, both variables X (time between the true onset and the natural childbirth) and C (time between the true onset and any censoring event) are observed up to this additive error.

Let us define the model more precisely. Let ε denote the random error variable assumed to be independent of X and C. We assume that the observations are properly classified as censored or uncensored and that both the censored and uncensored observations are measured with error:

Y j = (X j ∧ C j ) + ε j = (X j + ε j ) ∧ (C j + ε j ), j = 1, . . . , n (1) δ j = 1 X j ≤C j ,
Note that the censoring indicator δ j is unchanged by the measurement error: 1 X j ≤C j = 1 X j +ε j ≤C j +ε j . The purpose of this work is to provide a nonparametric estimator of the hazard function h X of X, based on the observations (Y j , δ j ).

Nonparametric methods have been proposed in the frameworks of both censored data and deconvolution. Regarding censoring, [START_REF] Antoniadis | Density and hazard rate estimation for right-censored data by using wavelet methods[END_REF] consider a wavelet hazard estimator which is not adaptive, whereas [START_REF] Li | On the minimax optimality of wavelet estimators with censored data[END_REF][START_REF] Li | On the block thresholding wavelet estimators with censored data[END_REF] suggests estimators based on wavelet with hard or block thresholding. Estimators based on model selection via penalization have also been proposed: [START_REF] Dohler | Adaptive estimation of hazard functions[END_REF] estimate the log-hazard function using a penalized likelihood-based criterion, Brunel andComte [2005, 2008] consider penalized contrast estimators for both the density and the hazard rate using either the Nelson-Aalen estimator of the cumulative hazard function or the Kaplan-Meier cumulative hazard estimator, [START_REF] Reynaud | Penalized projection estimators of the Aalen multiplicative intensity[END_REF] proposes a penalized projection estimator of the Aalen multiplicative intensity process with adaptive results and minimax rates and [START_REF] Akakpo | Histogram selection for possibly censored data[END_REF] consider a histogram selection for both density and hazard rate estimation.

We can also consider our estimation problem in the setting of deconvolution. Deconvolution has been widely studied in various contexts. We hereby restrain to references with a known density of the noise. Kernel estimators have been proposed by [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], with bandwidth selection strategies [START_REF] Delaigle | Bootstrap bandwidth selection in kernel density estimation from a contaminated sample[END_REF]. Wavelet estimators [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]Vidakovic, 1999, Fan and[START_REF] Fan | Wavelet deconvolution. Information Theory[END_REF], and projection methods with model selection [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF] have also been developed. A pointwise estimation method for S X has been proposed by [START_REF] Dattner | On deconvolution of distribution functions[END_REF] when the data are noisy but not censored. In this work, we estimate the hazard rate h X based on the ratio of deconvolution estimators, using the developments of [START_REF] Dattner | On deconvolution of distribution functions[END_REF] in the setting of distribution functions (with no censoring) for the denominator.

The paper is organized as follows: Section 2 studies a quotient estimator of the hazard rate h X . The estimator is illustrated with a simulation study in Section 3 and is compared to results obtained when neither measurement error nor censoring are considered. The motivating application of estimation of length of pregnancy is illustrated by an analysis of real data in Section 4. In Section 5, we discuss the alternative problem where the noise affects only the variable X, a problem that remains open. Proofs are gathered in Appendix.

Notations. We denote f U the density of a variable U . We denote S U (t) = P(U ≥ t) the survival function at point t of a random variable U , h U (t) = f U (t)/S U (t) the hazard ratio at point t and f * U the characteristic function. We denote g * (t) = e itx g(x)dx the Fourier transform of any integrable function g. For a function g : R → R, we denote g 2 = R g 2 (x)dx the L 2 norm. For two integrable and square-integrable functions g and h, we denote g h the convolution product g h(x) = g(x -u)h(u)du. For two real numbers a and b, we denote a ∧ b = min(a, b).

Censored data and measurement noise

2.1. Setting. We observe for j = 1, . . . , n

Y j = (X j ∧ C j ) + ε j , δ j = 1 X j ≤C j .
We assume that the law of the noise is known and that its characteristic function is such that

∀u ∈ R, f * ε (u) = 0.
The following assumption, which is verified by exponential or Gamma distributions for example, will be considered fulfilled throughout this section: Assumption (A1) We assume both X and C to be nonnegative random variables. We also assume E(X) < +∞ and E(C) < +∞.

In this section, we want to estimate the hazard rate h X of X. This hazard rate may be expressed as the following nonstandard quotient, where S X is the survival function:

h X = f X S X = f X S C S X S C = f X S C S X∧C .
The idea is to estimate separately the numerator f X S C and the denominator S X∧C .

2.2. Construction of the estimator for the numerator. It is rather easy to get an estimator of the numerator f X S C , and more precisely of its projection on the space

(2)

S m := {t ∈ L 2 (R), supp(t * ) ⊂ [-πm, πm]}.
For a square-integrable function g, let us denote g m its orthogonal projection on S m , such that g * m (x) = g * (x)1 |x|≤πm . Then (f X S C ) m is estimated by the following deconvolution estimator:

(

3) (f X S C ) m (x) = 1 2πn n j=1 πm -πm e -iux δ j e iuY j f * ε (u) du. Indeed E(δ 1 e iuY 1 ) = E(1 X 1 ≤C 1 e iu(X 1 ∧C 1 ) e iuε 1 ) = E(1 X 1 ≤C 1 e iuX 1 )f * ε (u) = E(S C (X 1 )e iuX 1 )f * ε (u) = (f X S C ) * (u)f * ε (u). Therefore E( (f X S C ) m (x)) = 1 2π πm -πm e -iux (f X S C ) * (u)du := (f X S C ) m (x).
Under integrability conditions, (f X S C ) m (x) tends to f X S C (x) when m tends to infinity by the Fourier inverse formula. Then the risk bound of (f X S C ) m can easily be deduced from [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF]:

E( (f X S C ) m -(f X S C ) 2 ) ≤ f X S C -(f X S C ) m 2 + E(δ 1 ) 2π πm -πm du |f * ε (u)| 2 where the bias term f X S C -(f X S C ) m 2 = 1 2π |u|≥πm |(f X S C ) * (u)| 2 du
is decreasing with m while the variance term, (2π

) -1 E(δ 1 ) πm -πm du/|f * ε (u)| 2
, obviously increases. As a consequence, we wish to choose m so that a good compromise is reached. This is done by estimating each term. The variance is estimated by a quantity pen 1 (m) proportional to the bound on the variance. Since

f X S C -(f X S C ) m 2 = f X S C 2 -(f X S C ) m 2
, the bias term can be replaced by -(f X S C ) m 2 in the search for an optimal m, as it amounts to omit a term which does not depend on m. Therefore, this term is estimated by -(f X S C ) m 2 . This explains why we select m1 as follows.

(4) m1 = arg min

m∈{1,...,m n,1 } (-(f X S C ) m 2 + pen 1 (m)),
where m n,1 is such that m n,1 ≤ n and

(5) pen

1 (m) = κ 1 n 1 n n k=1 δ k log(J 1 (m))J 1 (m), with J 1 (m) = 1 2π πm -πm du |f * ε (u)| 2 .
In pen 1 (m), the constant κ 1 is calibrated from preliminary simulations.

Following [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF], applying Talagrand's Inequality,

E( (f X S C ) m1 -f X S C 2 ) ≤ C inf m∈{1,...,m n,1 } (f X S C ) m -f X S C 2 + pen 1 (m) + C n
for C and C two constants which do not depend on n. In other words, the estimator (f X S C ) m1 realizes the adequate squared-bias/variance trade off, up to the multiplicative factor C and the negligible residual term C /n.

2.3.

Construction of the estimator for the denominator. We now wish to estimate the denominator S X∧C = S X S C . Note that under assumption (A1), the survival functions are squareintegrable over R + (thus over R if they are extended by 0), as opposed to cumulative distribution functions. This is true, for example, for exponential distributions, classically used in survival analysis: the associated survival functions are clearly square integrable. We define for x ≥ 0, the following estimator of S X∧C , as proposed by [START_REF] Dattner | On deconvolution of distribution functions[END_REF]:

(6) (S X∧C ) m (x) = 1 2 + 1 πn n j=1 Re πm 0 1 iu e iu(Y j -x) f * ε (u) du.
While only the pointwise risk of this estimator is studied in [START_REF] Dattner | On deconvolution of distribution functions[END_REF], we want hereby to compute the integrated L 2 -risk of (S X∧C ) m . It is not trivial from (6) why this integrated risk is properly defined. Therefore, before proceeding to the study of the integrated risk we consider an alternate expression of (S X∧C ) m using (1/π) +∞ 0 sin(v)/vdv = 1/2, as follows: 7) is not mandatory because the integral is real, given the symmetry of the domain and the properties of the function under integration.

(S X∧C ) m (x) = Re   1 2πn n j=1 πm -πm e -iux iu e iuY j f * ε (u) -1 du   + ψ m (x) (7) with ψ m (x) = - 1 2iπ |u|≥πm e -iux u du = 1 π +∞ πm sin(ux) u du. Note that ψ * m (u) = -1/(iu)1 |u|≥πm . This implies by Parseval formula that +∞ 0 |ψ m (x)| 2 dx = (1/2π 2 )m -1 . Moreover, the real part Re(•) in formula (
Then, in order to compute the integrated L 2 -risk of (S X∧C ) m , we can see ( 7) as a deconvolution estimator of S * X∧C . First, notice that S * X∧C (u) =

+∞ 0 e iuv S X∧C (v)dv is well defined under assumption (A1) because S X∧C is integrable and square integrable on R + , its support. Then, let us introduce the following estimate of S * X∧C (u): for all u,

(8) Ŝ * X∧C (u) = 1 n 1 iu n j=1 e iuY j f * ε (u) -1 .
Lemma 1. The estimator Ŝ * X∧C given by ( 8) is well defined on R and is an unbiased estimate of S * X∧C (u).

The estimator (S X∧C ) m written as ( 7) can be seen as the Fourier inversion of (8). Here, however, the Fourier inversion is done with a cutoff πm on the first part of the estimator, which is not integrable, and on the whole real line for the non random part which has a known value. This allows us to write

(S X∧C ) m (x) = Re 1 2π πm -πm e -iux Ŝ * X∧C (u)du + ψ m (x) = 1 2π πm -πm e -iux Ŝ * X∧C (u)du + ψ m (x).
We emphasize that, in practice, the ψ m (x) term is a very useful correction of the estimator for x ∈ [0, 1]. We are now able to study the integrated L 2 -risk and prove the following result.

Proposition 1. Let (S X∧C ) m be defined by ( 6). Under assumption (A1), we have

E( (S X∧C ) m -S X∧C 2 ) ≤ 1 π |u|≥πm |S * X∧C (u)| 2 du + 2 π 2 m + 4 πn πm 1 du u 2 |f * ε (u)| 2 + c n where c is a positive constant, c = (E(Y 2 1 )/π) 1 0 du/|f * ε (u)| 2 .
The first two terms in the upper bound are squared bias terms decreasing when m increases, the third is a variance term which increases with m; the last term is a negligible residual. Contrary to the numerator estimator, the bias decreases at a slower rate. This is due to the term 1/(π 2 m) and to

S * X∧C (u) = f * X∧C (u) -1 iu = f * X∧C (u) iu - 1 iu which implies 1 2π |u|≥πm |S * X∧C (u)| 2 du = O 1 m .
This slow bias order is due to the discontinuity in 0 of survival functions for positive random variables, while computing a global risk over R + . Even with a slow bias decrease rate, we could still obtain a satisfactory convergence rate for the estimator. Indeed, the noises we have in mind must also have lower bounded supports. For example, an exponential distribution for ε yields a variance term of order m/n. The optimal value m opt for the cutoff given by the bias-variance compromise is such that m opt = O( √ n) and the resulting rate is O(n -1/2 ), which is good for a nonparametric deconvolution problem.

All these considerations being asymptotic, we propose a finite sample model selection strategy for choosing m. Let us denote by

(9) J 2 (m) := 1 π πm 1 du u 2 |f * ε (u)| 2 , and pen 2 (m) = κ 2 log(n) J 2 (m) n ,
where κ 2 is a constant to be calibrated by simulations. Note that the lower bound of the integral is 1 so that the integral is properly defined. Then, setting

(10) m2 = arg min m∈{1,...,m n,2 } (-(S X∧C ) m 2 + 3 2π 2 m + pen 2 (m)),
for m n,2 such that m n,2 ≤ n and J 2 (m n,2 ) ≤ n, we obtain an adaptive estimator of S X∧C , which is rather simple to implement, compared to the pointwise procedure of [START_REF] Dattner | On deconvolution of distribution functions[END_REF]. We can prove Theorem 1. Let (S X∧C ) m be defined by ( 6) and m2 by (10). Then there exists a numerical constant κ 0 , such that for κ 2 ≥ κ 0 , we have

E( (S X∧C ) m2 -S X∧C 2 ) ≤ inf m∈{1,...,m n,2 } 3 π |u|≥πm |S * X∧C (u)| 2 du + 2 π 2 m + 4pen 2 (m) + C n
where C is a constant depending on f * ε . From the proof we find that κ 0 = 48 suits, but this theoretical value is too large in practice (see Section 3).

Our adaptive procedure (S X∧C ) m2 has the simplicity of choosing a unique global cutoff m2 for m. This is an advantage compared to the pointwise selection procedure described in [START_REF] Dattner | On deconvolution of distribution functions[END_REF], where the selection is repeated for each point. As a counterpart, we obtain a theoretical global rate which is not as good as the pointwise one. This is due to the fact the pointwise strategy avoids the point x = 0 where a discontinuity occurs.

2.4. Construction of the estimator of h X . The two estimators (f X S C ) m1 and (S X∧C ) m2 allow us to build the final estimator of the hazard rate h X as a quotient estimator. To prevent the denominator to get small, a truncation is required when computing the quotient. The estimator of h X (x) is finally

(11) ĥ m1 , m2 (x) = (f X S C ) m1 (x) (S X∧C ) m2 (x) 1 (S X∧C ) m2 (x)≥λ/ √ n
where λ is a constant to be calibrated. Note that, heuristically, the resulting risk of ĥ m1 , m2 is the addition of the risks of the numerator and the denominator, up to a multiplicative constant.

Simulation

3.1. Design of simulation. Simulations are used to evaluate the performances of the estimator. For each design of simulations, 500 datasets are simulated. We consider samples of size n = 400, 1000. Data are simulated with a Laplace noise with variance σ 2 = 2b 2 as follows:

f ε (x) = 1 2b e -|x|/b and f * ε (x) = 1 1 + b 2 x 2 with b = 1/(2 √ 5) or b = 1/( √ 5 
). We consider four densities for X.

(1) Mixed Gamma distribution: X = 1/ √ 5.48W with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1) (2) Beta distribution: X ∼ B(2, 5)/ √ 0.025 (3) Gaussian distribution: X ∼ |N (5, 1)| (4) Gamma distribution: X ∼ Γ(5, 1)/ √ 5

These densities are normalized with unit variance, thus allowing the ratio 1/σ 2 to represent the signal-to-noise ratio, denoted s2n. We considered signal to noise ratios of s2n = 2.5 and s2n = 10 in our simulations.

The censoring variable C is simulated with an exponential distribution, with parameter chosen to ensure 20% or 40% of censored observations. 3.2. Estimator implementation. We first describe the implementation of the numerator (f X S C ) m1 . The penalty depends on J 1 (m), which is computed by discretization of the integral. Then we compute pen 1 (m) defined by ( 5) with the choice κ 1 = 2, obtained after a set of simulation experiments to calibrate it. We consider m n,1 = argmax(m ∈ N, J 1 (m)/n ≤ 1). Following, we have the final estimation of m1 defined by (4). By plugging (4) into (3) we obtain (f X S C ) m1 which is our estimator for the numerator.

For the implementation of the denominator (S X∧C ) m2 , the penalty depends on J 2 (m), which is computed by discretization of the integral. We take pen 2 (m) as defined by (9) with κ 2 = 5, after a set of simulation experiments to calibrate it. We define m n,2 = argmax(m ∈ N, J 2 (m)/n ≤ 1). Following, we have the final estimation of m2 defined by (10). By plugging this in (6) we obtain our estimator for the denominator (S X∧C ) m2 .

Finally, we estimate h X as a quotient:

ĥ m1 , m2 (x) = (f X S C ) m1 (x) (S X∧C ) m2 (x) 1 (S X∧C ) m2 (x)≥λ/ √ n ,
with the numerical constant λ = 0.1. 1. Note that even based on 500 simulated datasets, a variability remains in the MISE results, that might be due to the quotient estimator. Therefore, only the trends of the MISE should be interpreted.

Results are compared to estimators obtained in the three following cases: 1/ data with no noise and no censoring, 2/ data with no noise but censoring, 3/ data with noise but no censoring. These three cases can be considered as benchmarks for our situation including both noise and censoring. For case 1, h X is estimated as a quotient of a projection estimator of f X with a trigonometric basis and a Kaplan-Meier estimator of S X . For case 2, h X is estimated as a quotient with numerator and denominator adapted from (f X S C ) m1 and (S X∧C ) m (removing the noise 1/|f * ε |). For case 3, h X is estimated as the quotient of the projection estimator of f X with the trigonometric basis and an estimator of S X directly deduced from (S X∧C ) m . Note that trigonometric polynomials are easy to implement but are sometimes subject to bad side-effects.

Table 1 shows that the MISE obtained with the new estimator are close to the MISE obtained with the more standard estimators without noise or without censoring. The results are satisfactory for the four distributions of X. The MISE are reduced when n increases, whatever the censoring level and the signal to noise ratio. Similarly, the MISE decreases when the censoring level decreases, whatever the value of n and the signal to noise ratio.

We also compare the MISE obtained for ĥ m1 , m2 with the MISE obtained on the same noisy and censored data but modeling either only the noise, or only the censoring, or neither the noise nor the censoring. Results are presented in Table 2 for data with 20% of censoring, small noise (s2n = 10) and n = 400, 1000. We see that when the model is misspecified, the MISE increases. This is especially true when censoring is neglected (two last columns). Neglecting the noise increases the MISE in the Gaussian and the Gamma case. For the Mixed Gamma and the Beta distributions, the MISE are of the same order in the first two columns, when censoring is appropriately modeled.

Table 2. MISE×100 of the estimation of h X , compared with the MISE on the same noisy and censored data but assuming in the modeling either only the noise, or only the censoring, or neither the noise nor the censoring. MISE was averaged over 500 samples. Data are simulated with a Laplace noise, and an exponential censoring variable with 20% of censoring, small noise (s2n = 10) and n = 400 or n = 1000. 

Application to length of pregnancy

This work was motivated by the problem of estimating the physiological length of pregnancy, i.e. the time between spontaneous oocyte fertilization and spontaneous delivery.

Although many estimates have been reported, usually of around 40 weeks following last menstrual period (i.e. around 38 weeks after conception), they all rely on imperfect dating of the time origin since the precise time of conception remains unknown in spontaneously conceived pregnancies. In practice, the onset of pregnancy may be estimated by adding two weeks to the last menstrual period, by biochemical tests and also by fetal ultrasound, which is in many cases the preferred method [START_REF] Stirnemann | Day-specific probabilities of conception in fertile cycles resulting in spontaneous pregnancies[END_REF]. Prediction of the time origin using ultrasonographic measurement of fetal crown-rump is not exact and one should take into account this prediction error.

In such data, censoring may occur because of medically planned deliveries whenever maternal or fetal conditions require delivery prior to spontaneous labor. For example, induction (or cesarean section) may be offered whenever women reach 41 weeks and is medically indicated at 41 weeks and 3 days in the Obstetrics unit of Paris Necker Hospital, to avoid fetal complications of prolonged pregnancy. Other medical indications for timely delivery include maternal conditions such as preeclampsia or fetal conditions such as growth restriction or fetal malformations. For obvious reasons, termination of pregnancy or intrauterine fetal demise also require preterm induction of labor.

As already explained, the prediction error using ultrasonographic measurement of fetal crownrump affects the time origin. Therefore it impacts both censoring times and the variable of interest which is the occurrence of a spontaneous onset of labor. This situation refers to the model studied in Section 2. In the following, we consider the measurement error as a Gaussian distribution with mean=0 and standard deviation of 0.35 weeks, as estimated by [START_REF] Stirnemann | Day-specific probabilities of conception in fertile cycles resulting in spontaneous pregnancies[END_REF].

The data we consider here is a sample of 8960 consecutive singleton pregnancies followed in the department of obstetrics, Necker teaching hospital in Paris, from the routine first trimester ultrasound around 12 weeks to delivery between 2011 and 2014. Dating of conception was performed by ultrasonographic measurement of crown-rump length in all cases. In this dataset, censoring occurred in 3410/8960 (38%) cases. The outcomes in the sample are presented in Table 3.

We estimated the hazard rate of the length of pregnancy for spontaneous delivery using estimator (11). The resulting hazard rate for spontaneous delivery is presented in Figure 1. This function increases rapidly from 37 weeks onwards reaching its maximum at 40 weeks and 6.5 days followed by a rapid decrease. In this population this result is markedly different from the usual estimate of 40 weeks that is considered in clinical practice. Therefore, our results would suggest that the true underlying length of pregnancy is longer than observed using noisy data. For comparison, in Figure 1, we also added the hazard rate function for misspecified models that do not model censoring and measurement error. In agreement with the simulation study (Table 2), the misspecified models show significant deviations from our estimator. Interestingly, the model that neglects dating error yields a maximum hazard at 40 weeks and 5 days, 1.5 days earlier than what we found using our estimator. Such a difference may impact on several aspects of clinical care and pregnancy management, when Hazard rate for spontaneous delivery estimated from the noisy and censored dataset of 8960 pregnancies. Solid line: our estimator (11) modeling both measurement error and censoring; broken line: censoring is modeled but not measurement error on time origin; dotted line: neither censoring nor measurement error is modeled seeking to optimize obstetric protocols at term by reducing unnecessary inductions and planning follow-up in prolonged pregnancies.

Discussion and perspectives

In this section, we discuss an alternative model that could be considered when both noise and censoring contaminate the data. Assume that we observe

(W j = (X j + ε j ) ∧ C j , ∆ j = 1 Z j ≤C j )
for j = 1, . . . , n and where Z j = X j + ε j . Despite its simple presentation, seemingly closely related to model (1), this model is more difficult to work with. In this case, the most natural quantity to estimate is the density f X of X, rather than the hazard function. However, we were not able to prove the upper bound of the L 2 risk of the estimator of f X .

More precisely, we consider the estimator by deconvolution of f X of X, as follows:

fX,m (x) = 1 2π πm -πm e -iux f * Z (u) f * ε (u) du where (12) f * Z (u) = 1 n n j=1 ∆ j S C (W j ) e iuW j .
The censoring correction ∆ j /S C (W j ) is standard for such data and sometimes called "Inverse Probability Censoring Weight" (IPCW) in the literature. Then setting f m such that f * m = f * 1 [-πm,πm] , we would easily get under the assumption

Assumption (A2): τ Z < τ C where τ L = sup{y, S L (y) > 0}, E( fX,m -f 2 ) ≤ f -f X 2 + 2E 1 S C (Z 1 ) J(m) n .
Taking the variance term as a penalty for model selection would give an adaptive estimator with good theoretical properties under (A2).

As S C is unknown, it can be estimated with the Kaplan-Meier estimator ŜC , with the modification suggested by [START_REF] Lo | Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimators[END_REF]:

ŜC (y) = W (i) ≤y n -i + 1 n -i + 2 1-∆ (i)
where (W (i) , ∆ (i) ) is ordered following the W j 's. Then this estimator can be plugged into (12) to obtain the estimator

(13) fX,m (x) = 1 2π πm -πm e -iux f * Z (u) f * ε (u) du, with f * Z (u) = 1 n n j=1 ∆ j ŜC (W j ) e iuW j .
However, Assumption (A2) is no longer adequate to handle the substitution of S C by its estimator, and contradictory conditions appear. To obtain an upper bound of the L 2 risk of fX,m , one would need to restrict the variables to belong a fixed compact set, which is rather standard in the the context of estimation with censored data (see the discussion in [START_REF] Gross | Nonparametric estimation and regression analysis with left-truncated and right-censored data[END_REF]), but this is not possible due to the additional deconvolution step: it leads to an assumption regarding the Z's that is contradictory. Thus, the estimation of f X remains an opened theoretical question in this model. Note that we implemented the method and provide in Table 4 the empirical results on simulation: from practical point of view, the procedure seems to work and gives coherent results. 

Proofs

We recall the following version of Talagrand inequality.

Lemma 2. Let T 1 , . . . , T n be independent random variables and ν n (r) = (1/n) n j=1 [r(T j ) -E(r(T j ))], for r belonging to a countable class R of measurable functions. Then, for > 0, ( 14) Var(r(T j )) ≤ v.

E[sup r∈R |ν n (r)| 2 -(1 + 2 )H 2 ] + ≤ C v n e -K 1 nH 2 v + M 2 n 2 C 2 ( ) e -K 2 C( ) √ nH M with K 1 = 1/6, K 2 = 1/(21 √ 
Inequality ( 14) is a straightforward consequence of the Talagrand inequality given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]. Moreover, standard density arguments allow us to apply it to the unit ball of spaces.

The following elementary inequalities will be also used:

(15) ∀u ∈ R, ∀a ∈ R, sin(u) u ≤ 1 and e iua -1 u ≤ |a|. 6.1. Proof of Lemma 1. Let us first remark that Ŝ * X∧C is well defined on R because lim u→0 e iuY j -f * ε (u) iu = Y j -E(ε 1 ). Moreover lim u→0 Ŝ * X∧C (u) = 1 n n i=1 Y j -E(ε 1 ) which tends a.s. when n grows to infinity to E(Y 1 -ε 1 ) = E(X 1 ∧ C 1 ) = S * X∧C (0).
Then we prove that Ŝ * X∧C is an unbiased estimate of S * X∧C . We have

E[ Ŝ * X∧C (u)] = 1 iu E[e iu(X∧C) -1] = 1 iu (e iuz -1)f X∧C (z)dz.
Then, noticing that (e iuz -1)/(iu) = z 0 e iuv dv and that

+∞ 0 +∞ 0 |e iuv f X∧C (z)1 v≤z |dvdz ≤ E(X ∧ C) < ∞, the Fubini Theorem implies that E[ Ŝ * X∧C (u)] = +∞ 0 z 0 e iuv dv f X∧C (z)dz = +∞ 0 e iuv +∞ v f X∧C (z)dz dv = +∞ 0 e iuv S X∧C (v)dv = S * X∧C (u). 6.2. Proof of Proposition 1. Let us set (S X∧C ) m = (S X∧C ) m -ψ m (x). Clearly, E( S X∧C -(S X∧C ) m 2 ) = S X∧C -(S X∧C ) m + ψ m 2 + E( (S X∧C ) m -(S X∧C ) m 2 ) ≤ 2 S X∧C -(S X∧C ) m 2 + 2 ψ m 2 +E( (S X∧C ) m -(S X∧C ) m 2 ), (16) where 
(S X∧C ) m is such that (S X∧C ) * m = S * X∧C 1 [-πm,πm] . First we have, by Parseval formula, (17) 2 S X∧C -(S X∧C ) m 2 = 1 π |u|≥πm |S * X∧C (u)| 2 du.
Next, as ψ m is the Fourier transform of 1 |x|≥πm /(2iπx), we have ψ * m (u) = -1/(iu)1 |u|≥πm , and (18)

ψ m 2 = (1/2π) ψ * m 2 = 1/(π 2 m).
For the last term, we use Parseval equality again: 17), ( 18) and ( 19) into ( 16) gives the result of Proposition 1. and using that ∀x, y ≥ 0, 2xy ≤ 4x 2 + y 2 /4, we get Var(r t (Y j )) ≤ v.

E( (S X∧C ) m -(S X∧C ) m 2 ) = 1 2π πm -πm E(| Ŝ * X∧C (u) -S * X∧C (u)| 2 )du. Let us set Ŝ * X∧C (u) -S * X∧C (u) = 1 n 1 iu n j=1 Z j (u) -E(Z j (u)) f * ε (u) with Z j (u) = e iuY j -1. We notice that e iuY j -f * ε (u) -E(e iuY j -f * ε (u)) = Z j (u) -E(Z j (u)). Thus, E(| Ŝ * X∧C (u) -S * X∧C (u)| 2 ) = 1 nu 2 Var(Z 1 (u)) |f * ε (u)| 2 ≤ 1 nu 2 E(|e iuY 1 -1| 2 ) |f * ε (u)| 2 = 4 n E(sin 2 (uY 1 /2)) u 2 |f * ε (u)| 2 . Thanks to inequality (15), we bound this term by (1/n)E(Y 2 1 ) for |u| ∈ [0, 1] and, using | sin(z)| ≤ 1, ∀z ∈ R, by 4/(nu 2 ) for |u| > 1. We get (19) E( (S X∧C ) m -(S X∧C ) m 2 ) ≤ E(Y 2 1 ) πn 1 0 du |f * ε (u)| 2 + 4 πn πm 1 du u 2 |f * ε (u)| 2 . Plugging (
T ≤ 2 ( S X∧C ) m2 -(S X∧C ) m sup t∈S m∨ m2 , t =1 |ν n (t)| ≤ 1 4 (S X∧C ) m2 -(S X∧C ) m 2 + 4 sup t∈S m∨ m2 , t =1 |ν n (t)| 2 ≤ 1 2 (S X∧C ) m2 -S X∧C 2 + 1 2 S X∧C -(S X∧C ) m 2 + 4 sup t∈S m∨ m2 , t =1 |ν n (t)| 2 . ( 23 
Similarly to previous computation, we get H 2 = J 2 (m ∨ m )/n, v = J 2 (m ∨ m ) and M = J 2 (m ∨ m ). Moreover we take = 6 log(n 2 ) ∨ 1 = 6 log(n 2 ) for n ≥ 2, and we get We notice that card(M n ) ≤ n and thus card(M n )e -K 2 √ n is bounded to get the result.

  Figure1. Hazard rate for spontaneous delivery estimated from the noisy and censored dataset of 8960 pregnancies. Solid line: our estimator (11) modeling both measurement error and censoring; broken line: censoring is modeled but not measurement error on time origin; dotted line: neither censoring nor measurement error is modeled

  1 and C a universal constant and where sup r∈R r ∞ ≤ M, E sup r∈R |ν n (r)| ≤ H, sup r∈R

  m ∨ m )e -log(n 2 ) + J 2 (m ∨ m ) n e -K 2 √ n using that ≥ 1. Now we have J 2 (m ∨ m ) ≤ n, by definition of M n,2 so that m ∈Mn E sup t∈S m∨m , t =1 |ν n,1 (t)| 2 -3p(m, m )

Table 1 .

 1 MISE×100 of the estimation of h X , compared with the MISE obtained when data are not censored, or not noisy, or neither censored nor noisy. MISE was averaged over 500 samples. Data are simulated with a Laplace noise, and an exponential censoring variable. Results. The values of the MISE are computed from 500 simulated data sets, for each density and simulation scenario and are given (multiplied by 100) in Table

	s2n = 10		0% censoring	20% censoring	40% censoring
			n = 400 n = 1000	n = 400 n = 1000	n = 400 n = 1000
	f X Mixed Gamma with noise	0.723	0.285	0.857	0.423	1.426	0.726
		without noise	0.793	0.287	1.120	0.381	2.071	0.690
	f X Beta	with noise	1.405	0.813	1.780	1.019	2.328	1.354
		without noise	1.288	0.641	1.767	0.793	2.454	1.050
	f X Gaussian	with noise	0.598	0.250	1.238	0.703	6.580	6.077
		without noise	0.656	0.201	2.009	0.628	8.934	5.808
	f X Gamma	with noise	0.805	0.361	0.843	0.364	0.988	0.408
		without noise	0.684	0.275	0.865	0.268	1.058	0.327
	s2n = 2.5		0% censoring	20% censoring	40% censoring
			n = 400 n = 1000	n = 400 n = 1000	n = 400 n = 1000
	f X Mixed Gamma with noise	1.129	0.497	1.235	0.645	1.727	0.915
		without noise	0.793	0.287	1.120	0.381	2.071	0.690
	f X Beta	with noise	2.075	1.154	2.878	1.455	3.437	1.847
		without noise	1.288	0.641	1.767	0.793	2.454	1.050
	f X Gaussian	with noise	0.950	0.437	1.978	1.031	5.526	4.940
		without noise	0.656	0.201	2.009	0.628	8.934	5.808
	f X Gamma	with noise	1.173	0.613	1.379	0.660	1.538	0.821
		without noise	0.684	0.275	0.865	0.268	1.058	0.327
	3.3.							

Table 3 .

 3 Outcomes and main reasons for censoring in a sample of 8960 singleton pregnancies followed in Necker Enfants Malade teaching hospital

	Termination of pregnancy or intrauterine fetal demise 110
	Induction at term (≥ 41 weeks)	903
	Induction for maternal or fetal reasons before term	1490
	Planned cesarean section	907
	Spontaneous labor	5550

Table 4 .

 4 MISE×100 of the estimation of f X , compared with the MISE obtained when data are not censored, or not noisy, or neither censored nor noisy. MISE was averaged over 100 samples. Data are simulated with a Laplace noise, and an exponential censoring variable.

	s2n = 10		0% censoring	20% censoring	40% censoring
			n = 400 n = 1000	n = 400 n = 1000	n = 400 n = 1000
	f X Mixed Gamma with noise	0.203	0.097	0.381	0.171	0.445	0.185
		without noise	0.181	0.082	0.258	0.087	0.259	0.102
	f X Beta	with noise	0.271	0.193	0.353	0.258	0.432	0.255
		without noise	0.975	0.579	0.280	0.163	0.349	0.191
	f X Gaussian	with noise	0.139	0.054	0.527	0.255	1.719	0.973
		without noise	0.481	0.237	0.146	0.070	0.452	0.127
	f X Gamma	with noise	0.290	0.138	0.316	0.166	0.371	0.170
		without noise	0.549	0.235	0.196	0.083	0.211	0.114

  Now we split ν n (t) = ν n,1 (t) + R n (t) with where c is defined in Proposition 1. For the other term we use the following Proposition.Proposition 2. Let p(m, m ) = n -1 log(n 2 )J 2 (m ∨ m ), thenThe proof of Proposition 2 follows from Talagrand inequality and is proved below. Now we notice that 3κ 2 p(m, m ) ≤ 6pen 2 (m) + 6pen 2 (m ) so that 8E supt∈S m∨ m2 , t =1 |ν n,1 (t)| 2 -pen 2 ( m2 )/8 ≤ 8E sup t∈S m∨ m2 , t =1 |ν n,1 (t)| 2 -3p(m, m2 ) -1 ≤ 0 i.e. κ 2 ≥ 48. Plugging (25) and (26) in (24), we obtain, ∀m ∈ {1, . . . , m n,2 },E( (S X∧C ) m2 -S X∧C 2 + ψ m2 2 ) ≤ 3 S X∧C -(S X∧C ) m 2 + ψ m X∧C ) m2 -S X∧C 2 = (S X∧C ) m2 -S X∧C + ψ m2 2 ≤ 2( (S X∧C ) m2 -S X∧C Proof of Proposition 2.We set, for t ∈ S m , and we apply Inequality of Lemma 2 to R = S m∨m , by using standard arguments of continuity of t → ν n,1 (t) and density of a countable subset of S m∨m . Next we have to compute H 2 , M, v such that sup

								+
	) (26)					≤	+( c n + 48 κ 2 48 -1)E(pen 2 ( m2 )) + κ 2 pen 2 (m),	48 κ 2	pen 2 (m)
	Plugging (23) into (22) yields 1 2 (S X∧C ) m2 -S X∧C 2 + for 48/κ 2 2 1 2 ψ m2 2 ≤ 3 2 S X∧C -(S X∧C ) m 2 + 1 2 ψ m 2 + pen 2 (m) +4 sup |ν n (t)| 2 -pen 2 ( m2 ). (24) +2(1 + 24/κ 2 )pen 2 (m) + 8c . n t∈S m∨ m2 , t =1 To conclude, we notice that
	(S 2 + ψ m2	2 )
	R n (t) = which implies t We have 1 2π |u|≤1 E( (S X∧C ) m2 -S X∧C 2 ) ≤	inf m∈{1,...,m n,2 }	6 S X∧C -(S X∧C ) m	2 + 2 ψ m	2 + 6pen 2 (m) +	c n	,
	sup c = 16c, which is the announced result. |ν n (t)| 2 ≤ 2	sup		R 2 n (t) + 2	sup	|ν n,1 (t)| 2 .
	t∈S m∨ m2 , t =1 Moreover by Schwarz Inequality, we have t∈S m∨ m2 , t =1 E sup t∈S m∨ m2 , t =1 R 2 n (t) ≤ 6.4. r t (x) = 1 2π t * (u) 1 2π E , so that |u|≤1 e iux 1 |u|≥1 t∈S m∨ m2 , t =1 iuf * du ε (u) | Ŝ * X∧C (u) -S * X∧C (u)| 2 du , and from the proof of Proposition 1, we easily get (25) E sup t∈S m∨ m2 , t =1 R 2 n (t) ≤ 2 2π E(Y 2 1 ) n 1 0 du |f * ν n,1 (t) = n 1 n j=1 [r Classically we write c ε (u)| 2 = n E sup |ν n,1 (t)| 2 -3p(m, m2 ) ≤ E sup |ν n,1 (t)| 2 -3p(m, m )
	t∈S m∨ m2 , t =1			+	m ∈Mn	t∈S m∨m , t =1
	t∈S m∨m	sup	E	sup				t∈S m∨m	1 n	n j=1

* (-u)( Ŝ * X∧C (u) -S * X∧C (u))du, ν n,1 (t) = ν n (t) -R n (t). t∈S m∨ m2 , t =1 |ν n,1 (t)| 2 -3p(m, m2 ) + ≤ c n . t (Y j ) -E(r t (Y j ))]. + x∈R |r t (x)| ≤ M, E sup t∈S m∨m |ν n (r t )| ≤ H, sup
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6.3. Proof of Theorem 1. Let S m = {t ∈ L 2 (R), Supp(t * ) ⊂ [-πm, πm]}. Note that the estimator (S X∧C ) m = (S X∧C ) m -ψ m (x) satisfies

with Ŝ * X∧C given by ( 8). One can see this by noticing that

On the other hand we have (S X∧C ) m 2 = (S X∧C ) m 2 + ψ m 2 , since the support of the Fourier transforms of the functions in the norms are disjoint. Therefore

Therefore, definition (10) of m2 can be written

The equality (20) for m2 implies that, ∀m ∈ {1, . . . , m n,2 } and for all t ∈ S m ,

Taking t = (S X∧C ) m and using (21), this can be rewritten

Then considering the term in the second line of ( 22