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Abstract. We consider random variables which can be subject to both censoring and measurement
errors. When considering different practical situations, two different models can be written to
describe such situations in which the measurement errors affect only the variable of interest or
also the censoring variable. Different estimation strategies can be proposed to estimate the density
or hazard rate of the underlying variables of interest. We explain these models and strategies
and provide L2-risk bounds for the data driven resulting estimators. Simulations illustrate the
performances of the estimators. Lastly, the method is applied to a real data set.
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1. Introduction

In many clinical situations, time-to-event may be only partly observed. For example, the timing
of spontaneous delivery among pregnant women may be censored because of medical intervention
whenever delivery is deemed necessary before its natural occurrence. Hence survival, or life times,
may only be observed up to a censoring event, and are then considered as randomly right-censored
data. Right-censored data, in its standard presentation, involves independent observations ((Xj ∧
Cj),1Xj≤Cj ) for j = 1, . . . , n where the variable X denotes the true time between the origin and
the occurrence of the event of interest and the variable C denotes the true time between the origin
and the occurrence of censoring. We classically assume that X and C are independent.

In this paper, the censored data are measured with an error. Measurement error can affect cen-
sored data in two ways for which we give here two corresponding examples pertaining to women’s
health. In the first example introduced above, regarding the time between conception and spon-
taneous delivery, the date of pregnancy is unknown in spontaneously conceived pregnancies and
can only be estimated up to an error using the last menstrual period or fetal ultrasound. As
the time origin of pregnancy is known up to an additive (random) error, both variables X (time
between the true onset and the natural childbirth) and C (time between the true onset and any
censoring event) are observed up to this additive error. This is referred in the sequel as the first
model and was the main motivation for this work with an application to real data. In the second
case, the measurement error affects only the variable X. For example, the true spontaneous age of

1



2 FABIENNE COMTE(1), ADELINE SAMSON(2), AND JULIEN J STIRNEMANN(1,3)

menopause X is always unknown although it may be estimated with an error. Furthermore, the
age at menopause may be censored because of medical intervention. This censor C is not affected
by the noise because the age of the female is exactly known. This is referred in the sequel as the
second model.

Let us define these two models more precisely. Let ε denote the random error variable assumed
to be independent of X and C. For both models, we assume that the observations are properly clas-
sified as censored or uncensored. In the first model, both the censored and uncensored observations
are measured with error:

Yj = (Xj ∧ Cj) + εj = (Xj + εj) ∧ (Cj + εj), j = 1, . . . , n(1)

δj = 1Xj≤Cj ,

Note that the censoring indicator δj is unchanged by the measurement error: 1Xj≤Cj = 1Xj+εj≤Cj+εj .
In the second model, only the variables X are measured with an additive error. Let us denote

Zj = Xj + εj . The observations are then

Wj = (Xj + εj) ∧ Cj = Zj ∧ Cj , j = 1, . . . , n(2)

∆j = 1Zj≤Cj ,

Note that if εj ≡ 0 (no noise), then both models reduce to the usual right-censoring model, and if
Cj ≡ +∞ (no censoring), then both models correspond to the convolution model.

The purpose of this work is to provide non-parametric estimators of functions of the distribution
of X, based on the observations (Yj , δj) for Model (1) or (Wj ,∆j) for Model (2). In the context
of censored data, it is standard to estimate either the density fX of the variable X, or its survival
function SX , or the hazard function hX = fX/SX . Here, we focus on the estimation of either hX
or fX .

Nonparametric methods have already been proposed in related areas. Here, we are concerned by
both the censoring and the deconvolution frameworks. Regarding censoring, Antoniadis et al. [1999]
consider a wavelet hazard estimator which is not adaptive, Li [2007, 2008] suggests estimators based
on wavelet with hard or block thresholding. Estimators based on model selection via penalization
have also been proposed: Dohler and Ruschendorf [2002] estimate the log-hazard function using
a penalized likelihood-based criterion, Brunel and Comte [2005, 2008] consider penalized contrast
estimators for both the density and the hazard rate using either the Nelson-Aalen estimator of the
cumulative hazard function or the Kaplan-Meier cumulative hazard estimator, Reynaud-Bouret
[2006] proposes a penalized projection estimator of the Aalen multiplicative intensity process with
adaptive results and minimax rates and Akakpo and Durot [2010] consider a histogram selection
for both density and hazard rate estimation.

We can also consider our estimation problem in the setting of deconvolution. Deconvolution has
been widely studied in various contexts. We hereby restrain to references with a known density
of the noise. Kernel estimators have been proposed by Stefanski and Carroll [1990], Fan [1991],
with bandwidth selection strategies [Delaigle and Gijbels, 2004]. Wavelet estimators [Pensky and
Vidakovic, 1999, Fan and Koo, 2002], and projection methods with model selection [Comte et al.,
2006] have also been advocated. A pointwise estimation method for SX has been proposed by
Dattner et al. [2011] when the data are noisy but not censored.
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Given that censoring error and additive measurement error are of very different nature, it is quite
difficult to bring these two types of literature together. In Model (1), we propose a ratio-strategy
to estimate the hazard rate hX , using a deconvolution estimator of fXSC in the numerator and
a deconvolution estimator of SXSC in the denominator, as proposed by Dattner et al. [2011]. In
Model (2), we divide a deconvolution estimator of fXSC by a Kaplan-Meier estimator of SC to
estimate the density fX . In both cases, data-driven procedures and risk bounds are provided.

The paper is organized as follows. Section 2 deals with the first model and a quotient estimator
of the hazard rate is proposed. Section 3 studies the second model and an estimator of the density
is presented. Estimators are illustrated with a simulation study in Section 4 and are compared to
results obtained when either no measurement error or no censored variables are considered. The
motivating application of estimation of length of pregnancy is illustrated by an analysis of real data
in Section 5. Proofs are gathered in Appendix.

Notations We denote fU the density of a variable U . We denote SU (t) = P(U ≥ t) the survival
function at point t of a random variable U , hU (t) = fU (t)/SU (t) the hazard ratio at point t
and f∗U the characteristic function. We denote g∗(t) =

∫
eitxg(x)dx the Fourier transform of any

integrable function g. For a function g : R 7→ R, we denote ‖g‖2 =
∫
R g

2(x)dx the L2 norm. For
two integrable and square-integrable functions g and h, we denote g ? h the convolution product
g ? h(x) =

∫
g(x− u)h(u)du. For two real numbers a and b, we denote a ∧ b = min(a, b).

2. Model (1)

2.1. Setting. In Model (1), we observe for j = 1, . . . , n

Yj = (Xj ∧ Cj) + εj , δj = 1Xj≤Cj .

We assume that the law of the noise is known and its characteristic function is such that

∀u ∈ R, f∗ε (u) 6= 0.

The following assumption, which is verified by exponential or Gamma distributions for examples,
will be considered fulfilled throughout this section:

Assumption (A1) We assume both X and C to be nonnegative random variables. We also as-
sume E(X) < +∞ and E(C) < +∞.

In this section, we want to estimate the hazard rate hX of X. This hazard rate may be expressed
as the following nonstandard quotient

hX =
fX
SX

=
fXSC
SXSC

=
fXSC
SX∧C

.

The idea is to estimate separately the numerator fXSC and the denominator SX∧C .

2.2. Construction of the estimator for the numerator. It is rather easy to get an estimator
of the numerator fXSC , and more precisely of its projection on the space

(3) Sm := {t ∈ L2(R), supp(t∗) ⊂ [−πm, πm]}.
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For a square-integrable function g, let us denote gm its orthogonal projection on Sm, such that
g∗m(x) = g∗(x)1|x|≤πm. Then (fXSC)m is estimated by the following deconvolution estimator:

(4) ̂(fXSC)m(x) =
1

2πn

n∑
j=1

∫ πm

−πm

e−iuxδje
iuYj

f∗ε (u)
du.

Indeed

E(δ1e
iuY1) = E(1X1≤C1e

iu(X1∧C1)eiuε1) = E(1X1≤C1e
iuX1)f∗ε (u)

= E(SC(X1)eiuX1)f∗ε (u) = (fXSC)∗(u)f∗ε (u).

Therefore

E( ̂(fXSC)m(x)) =
1

2π

∫ πm

−πm
e−iux(fXSC)∗(u)du := (fXSC)m(x).

Under integrability conditions, (fXSC)m(x) tends to fXSC(x) when m tends to infinity by the

Fourier inverse formula. Then the risk bound of ̂(fXSC)m can easily be deduced from Comte et
al. (2006):

E(‖ ̂(fXSC)m − (fXSC)‖2) ≤ ‖fXSC − (fXSC)m‖2 +
E(δ1)

2π

∫ πm

−πm

du

|f∗ε (u)|2

where the bias term

‖fXSC − (fXSC)m‖2 =
1

2π

∫
|u|≥πm

|(fXSC)∗(u)|2du

is decreasing with m while the variance term obviously increases. The compromise between bias
and variance is classically performed by choosing

(5) m̂1 = arg min
m∈{1,...,mn,1}

(−‖ ̂(fXSC)m‖
2 + pen1(m)),

where mn,1 is such that mn,1 ≤ n and

(6) pen1(m) =
κ1

n

(
1

n

n∑
k=1

δk

)
log(J(m))J(m), with J(m) =

1

2π

∫ πm

−πm

du

|f∗ε (u)|2
.

In pen1(m), the constant κ1 is calibrated from preliminary simulations.
Following Comte et al. [2006], applying Talagrand’s Inequality,

E(‖ ̂(fXSC)m̂1
− fXSC‖2) ≤ C inf

m∈{1,...,mn,1}

(
‖(fXSC)m − fXSC‖2 + pen1(m)

)
+
C ′

n

for C and C ′ two constants which do not depend on n.
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2.3. Construction of the estimator for the denominator. We now wish to estimate the
denominator SX∧C = SXSC . Note that under assumption (A1), the survival functions can be
square-integrable over R+ (thus over R if they are extended by 0) contrary to the cumulative
distribution functions. This is true, for example, for exponential distributions, classically used in
survival analysis: the associated survival functions are clearly square integrable.

We define for x ≥ 0, the following estimator of SX∧C , as proposed by Dattner et al. [2011]:

(7) ̂(SX∧C)m(x) =
1

2
+

1

πn

n∑
j=1

Re

∫ πm

0

1

iu

(
eiu(Yj−x)

f∗ε (u)

)
du.

While only the pointwise risk of this estimator is studied in Dattner et al. [2011], we want hereby

to compute the integrated L2-risk of ̂(SX∧C)m. It is not trivial from (7) why this integrated risk is
properly defined. Therefore, before proceeding to the study of the integrated risk we consider an

alternate expression of ̂(SX∧C)m using (1/π)
∫ +∞

0 sin(v)/vdv = 1/2, as follows:

̂(SX∧C)m(x) = Re

 1

2πn

n∑
j=1

∫ πm

−πm

e−iux

iu

(
eiuYj

f∗ε (u)
− 1

)
du

+ ψm(x)(8)

with

ψm(x) = − 1

2iπ

∫
|u|≥πm

e−iux

u
du =

1

π

∫ +∞

πm

sin(ux)

u
du.

Note that ψ∗m(u) = −1/(iu)1|u|≥πm. This implies by Parseval formula that
∫ +∞

0 |ψm(x)|2dx =

(1/2π2)m−1.

Then, in order to compute the integrated L2-risk of ̂(SX∧C)m, we can see (8) as a deconvolu-

tion estimator of S∗X∧C . First, notice that S∗X∧C(u) =
∫ +∞

0 eiuvSX∧C(v)dv is well defined under
assumption (A1) because SX∧C is integrable and square integrable on R+, its support. Then, let
us introduce the following estimate of S∗X∧C(u): for all u,

(9) Ŝ∗X∧C(u) =
1

n

1

iu

n∑
j=1

(
eiuYj

f∗ε (u)
− 1

)
.

Lemma 1. The estimator Ŝ∗X∧C defined by (9) is well defined on R and is an unbiased estimate
of S∗X∧C(u).

The estimator ̂(SX∧C)m written as (8) can be seen as the Fourier inversion of (9). Here, however,
the Fourier inversion is done with a cutoff πm on the first part of the estimator, which is not
integrable, and on the whole real line on the non random part which has a known value. This
allows us to write

̂(SX∧C)m(x) = Re

(
1

2π

∫ πm

−πm
e−iuxŜ∗X∧C(u)du

)
+ ψm(x).

We emphasize that the ψm(x) term is a very useful correction of the estimator for x ∈ [0, 1]. We
are now able to study the integrated L2-risk and prove the following result.
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Proposition 1. Let ̂(SX∧C)m be defined by (7). Under assumptions (A1) and (A2), we have

E(‖ ̂(SX∧C)m − SX∧C‖
2) ≤ 1

2π

∫
|u|≥πm

|S∗X∧C(u)|2du+
1

π2m
+

4

πn

∫ πm

1

du

u2|f∗ε (u)|2
+
c

n

where c is a positive constant.

The first two terms are squared bias terms decreasing when m increases, the third is a variance
term which increases with m; the last term is a negligible residual. Contrary to the numerator
estimator, the decrease rate of the bias is slow. This is due to the term 1/(π2m) and to

S∗X∧C(u) =
f∗X∧C(u)− 1

iu
=
f∗X∧C(u)

iu
− 1

iu

which implies

1

2π

∫
|u|≥πm

|S∗X∧C(u)|2du = O

(
1

m

)
.

This slow bias order is due to the discontinuity in 0 of survival functions for positive random vari-
ables, while computing a global risk over R+. Even with a slow bias decrease rate, we could still
obtain a satisfactory convergence rate for the estimator. Indeed, the noise we have in mind in those
models must also have lower bounded supports. For example, an exponential distribution for ε
yields a variance term of order m/n. The bias-variance compromise yields to choose an optimal

value mopt for the cutoff such that mopt = O(
√
n) and the resulting rate is O(n−1/2), which is good

for a nonparametric deconvolution problem.

All these considerations being asymptotic, we propose a finite sample model selection strategy
for choosing m. Let us denote by

(10) J2(m) :=
1

π

∫ πm

1

du

u2|f∗ε (u)|2
, and pen2(m) = κ2 log(n)

J2(m)

n
,

where κ2 is a constant to be calibrated by simulations. Note that the lower bound of the integral
is 1 so that the integral is properly defined. Then, setting

(11) m̂2 = arg min
m∈{1,...,mn,2}

(−‖ ̂(SX∧C)m‖
2 +

3

2π2m
+ pen2(m)),

for mn,2 such that mn,2 ≤ n and J2(mn,2) ≤ n, we obtain an adaptive estimator of SX∧C , which is
rather simple to implement, compared to the pointwise procedure of [Dattner et al., 2011].

We can prove

Theorem 1. Let ̂(SX∧C)m be defined by (7) and m̂2 by (11). Then there exists a numerical constant
κ0, such that for κ2 ≥ κ0, we have

E(‖ ̂(SX∧C)m̂2
− SX∧C‖2) ≤ inf

m∈{1,...,mn,2}

(
3

π

∫
|u|≥πm

|S∗X∧C(u)|2du+
2

π2m
+ 4pen2(m)

)
+
c

n

where c is a numerical constant depending on f∗ε .
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From the proof we find that κ2 = 12 suits, but this theoretical value is too large in practice (see
Section 4).

Our adaptive procedure ̂(SX∧C)m̂2
has the advantage of choosing a unique global cutoff m̂2 for

m, instead of the pointwise selection procedure described in [Dattner et al., 2011]. The theoretical
global rate is not as good as the pointwise one, which avoids the point x = 0 where a discontinuity
occurs. In particular, integrating the pointwise estimator of Dattner et al. [2011] on a compact
subset [a, b] with a > 0 would restore a better bias order depending on the pointwise regularity
of SX∧C . Thus, we may expect that the finite sample properties of the estimator remain globally
numerically satisfactory (see Section 4.2).

2.4. Construction of the estimator of hX . The two proposed estimators ̂(fXSC)m̂1
and ̂(SX∧C)m̂2

allow us to build the final estimator of the hazard rate hX as a quotient estimator. To prevent the
denominator to get small, a truncation is required when computing the quotient. The estimator of
hX(x) is finally

(12) ĥm̂1,m̂2(x) =
̂(fXSC)m̂1

(x)

̂(SX∧C)m̂2
(x)

1 ̂(SX∧C)m̂2
(x)≥λ/

√
n
,

where λ is a constant to be calibrated. Note that heuristically, the resulting risk of ĥm̂1,m̂2 is the
addition of the risks of the numerator and the denominator, up to a multiplicative constant.

3. Model (2)

In this section, we discuss the alternative model. Assume now that we observe

(Wj = (Xj + εj) ∧ Cj , ∆j = 1Zj≤Cj )

for j = 1, . . . , n and where Zj = Xj + εj . We want to estimate the density fX of X.

3.1. Construction of the estimator. In this case, we estimate the density fX of X, as follows:

f̂X,m(x) =
1

2π

∫ πm

−πm
e−iux

f̂∗Z(u)

f∗ε (u)
du

where

(13) f̂∗Z(u) =
1

n

n∑
j=1

∆j

SC(Wj)
eiuWj .

The censoring correction ∆j/SC(Wj) is standard for such data and sometimes called “Inverse
Probability Censoring Weight” (IPCW) in the literature. As SC is unknown, it can be estimated

with the Kaplan-Meier estimator ŜC , with the modification suggested by Lo et al. [1989]:

ŜC(y) =
∏

W(i)≤y

(
n− i+ 1

n− i+ 2

)1−∆(i)

where (W(i),∆(i)) is ordered following the Wj ’s. Note that ŜC is such that:

(14) ∀y ∈ R, ŜC(y) ≥ 1

n+ 1
.
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Moreover, it is known that it is a good estimator of SC on any interval [0, τ ] provided [0, τ ] ( [0, τC ]
where τC = sup{y, 1− SC(y) < 1}, see [Lo et al., 1989].

Then this estimator can be plugged into (13) to obtain the estimator

(15) f̃X,m(x) =
1

2π

∫ πm

−πm
e−iux

f̃∗Z(u)

f∗ε (u)
du, with f̃∗Z(u) =

1

n

n∑
j=1

∆j

ŜC(Wj)
eiuWj .

3.2. Upper bound of the L2 risk. Let fm define by f∗m = f∗X1[−πm,πm] such that fm is the
orthogonal projection of f on Sm defined by (3). As previously, fm is the function which is

estimated by f̃X,m. This implies a nonparametric bias equal to the distance between fX and fm.

To bound the mean integrated squared error (MISE) defined as E‖f̃X,m − fX‖2, we remark that

E‖f̃X,m − fX‖2 = E
(
‖fX − fm‖2 + ‖fm − f̃X,m‖2

)
≤ ‖fX − fm‖2 + 2E‖fm − f̂X,m‖2 + 2E‖f̂X,m − f̃X,m‖2.

The first term is the standard bias. We have to study the two other terms.
In the context of estimation with censored data, it is usually not possible to estimate the density

over the whole domain, but only on a compact set (see the discussion in [Gross and Lai, 1996]).
Therefore following Gross and Lai [1996], we consider this assumption regarding the Z’s:

Assumption (A2) We assume that the Zj ’s are in a compact set [0, τ ] such that a := SC(τ) > 0
and b := SZ(τ) > 0.

Now, using J(m) defined by (6), we can bound the MISE:

Proposition 2. Consider Model 2 under (A2), then the estimate defined by (15) satisfies:

E‖f̃X,m − fX‖2 ≤ ‖fX − fm‖2 +A
J(m)

n
with A = 2

∫ τ

0

fZ(u)

SC(u)
du+

4

b2a4

(
c1 + 16

c3

a2b4

)
with J(m) defined by (6) and c1, c3 defined in Lemma 3 (see Appendix).

3.3. Cut-off selection. Now, the cut-off m has to be relevantly chosen from the data. Let us
define

pen3(m) =
J(m)

n

(
κ3,1E

(
∆1

SC(W1)

)2

log
(
J3(m)

)
+ κ3,2

4

a4b2
log n

)
with κ3,1 and κ3,2 two constants to be calibrated on simulations. We also define

(16) m̃ = arg min
m∈{1,...,mn,3}

(
−‖f̃X,m‖2 + pen3(m)

)
,

where mn,3 ≤ n is an integer such that pen3(mn,3) ≤ C. The following theorem yields a bound of

the L2 risk of the estimator f̃X,m̃.

Theorem 2. Assume that (A1) hold and f̃X,m̃ is defined by (15) with m̃ as in (16). Then there
exist a constant κ4 such that

E(‖fX − f̃X,m̃‖2) ≤ C inf
m∈{1,...,mn,3}

(
‖fX − fm‖2 + pen3(m)

)
+
C ′

n
,
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where C and C ′ are two constants.

The penalty pen3(m) can not be exactly computed as the values a and E
(

∆1
SC(W1)

)2
are unknown.

We propose to estimate them with empirical moment estimators and to plug them in the penalty
function.

4. Simulation

4.1. Design of simulation. Simulations are used to evaluate the performances of the estimators
of both models. For each design of simulations, 100 datasets are simulated. We consider samples
of size n = 400, 1000. Data are simulated with a Laplace noise with variance σ2 as follows:

fε(x) =
σ

2
e−σ|x| and f∗ε (x) =

σ2

σ2 + x2

with σ = 1/(2
√

5) or σ = 1/(
√

5). We consider four densities for X.

(1) Mixed Gamma distribution: X = 1/
√

5.48W with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1)
(2) Beta distribution: X ∼ B(2, 5)/

√
0.025

(3) Gaussian distribution: X ∼ N (5, 1)
(4) Gamma distribution: X ∼ Γ(5, 1)/

√
5

These densities are normalized with unit variance, thus allowing the ratio 1/σ2 to represent the
signal-to-noise ratio, denoted s2n. We considered signal to noise ratios of s2n = 5 and s2n = 10 in
our simulations (σ = 1/(2

√
5) or σ = 1/(

√
5)).

The censoring variable C is simulated with an exponential distribution, with parameter chosen
to ensure 20% or 40% of censored final variables.

4.2. Estimator implementation for model (1). We first describe the implementation of the

numerator ̂(fXSC)m̂1
. The penalty depends on J(m), which is computed by discretization of the

integral. Then we compute pen1(m) defined by (6) with the choice κ1 = 2, obtained after a set
of simulation experiments to calibrate it. We consider mn,1 = argmax(m ∈ N, J(m)/n ≤ 1).
Following, we have the final estimation of m̂1 defined by (5). By plugging (5) in (4) we obtain
̂(fXSC)m̂1

which is our numerator estimator.

For the implementation of the denominator ̂(SX∧C)m̂2
, the penalty depends on J2(m), which is

computed by discretization of the integral. We take pen2(m) as defined by (10) with κ2 = 5, after

a set of simulation experiments to calibrate it. We define mn,2 = argmax(m ∈ N, Ĵ2(m)/n ≤ 1).
Following, we have the final estimation of m̂2 defined by (11). By plugging this in (7) we obtain

our estimator for the denominator ̂(SX∧C)m̂2
.

Finally, we estimate hX as a quotient:

ĥm̂1,m̂2(x) =
̂(fXSC)m̂1

(x)

̂(SX∧C)m̂2
(x)

1 ̂(SX∧C) ̂̂m2
(x)≥λ/

√
n
,

with the numerical constant λ = 0.1.
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Table 1. Model (1). MISE×100 of the estimation of hX , compared with the MISE
obtained when data are not censored, or not noisy, or neither censored nor noisy.
MISE was averaged over 100 samples. Data are simulated with a Laplace noise, and
an exponential censoring variable.

s2n = 10 0% censoring 20% censoring 40% censoring

n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

fX Mixed Gamma with noise 0.710 0.292 0.903 0.386 1.376 0.784
without noise 0.730 0.299 1.108 0.353 1.747 0.734

fX Beta with noise 1.511 0.856 2.004 1.147 2.623 1.506
without noise 1.430 0.618 1.824 0.766 2.370 0.924

fX Gaussian with noise 0.572 0.239 1.306 0.611 7.177 6.148
without noise 0.613 0.215 1.838 0.431 8.482 5.646

fX Gamma with noise 0.785 0.344 0.847 0.351 0.955 0.412
without noise 0.639 0.231 0.861 0.218 1.112 0.306

s2n = 5 0% censoring 20% censoring 40% censoring

n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

fX Mixed Gamma with noise 1.040 0.493 1.141 0.659 1.657 0.864
without noise 0.810 0.290 0.951 0.390 2.019 0.602

fX Beta with noise 2.201 1.093 4.030 1.760 5.081 2.359
without noise 1.387 0.611 1.634 0.732 2.100 0.942

fX Gaussian with noise 0.793 0.369 1.937 1.110 7.477 6.548
without noise 0.476 0.203 2.005 0.606 8.667 5.912

fX Gamma with noise 1.044 0.650 1.503 0.832 2.094 0.873
without noise 0.557 0.310 0.768 0.281 0.985 0.315

4.3. Estimator implementation for model (2). The implementation of the estimator f̃X,m̂(x)

is sensitive to the estimator ŜC , and especially to the constant a = SC(τ), which both appear as
denominators either in the estimator or in the penalty function. To avoid problems in 0, we decide
to consider only the 95% first data of the ordered sample (W1, . . . ,Wn) (with both the censored
and uncensored observations). Then τ is defined as the 95% quantile of the sample (W1, . . . ,Wn),

the constant a is estimated as â by the value of ŜC evaluated in τ and the moment E
(

∆1
SC(W1)

)2

is also estimated empirically on this 95% sample. Similarly, b̂ is estimated with the Kaplan-Meier
estimator of SZ at τ . Finally J(m) is computed by discretization of the integral. We define p̂en3(m)
the estimator of pen3(m) as:

p̂en3(m) =
Ĵ(m)

n

κ3,1

̂
E
(

∆1

SC(W1)

)2

log
(
J3(m)

)
+ κ3,2

4

â4b̂2
log n

 .
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Table 2. Model (2). MISE×100 of the estimation of fX , compared with the MISE
obtained when data are not censored, or not noisy, or neither censored nor noisy.
MISE was averaged over 100 samples. Data are simulated with a Laplace noise, and
an exponential censoring variable.

s2n = 10 0% censoring 20% censoring 40% censoring

n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

fX Mixed Gamma with noise 0.203 0.097 0.381 0.171 0.445 0.185
without noise 0.181 0.082 0.258 0.087 0.259 0.102

fX Beta with noise 0.271 0.193 0.353 0.258 0.432 0.255
without noise 0.975 0.579 0.280 0.163 0.349 0.191

fX Gaussian with noise 0.139 0.054 0.527 0.255 1.719 0.973
without noise 0.481 0.237 0.146 0.070 0.452 0.127

fX Gamma with noise 0.290 0.138 0.316 0.166 0.371 0.170
without noise 0.549 0.235 0.196 0.083 0.211 0.114

s2n = 5 0% censoring 20% censoring 40% censoring

n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

fX Mixed Gamma with noise 0.350 0.147 0.940 0.398 1.169 0.491
without noise 0.196 0.081 0.214 0.079 0.251 0.123

fX Beta with noise 0.458 0.274 0.919 0.483 1.152 0.505
without noise 0.916 0.642 0.306 0.183 0.413 0.179

fX Gaussian with noise 0.233 0.112 1.396 0.662 2.268 1.453
without noise 0.526 0.202 0.128 0.104 0.392 0.132

fX Gamma with noise 0.444 0.250 0.790 0.372 0.818 0.430
without noise 0.510 0.196 0.193 0.082 0.223 0.099

Throughout numerical estimations we will consider κ3,1 = 0.005 and κ̃3,2 = 0.0003, after a set of
simulation experiments to calibrate them. Note that κ3,2 is chosen small, which amounts to almost
”kill” the associated term.

The computation of ‖f̂m‖ is performed following [Comte et al., 2011] and [Comte et al., 2006].
We consider an estimation Mn defined by

Mn = {k/K, k = 1, . . . ,mn,3K}

for a constant K, and by defining an integer mn,3 such that mn,3 = argmax(m ∈ N, Ĵ(m)/n ≤ 1).
Following, we have the final estimation of m̃ defined by:

(17) ̂̃m = argmin
m=k/K,k∈{1,...,mn,3K}

(
− ‖f̃m‖2 + p̂en(m)

)
Finally, by plugging (17) in (15) we obtain f̃X, ̂̃m which is our final estimator.

4.4. Results. The values of the MISE are computed from 100 simulated data sets, for each density
and simulation scenario and are given (multiplied by 100) in Tables 1 and 2 for models (1) and
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(2), respectively. Results are compared to estimators obtained in the three following cases: 1/ data
with no noise and no censoring, 2/ data with no noise but censoring, 3/ data with noise but no
censoring. These three cases can be considered as benchmarks for our situation including both
noise and censoring. For case 1, fX is estimated with a projection estimator with trigonometric
polynomials [Massart, 2007] and hX is estimated as a quotient of the former estimator of fX and
a Kaplan-Meier estimator of SX . For case 2, fX is estimated with a projection estimator with
trigonometric polynomials as in Brunel and Comte [2005] and hX is estimated as a quotient with

numerator and denominator adapted from ̂(fXSC)m̂1
and ̂(SX∧C)m (removing the noise 1/|f∗ε |).

Note that trigonometric polynomials are easy to implement but are sometimes subject to bad side-
effects. For case 3, fX is estimated by deconvolution [Comte et al., 2006] and hX is estimated as

the quotient of the former estimator of fX and an estimator of SX directly deduced from ̂(SX∧C)m.
Tables 1 and 2 show that the MISE obtained with the new estimators are close to the MISE

obtained with the more standard estimators without noise or without censoring. The results for
both model (1) and (2) are satisfactory for the four distributions of X, even in the less favorable
Gaussian case. The MISE are reduced when n increases, whatever the censoring level and the
signal to noise ratio. Similarly, the MISE decreases when the censoring level decreases, whatever
the value of n and the signal to noise ratio.

We also compare the MISE obtained for ĥm̂1,m̂2 (and f̃X, ̂̃m, respectively) with the MISE obtained

on the same noisy and censored data but modeling either only the noise, or only the censoring,
or neither the noise nor the censoring. Results are presented in Table 3 (and 4) for data with
20% of censoring, small noise (s2n = 10) and n = 400. In Table 3, we see that when the model
is misspecified, the MISE increases. This is especially true when censoring is neglected (two last
columns). Neglecting the noise increases the MISE in the Gaussian and the Gamma case. For
the Mixed Gamma and the Beta distributions, the MISE are of the same order in the first two
columns, when censoring is appropriately modeled. In Table 3, the two first columns are very close,
suggesting that the most important point is to correct for censoring. The two last columns show
that neglecting censoring can increase the MISE from 0.5 to 3.7 in the Gaussian case.

5. Application to length of pregnancy, using model 1

This work was motivated by the problem of estimating the physiological length of pregnancy, e.g.
the time between conception and spontaneous delivery for which model 1 was developed. Although
many estimates have been reported, usually of around 40 weeks last menstrual period (about 38
weeks after conception), they all rely on imperfect dating of the time origin since the precise time
of conception remains unknown in spontaneously conceived pregnancies. In practice, the onset of
pregnancy may be estimated by adding two weeks to the last menstrual period, by biochemical
tests and also by fetal ultrasound, which is in many cases the preferred method [Stirnemann et al.,
2013]. The prediction error using ultrasonographic measurement of fetal crown-rump translates
into a Gaussian distribution with mean=0 and standard deviation of 0.3 weeks. Since this error
affects the time origin it will impact both censoring times and the variable of interest which is
the occurrence of a spontaneous delivery. This situation refers to model 1 described in Section
2. The data we consider here is a sample of 9082 deliveries of live born babies followed in the
department of obstetrics, Necker University Hospital in Paris. Dating of conception was performed
by ultrasonographic measurement of crown-rump length in all cases. In such data, censoring may
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Table 3. Model (1). MISE×100 of the estimation of hX , compared with the MISE
on the same noisy and censored data but assuming in the modeling either only
the noise, or only the censoring, or neither the noise nor the censoring. MISE
was averaged over 100 samples. Data are simulated with a Laplace noise, and an
exponential censoring variable with 20% of censoring, small noise (s2n = 10) and
n = 400 or n = 1000.

estimation assuming noise no noise noise no noise
censor censor no censor no censor

fX Mixed Gamma n = 400 0.779 1.080 1.659 1.846
n = 1000 0.539 0.483 1.450 1.360

fX Beta n = 400 2.185 1.926 3.504 2.191
n = 1000 1.028 1.012 1.810 1.095

fX Gaussian n = 400 1.560 2.603 5.340 5.398
n = 1000 0.745 1.192 5.111 1.268

fX Gamma n = 400 0.985 1.373 1.326 1.086
n = 1000 0.417 0.509 1.058 0.753

Table 4. Model (2). MISE×100 of the estimation of fX , compared with the MISE
obtained on the same noisy and censored data but assuming in the modeling either
only the noise, or only the censoring, or neither the noise nor the censoring. MISE
was averaged over 100 samples. Data are simulated with a Laplace noise, and an
exponential censoring variable with 20% of censoring, small noise (s2n = 10) and
n = 400 or n = 1000.

estimation assuming noise no noise noise no noise
censor censor no censor no censor

fX Mixed Gamma n = 400 0.344 0.351 0.305 0.299
n = 1000 0.157 0.115 0.196 0.194

fX Beta n = 400 0.428 0.341 0.518 1.095
n = 1000 0.224 0.221 0.414 0.664

fX Gaussian n = 400 0.553 0.190 3.355 3.751
n = 1000 0.301 0.124 3.247 3.675

fX Gamma n = 400 0.287 0.343 0.566 0.930
n = 1000 0.186 0.202 0.414 0.659

occur because of medically planned deliveries because of maternal or fetal conditions requiring
delivery prior to spontaneous labor. In this dataset, this happened in 3463/9082 (38%) cases.
Using the estimator (12), the resulting hazard rate for spontaneous delivery is presented in Figure
1. This function increases rapidly from 37 weeks onwards reaching its maximum at 40 weeks and 6
days followed by a rapid decrease. In this population this result is markedly different from the usual
estimate of 40 weeks that is considered in clinical practice. Therefore, our results would suggest
that the true underlying length of pregnancy is longer than observed using noisy data.
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Figure 1. Hazard rate for spontaneous delivery estimated from the noisy and
censored dataset of 9082 pregnancies with live born deliveries in Necker-Enfants
Malades University Hospital

6. Proofs

We recall the following version of Talagrand inequality.

Lemma 2. Let T1, . . . , Tn be independent random variables and νn(r) = (1/n)
∑n

j=1[r(Tj) −
E(r(Tj))], for r belonging to a countable class R of measurable functions. Then, for ε > 0,

(18) E[sup
r∈R
|νn(r)|2 − (1 + 2ε)H2]+ ≤ C

(
v

n
e−K1ε

nH2

v +
M2

n2C2(ε)
e−K2C(ε)

√
εnH
M

)
with K1 = 1/6, K2 = 1/(21

√
2), C(ε) =

√
1 + ε− 1 and C a universal constant and where

sup
r∈R
‖r‖∞ ≤M, E

(
sup
r∈R
|νn(r)|

)
≤ H, sup

r∈R

1

n

n∑
j=1

Var(r(Tj)) ≤ v.

Inequality (18) is a straightforward consequence of the Talagrand inequality given in [Klein and
Rio, 2005]. Moreover, standard density arguments allow us to apply it to the unit ball of spaces.
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The following elementary inequalities will be also used:

(19) ∀u ∈ R, ∀a ∈ R,
∣∣∣∣sin(u)

u

∣∣∣∣ ≤ 1 and

∣∣∣∣eiua − 1

u

∣∣∣∣ ≤ |a|.
6.1. Proof of Lemma 1. Let us first remark that Ŝ∗X∧C is well defined on R because

lim
u→0

eiuYj − f∗ε (u)

iu
= Yj − E(ε1).

Moreover limu→0 Ŝ
∗
X∧C(u) = 1

n

∑n
i=1 Yj − E(ε1) which tends a.s. when n grows to infinity to

E(Y1 − ε1) = E(X1 ∧ C1) = S∗X∧C(0).

Then we prove that Ŝ∗X∧C is an unbiased estimate of S∗X∧C . We have

E[Ŝ∗X∧C(u)] =
1

iu
E[eiu(X∧C) − 1] =

1

iu

∫
(eiuz − 1)fX∧C(z)dz.

Then, noticing that (eiuz−1)/(iu) =
∫ z

0 e
iuvdv and that

∫ +∞
0

∫ +∞
0 |eiuvfX∧C(z)1v≤z|dvdz ≤ E(X∧

C) <∞, the Fubini Theorem implies that

E[Ŝ∗X∧C(u)] =

∫ +∞

0

(∫ z

0
eiuvdv

)
fX∧C(z)dz =

∫ +∞

0
eiuv

(∫ +∞

v
fX∧C(z)dz

)
dv

=

∫ +∞

0
eiuvSX∧C(v)dv = S∗X∧C(u).

6.2. Proof of Proposition 1. Let us set ˜(SX∧C)m = ̂(SX∧C)m − ψm(x). Clearly,

‖SX∧C − ̂(SX∧C)m‖
2 = ‖SX∧C − (SX∧C)m + ψm‖2 + ‖ ˜(SX∧C)m − (SX∧C)m‖2

where (SX∧C)m is such that (SX∧C)∗m = S∗X∧C1[−πm,πm]. Next,

E(‖ ˜(SX∧C)m − (SX∧C)m‖2) =
1

2π

∫ πm

−πm
E(|Ŝ∗X∧C(u)− S∗X∧C(u)|2)du.

Let us set

Ŝ∗X∧C(u)− S∗X∧C(u) =
1

n

1

iu

n∑
j=1

Zj(u)− E(Zj(u))

f∗ε (u)

with Zj(u) = eiuYj − 1. Indeed eiuYj − f∗ε (u)− E(eiuYj − f∗ε (u)) = Zj(u)− E(Zj(u)). Then

E(|Ŝ∗X∧C(u)− S∗X∧C(u)|2) =
1

nu2
Var(Z1(u)) ≤ 1

nu2
E(|eiuY1 − 1|2) =

4

n

E(sin2(uY1))

u2
.

Thanks to inequality (19), we bound this term by (4/n)E(Y 2
1 ) for |u| ∈ [0, 1] and by 4/(nu2) for

|u| > 1. We get

E(‖ ˜(SX∧C)m − (SX∧C)m‖2) ≤ 4E(Y 2
1 )

πn

∫ 1

0

du

|f∗ε (u)|2
+

4

πn

∫ πm

1

du

u2|f∗ε (u)|2
.
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Moreover ‖SX∧C − (SX∧C)m + ψm‖2 = ‖SX∧C − (SX∧C)m‖2 + ‖ψm‖2, since the support of the
Fourier transforms of the functions in the norms are disjoint. By Parseval formula,

2‖SX∧C − (SX∧C)m‖2 =
1

π

∫
|u|≥πm

|S∗X∧C(u)|2du

and as ψm is the Fourier transform of 1|x|≥πm/(2x), ψ∗m(u) = (π/u)1|u|≥πm, ‖ψm‖2 = (1/2π)‖ψ∗m‖2 =

1/(π2m). Gathering the three terms gives the result of Proposition 1.

6.3. Proof of Theorem 1. Let Sm = {t ∈ L2(R), Supp(t∗) ⊂ [−πm, πm]}. Then the estimator
˜(SX∧C)m = ̂(SX∧C)m − ψm(x) can be defined as

S̃X∧Cm = arg min
t∈Sm

γn(t), γn(t) = ‖t‖2 − 2

2π
〈t∗, Ŝ∗X∧C〉

with Ŝ∗X∧C given by (9). Now, as γn( ˜(SX∧C)m) = −‖ ˜(SX∧C)m‖2, and γn( ̂(SX∧C)m) = −‖ ˜(SX∧C)m‖2+
‖ψm‖2, we have

m̂2 = arg min
m∈{1,...,mn,2}

[−‖ ̂(SX∧C)m‖
2 +

3

2
‖ψm‖2 + pen2(m)]

= arg min
m∈{1,...,mn,2}

[min
t∈Sm

γn(t) +
1

2
‖ψm‖2 + pen2(m)].

We notice that

(20) γn(t)− γn(s) = ‖t− SX∧C‖2 − ‖s− SX∧C‖2 −
2

2π
〈t∗ − s∗, Ŝ∗X∧C − S∗X∧C〉.

The definitions of m̂2 and ̂(SX∧C)m imply that, ∀m ∈ {1, . . . ,mn,2},

γn( ˜(SX∧C)m̂2
) +

1

2
‖ψm̂2‖2 + pen2(m̂2) ≤ γn((SX∧C)m) +

1

2
‖ψm‖2 + pen2(m).

Using (20), this can be rewritten

‖ ˜(SX∧C)m̂2
− SX∧C‖2 +

1

2
‖ψm̂2‖2 ≤ ‖SX∧C − (SX∧C)m‖2 +

1

2
‖ψm‖2 + pen2(m)

+
2

2π
〈(Ŝ∗X∧C)m̂2 − (S∗X∧C)m, Ŝ

∗
X∧C − S∗X∧C〉 − pen2(m̂2).(21)

Let us define, for t ∈ Sm,

νn(t) =
1√
2π

∫
t∗(−u)(Ŝ∗X∧C(u)− S∗X∧C(u))du.

Then
2

2π
〈(Ŝ∗X∧C)m̂2 − (S∗X∧C)m, Ŝ

∗
X∧C − S∗X∧C〉 ≤ 2‖(S̃X∧C)m̂2 − (SX∧C)m‖ sup

t∈Sm∨m̂,‖t‖=1
|νn(t)|

≤ 1

4
‖ ˜(SX∧C)m̂2

− (SX∧C)m‖2 + 4 sup
t∈Sm∨m̂2

,‖t‖=1
|νn(t)|2

≤ 1

2
‖ ˜(SX∧C)m̂2

− SX∧C‖2 +
1

2
‖SX∧C − (SX∧C)m‖2 + 4 sup

t∈Sm∨m̂2
,‖t‖=1

|νn(t)|2(22)
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Plugging (22) into (21) yields

1

2
‖ ˜(SX∧C)m̂2

− SX∧C‖2 +
1

2
‖ψm̂2‖2 ≤ 3

2
‖SX∧C − (SX∧C)m‖2 +

1

2
‖ψm‖2 + pen2(m)

+4 sup
t∈Sm∨m̂2

,‖t‖=1
|νn(t)|2 − pen2(m̂2).(23)

Now we split νn(t) = νn,1(t) +Rn(t) with

Rn(t) =
1

2π

∫
|u|≤1

t∗(−u)(Ŝ∗X∧C(u)− S∗X∧C(u))du, νn,1(t) = νn(t)−Rn(t).

We have

sup
t∈Sm∨m̂2

,‖t‖=1
|νn(t)|2 ≤ 2 sup

t∈Sm∨m̂2
,‖t‖=1

R2
n(t) + 2 sup

t∈Sm∨m̂2
,‖t‖=1

|νn(t)|2

and from the proof of Proposition 1, we easily get

E

(
sup

t∈Sm∨m̂2
,‖t‖=1

R2
n(t)

)
≤ E

(∫
|u|≤1

|Ŝ∗X∧C(u)− S∗X∧C(u)|2du

)
≤ 2

E(Y 2
1 )

n

∫ 1

0

du

|f∗ε (u)|2
.(24)

For the other term we use the following Proposition.

Proposition 3. Let p(m,m′) = n−1 log(n2)J2(m ∨m′), then

E

(
sup

t∈Sm∨m̂2
,‖t‖=1

|νn(t)|2 − 3p(m, m̂2)

)
+

≤ c′

n
.

The proof of Proposition 3 follows from Talagrand inequality and is proved below. Now we notice
that 3κ2p(m,m

′) ≤ 3pen2(m) + 3pen2(m′) so that

4E

[
sup

t∈Sm∨m̂2
,‖t‖=1

|νn(t)|2 − pen2(m̂2)/4

]
≤ 4E

(
sup

t∈Sm∨m̂2
,‖t‖=1

|νn(t)|2 − 3p(m, m̂2)

)
+

+(
12

κ2
− 1)E(pen2(m̂2)) +

12

κ 2
pen2(m)

≤ c′

n
+

12

κ2
pen2(m),(25)

for 12/κ2 − 1 ≤ 0 i.e. κ2 ≥ 12. Plugging (24) and (25) in (23), we obtain, ∀m ∈ {1, . . . ,mn,2},

E(‖ ˜(SX∧C)m̂2
− SX∧C‖2 + ‖ψm̂2‖2) ≤ 3‖SX∧C − (SX∧C)m‖2 + ‖ψm‖2 + 2(1 + 6/κ2)pen2(m) +

c′

n
.

To conclude, we notice that

‖ ̂(SX∧C)m̂2
− SX∧C‖2 = ‖ ˜(SX∧C)m̂2

− SX∧C + ψm̂2‖2 ≤ 2(‖ ˜(SX∧C)m̂2
− SX∧C‖2 + ‖ψm̂2‖2)

which implies

E(‖ ̂(SX∧C)m̂2
− SX∧C‖2) ≤ inf

m∈{1,...,mn,2}

(
6‖SX∧C − (SX∧C)m‖2 + 2‖ψm‖2 + 6pen2(m)

)
+
c

n
,

which is the announced result. �
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Proof of Proposition 3. Classically we write

E

(
sup

t∈Sm∨m̂2
,‖t‖=1

|νn(t)|2 − 3p(m, m̂2)

)
+

≤
∑

m′∈Mn

E

(
sup

t∈Sm∨m′ ,‖t‖=1
|νn(t)|2 − 3p(m,m′)

)
+

and we apply Inequality of Lemma 2 to R = Sm∨m′ , by using standard arguments of continuity of
t 7→ νn,1(t) and density of a countable subset of Sm∨m′ .

Clearly we have H2 = J2(m∨m′)/n, v = J2(m∨m′) and M =
√
J2(m ∨m′). Moreover we take

ε = 6 log(n2) ∨ 1, and we get

E

(
sup

t∈Sm∨m′ ,‖t‖=1
|νn(t)|2 − 3p(m,m′)

)
+

≤ C

n

(
J2(m ∨m′)e− log(n2) +

J2(m ∨m′)
n

e−K2
√
n

)
using that ε ≥ 1. Now we have J2(m ∨m′) ≤ n, by definition of Mn,2 so that∑

m′∈Mn

E

(
sup

t∈Sm∨m′ ,‖t‖=1
|νn(t)|2 − 3p(m,m′)

)
+

≤ C

n

(
card(Mn)

n
+ card(Mn)e−K2

√
n

)
.

We notice that card(Mn) ≤ n and we get the result.

6.4. Proof of Proposition 2. Note that, f̃X,m = arg mint∈Sm γn,3(t) with

γn,3(t) = ‖t‖2 − 2

n

n∑
j=1

∆j

ŜC(Wj)

1

2π

∫
t∗(u)

eiuWj

f∗ε (u)
du.

Thus γn,3(f̃X,m) = −‖f̃X,m‖2. To prove Proposition 2, the following Lemma is needed.

Lemma 3. For all k ∈ N∗, there exists a constant ck depending on k such that

E

(
sup
y∈[0,τ ]

|ŜC(y)− SC(y)|2k
)
≤ ck
b2knk

,

where b = SZ(τ) is defined in (A2).

Recall that the MISE is bounded as

E‖f̃X,m − fX‖2 ≤ ‖fX − fm‖2 + 2E‖fm − f̂X,m‖2 + 2E‖f̂X,m − f̃X,m‖2.
The first term is the usual bias. Under assumption (A2), the second term of the bound of the
MISE can be studied as follows. We have

E‖fm − f̂X,m‖2 =
1

2π
E
∫ πm

−πm

|f̂∗Z(u)− f∗Z(u)|2

|f∗ε (u)|2
du ≤ 1

2π

∫ πm

−πm

E|f̂∗Z(u)− f∗Z(u)|2

|f∗ε (u)|2
du

=
1

2π

∫ πm

−πm

E
∣∣∣ 1
n

∑n
j=1

(
∆j

SC(Wj)
eiuWj − f∗Z(u)

)∣∣∣2
|f∗ε (u)|2

du =
1

2π

∫ πm

−πm

1
nVar

(
∆j

SC(Wj)
eiuWj

)
|f∗ε (u)|2

du

≤ 1

2π

∫ πm

−πm

1
nE
((

∆j

SC(Wj)

)2
)

|f∗ε (u)|2
du =

E
(

∆1

S2
C(W1)

)
2πn

∫ πm

−πm

1

|f∗ε (u)|2
du ≤ 1

n
E
(

1

SC(Z1)

)
J(m).
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Assumption (A2) ensures that E
(

1
SC(Z1)

)
is well defined and finite

E
(

1

SC(Z1)

)
≤
∫ τ

0

fZ(u)

SC(u)
du ≤ 1

a

∫ τ

0
fZ(u)du ≤ 1

a
< +∞.

Thus

(26) E‖f̂X,m − fX‖2 ≤
J(m)

n

∫ τ

0

fZ(u)

SC(u)
du.

The third term E‖f̂X,m − f̃X,m‖2 is due to the estimation of the survival function. We have

E‖f̂X,m − f̃X,m‖2 =
1

2π
E

∫ πm

−πm

∣∣∣∣∣∣ 1n
n∑
j=1

∆je
iuWj

f∗ε (u)

(
1

SC(Wj)
− 1

ŜC(Wj)

)∣∣∣∣∣∣
2

du


≤ 1

2π

∫ πm

−πm

1

n

n∑
j=1

E

∣∣∣∣∣∆je
iuWj

f∗ε (u)

(
1

SC(Wj)
− 1

ŜC(Wj)

)∣∣∣∣∣
2

du

= J(m)
1

n

n∑
j=1

E

∣∣∣∣∣∆j
ŜC(Zj)− SC(Zj)

SC(Zj)ŜC(Zj)

∣∣∣∣∣
2

Under assumption (A2), we have SC(Zj) > SC(τ) = a > 0. Thus, using Lemma 3,

E

∣∣∣∣∣∆j
ŜC(Zj)− SC(Zj)

SC(Zj)ŜC(Zj)

∣∣∣∣∣
2

≤ 1

a2
E

∣∣∣∣∣∆j
ŜC(Zj)− SC(Zj)

ŜC(Zj)

∣∣∣∣∣
2

≤ 1

a2

E
∣∣∣∣∣ ŜC(Zj)− SC(Zj)

ŜC(Zj)

∣∣∣∣∣
2

1ŜC(Zj)>a/2

+ E

∣∣∣∣∣ ŜC(Zj)− SC(Zj)

ŜC(Zj)

∣∣∣∣∣
2

1ŜC(Zj)≤a/2


≤ 1

a2

E
(

supx∈[0,τ ] |ŜC(x)− SC(x)|2
)

(a/2)2
+ E

∣∣∣∣∣ ŜC(Zj)− SC(Zj)

ŜC(Zj)

∣∣∣∣∣
2

1|ŜC(Zj)−SC(Zj)|≥a/2


≤ 1

a2

(
c1

n

1

(a/2)2b2
+ (n+ 1)2E

(
sup
x∈[0,τ ]

|ŜC(x)− SC(x)|21supx∈[0,τ ] |ŜC(x)−SC(x)|≥a/2

))

≤ 1

a2

(
c1

b2n

1

(a/2)2
+

(n+ 1)2

(a/2)4
E

(
sup
x∈[0,τ ]

∣∣∣ŜC(x)− SC(x)
∣∣∣6))

where (n+ 1)2 is due to (14) and we use E(|X|21|X|>c) ≤ E(|X|6/c4). Consequently we get

(27) E‖f̂X,m − f̃X,m‖2 ≤
4

a4

1

n
(
c1

b2
+ 16

c3

b6a2
)J(m).

Gathering (26) and (27) implies the result. �.
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6.5. Proof of Theorem 2. By definition of m̃, we have that ∀m ∈ {1, . . . ,mn,3},

γn,3(f̃X,m̃) + pen(m̃) ≤ γn,3(fm) + pen(m)

For any m,m′ ≤ mn,3, ∀t ∈ Sm and ∀s ∈ Sm′ , we have the decomposition

γn,3(t)− γn,3(s) = ‖t‖2 − ‖s‖2 − 2〈t, f̃X,m〉+ 2〈t, f̃X,m′〉
= ‖t− fX‖2 − ‖s− fX‖2 + 2〈t− s, fm?〉 − 2〈t− s, f̃X,m?〉
= ‖t− fX‖2 − ‖s− fX‖2 − 2〈t− s, f̃X,m? − f̂X,m?〉 − 2〈t− s, f̂X,m? − fm〉

where m? = m ∨m′. With t = f̃X,m̃, s = fm, m∗ = m ∨ m̃, we deduce that

‖f̃X,m̃ − fX‖2 ≤ ‖fm − fX‖2 + pen3(m) + 2〈f̃X,m̃ − fm, f̃X,m∗ − f̂X,m∗〉
+2〈f̃X,m̃ − fm, f̂X,m∗ − fm∗〉 − pen3(m̃)

We now detail the collection Sm. We introduce the usual sinus cardinal function φ(x) = sin(x)/x
and the corresponding normalized functions φm,`(x) =

√
mφ(mx − `) for ` ∈ Z. The collection

(φm,`)`∈Z is an orthonormalized base which generates Sm. In the following, we work with the ball
Bm = {t ∈ Sm, ‖t‖ = 1}.

The term 2〈f̃X,m̃ − fm, f̂X,m∗ − fm∗〉 can be studied as follows.

2〈f̃X,m̃ − fm, f̂X,m∗ − fm∗〉 ≤ 2‖f̃X,m̃ − fm‖ sup
t∈Bm∗

|〈t, f̂X,m∗ − fm∗〉|

≤ 1

8
‖f̃X,m̃ − fm‖2 + 8 sup

t∈Bm∗
|νn(t)|2 ≤ 1

4
‖f̃X,m̃ − fX‖2 +

1

4
‖fX − fm‖2 + 8 sup

t∈Bm∗
|νn(t)|2

with νn(t) = 〈t, f̂X,m∗ − fm∗〉. We proceed similarly for the term 2〈f̃X,m̃ − fm, f̃X,m∗ − f̂X,m∗〉:

2〈f̃X,m̃ − fm, f̃X,m∗ − f̂X,m∗〉 ≤ 2‖f̃X,m̃ − fm‖ sup
t∈Bm∗

|〈t, f̃X,m∗ − f̂X,m∗〉|

≤ 1

8
‖f̃X,m̃ − fm‖2 + 8 sup

t∈Bm∗
|Rn(t)|2 ≤ 1

4
‖f̃X,m̃ − fX‖2 +

1

4
‖fX − fm‖2 + 8 sup

t∈Bm∗
|Rn(t)|2

with Rn(t) = 〈t, f̃X,m∗ − f̂X,m∗〉.
Let us introduce two functions p1 and p2 such that 8p1(m, m̃) + 8p2(m, m̃) ≤ pen(m) + pen(m̃).

These two functions are detailed later on. This yields, ∀m ≤ mn,3,

1

2
‖f̃X,m̃ − fX‖2 ≤ 3

2
‖fm − fX‖2 + pen3(m) + 8

(
sup
t∈Bm∗

|νn(t)|2 − p1(m, m̃)

)
+

+ 8

(
sup
t∈Bm∗

|Rn(t)|2 − p2(m, m̃)

)
+

+ 8p1(m, m̃) + 8p2(m, m̃)− pen3(m̃)

Let us start with the term
(
supt∈Bm∗ |νn(t)|2 − p1(m, m̃)

)
+

. First remark that νn(t) = 1
n

∑n
j=1 ψt(Wj ,∆j)−

E(ψt(Wj ,∆j)) where

ψt(Wj ,∆j) =
∆j

SC(Wj)

1

2π

∫
t∗(u)

eiuWj

f∗ε (u)
du.
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Thus νn(t) is a centered empirical process and Talagrand’s inequality can be applied (Lemma 2).

Lemma 4. Let m? = m ∨m′ and define

p1(m,m′) = κ E
(

δW
SC(W )

)2

log(J3(m?))
J(m?)

n
.

Then, there exists a numerical constant κ such that, for any m,m′ ∈Mn, we have

E

((
sup
t∈Bm?

|νn(t)|2 − p1(m,m′)

)
+

)
≤ C

(
1

an(m?)2
+

1

n
e−c
√
n

)
where C and c are constants.

Now we bound E
(
supt∈Bm∗ |νn(t)|2 − p1(m, m̃)

)
+

where m∗ = m ∨ m̃. Indeed, Lemma 4 yields

E

(
sup
t∈Bm∗

|νn(t)|2 − p1(m, m̃)

)
+

≤
∑

m′∈MN

E

((
sup
t∈Bm?

|νn(t)|2 − p1(m,m′)

)
+

)

≤ C
∑

m′∈Mn

(
1

an(m?)2
+

1

n
e−c
√
n

)
≤ C

n
, if mn,3 ≤ nα.

Now, we have to bound the term
(
supt∈Bm∗ |Rn(t)|2 − p2(m, m̃)

)
+

. Remark that

Rn(t) =
1

n

n∑
j=1

∆j

(
1

ŜC(Wj)
− 1

SC(Wj)

)
1

2π

∫
t∗(u)

eiuWj

f∗ε (u)
du,

which is not an empirical process. The result is obtained with the following lemma.

Lemma 5. Let p2(m,m′) = κ
4

a4b2
J(m?)

n
log n where m? = m ∨m′. Then there exists a constant

κ such that for any m,m′ ∈≤ mn,3,

E

((
sup
t∈Bm?

|Rn(t)|2 − p2(m,m′)

)
+

)
≤ C 4

a4

1

n3
,

for some constant C.

As for the previous term, we deduce that E
(
supt∈Bm∗ |Rn(t)|2 − p2(m,m′)

)
+
≤ C

n . Hence the

result of the theorem. �.

Proof of Lemma 4 Talagrand’s inequality requires to control the following quantities

E

[
sup
t∈Bm?

|νn(t)|

]
≤ H, sup

t∈Bm?

1

n

n∑
j=1

V ar(ψt(Wj ,∆j)) ≤ v, sup
t∈Bm?

‖ψt‖∞ ≤M
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Start with the first term. We study E
[
supt∈Bm? ν

2
n(t)

]
. Any t ∈ Bm? can be written as t(x) =∑

`∈Z am?,`φm?,`(x) with
∑

`∈Z a
2
m?,` ≤ 1. Then we have

E

[
sup
t∈Bm?

ν2
n(t)

]
≤
∑
`∈Z

E

 1

n

n∑
j=1

ψφm?,`(Wj ,∆j)− E(ψφm?,`(Wj ,∆j))

2

=
∑
`∈Z

Var

 1

n

n∑
j=1

ψφm?,`(Wj ,∆j)

 =
1

n

∑
`∈Z

Var
(
ψφm?,`(W1,∆1)

)
≤ 1

n

∑
`∈Z

E ψ2
φm?,`

(W1,∆1)

≤ 1

n

∑
`∈Z

E

(
1

(2π)2

∣∣∣∣∫ φ∗m?,`(u)
∆j

SC(Wj)

eiuWj

f∗ε (u)
du

∣∣∣∣2
)

=
1

n

1

2π
E

(∫ πm?

−πm?

(
∆j

SC(Wj)

)2 du

|f∗ε (u)|2

)

≤ 1

n

1

2π

∫ πm?

−πm?
E
(

∆j

SC(Wj)

)2 du

|f∗ε (u)|2
=

1

n
E
(

∆j

SC(Wj)

)2

J(m?) =: H2

Then we study the second term.

sup
t∈Bm?

1

n

n∑
j=1

Var(ψt(Wj ,∆j)) ≤ sup
t∈Bm?

E (ψt(Wj ,∆j))
2

≤ sup
t∈Bm?

E

((
∆j

SC(Wj)

)2

‖t∗‖2 1

(2π)2

∫ πm?

−πm?

du

|fε(u)|2

)
≤ E

(
∆j

SC(Wj)

)2

J(m?) =: v

Finally, we have

sup
t∈Bm?

‖ψt‖∞ = sup
t∈Bm?

sup
x,c
|ψt(x ∨ c, δx≤c)| = sup

t∈Bm?
sup
x,c

∣∣∣∣ δx≤c
SC(x ∨ c)

1

2π

∫
t∗(u)

eiux∨c

f∗ε (u)
du

∣∣∣∣
≤ 1

a

1

2π
sup
t∈Bm?

(∫
|t∗(u)|2du

)1/2
(∫ πm?

−πm?

du

|f∗ε (u)|2

)1/2

=
1

a

√
J(m?) = M

By choosing the constant ε2 = 1
K1

log(J3(m?)), we get

v

n
e−K1ε2

nH2

v =
1

n
E
(

∆j

SC(Wj)

)2

J(m?)e− log(J3(m?)) ≤ 1

a2nm?2

and

98b2

K1n2C2(ε2)
e
− 2K1

7
√
2
C(ε2)εnH

b =
98J(m?)

K1n2a2/K1 log(J3(m?))
e
− 6K1

7
√
2K1

log(J(m?))
n
√
J(m?)a

√
na
√
J(m?)

=
98J(m?)

n2a23 log(J(m?))
e
− 6

7
√
2

log(J(m?))
√
na

The Talagrand Inequality ensures the lemma. �.
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Proof of Lemma 5 We want to bound E
((

supt∈Bm? |Rn(t)|2 − p2(m,m′)
)

+

)
with

Rn(t) =
1

n

n∑
j=1

∆j

(
1

ŜC(Wj)
− 1

SC(Wj)

)
1

2π

∫
t∗(u)

eiuWj

f∗ε (u)
du.

We have

sup
t∈Bm?

|Rn(t)|2 ≤ 1

n

n∑
j=1

∣∣∣∣∣SC(Zj)− ŜC(Zj)

SC(Zj)ŜC(Zj)

∣∣∣∣∣
2

1

2π

∫ πm?

−πm?

1

|f∗ε (u)|2
du =

1

n

n∑
j=1

∣∣∣∣∣SC(Zj)− ŜC(Zj)

SC(Zj)ŜC(Zj)

∣∣∣∣∣
2

J(m?).

We consider different random domains depending on the levels of ŜC : Ω1 = {x, ŜC(x) ≤ a/2} and

Ω2 = {‖SC − ŜC‖∞ ≥ d
√

log n/n} = { sup
x∈[0,τ ]

|SC − ŜC |∞ ≥ d
√

log n/n}.

First, let us consider the domain Ω1. Remark that

E

((
sup
t∈Bm?

|Rn(t)|21ŜC≤a/2 − p2(m,m′)

)
+

)
≤ E

(
sup
t∈Bm?

|Rn(t)|21ŜC≤a/2

)

≤ E

 sup
t∈Bm?

∣∣∣∣∣SC(Z1)− ŜC(Z1)

SC(Z1)ŜC(Z1)

∣∣∣∣∣
2

1ŜC≤a/2J(m?)

 ≤ nE
∣∣∣∣∣SC(Z1)− ŜC(Z1)

SC(Zj)ŜC(Z1)

∣∣∣∣∣
2

1ŜC≤a/2


because m is such that J(m) ≤ n. Recall that for any w, SC(w) > a and ŜC(w) > 1/(n+ 1). Then
for any p > 0, we have

E

(
|SC(Z1)− ŜC(Z1)|
SC(Z1)ŜC(Z1)

1ŜC≤a/2

)p
≤

(
n+ 1

a

)p
E
(
‖SC − ŜC‖p∞1ŜC≤a/2

)
≤

(
n+ 1

a

)p(2

a

)q
E
(
‖SC − ŜC‖p+q∞

)
for any q > 0. Lemma 3 yields with q = p+ 6, p = 2, E

(
|SC(W )−ŜC(W )|
SC(W )ŜC(W )

1ŜC≥a/2

)2
≤ c528a−10n−3.

Finally,

E

((
sup
t∈Bm?

|Rn(t)|21ŜC≤a/2 − p2(m,m′)

)
+

)
≤ 28

a10b10

c5

n2

Then we consider the domain Ωc
1 ∩ Ω2.

E

((
sup
t∈Bm?

|Rn(t)|2 − p2(m,m′)

)
+

1ŜC>a
2
1‖SC−ŜC‖∞≤d

√
logn/n

)

≤ E
((

4

a4
‖SC − ŜC‖2∞J(m?)− p2(m,m′)

)
+

1ŜC>a
2
1‖SC−ŜC‖∞≤d

√
logn/n

)
≤ E

((
4

a4
d2 log n

n
J(m?)− p2(m,m′)

)
+

)
= 0
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because p2(m,m′) > 4
a4
d2 logn

n J(m?).
Lastly, let us finish with the domain Ωc

1 ∩ Ωc
2.

E
((

sup |Rn(t)|2 − p2(m,m′)
)

+
1ŜC>a

2
1‖SC−ŜC‖∞≥d

√
logn/n

)
≤ E

(
4

a4
‖SC − ŜC‖2∞J(m?)1‖SC−ŜC‖∞≥d

√
logn/n

)
≤ 16

a4
nE

(
1‖SC−ŜC‖∞≥d

√
logn/n

)
≤ 16

a4
n e−2(bd)2 logn+Abd

√
logn

where the last inequalities hold by deviation inequality (28). Therefore d is chosen as cste/b. �.

6.6. Proof of lemma 3. We use a non asymptotic exponential bound for the Kaplan-Meier esti-
mator shown by [Földes and Rejto, 1981] which can be formulated as follows (see [Bitouzé et al.,
1999])

(28) P
(√

n‖SZ (ŜC − SC)‖∞ > λ
)
≤ 2.5 e−2λ2+Aλ.

This inequality implies the Lemma 3. Indeed, we have

E

(
sup
x∈[0,τ ]

|ŜC(x)− SC(x)|

)2k

≤ 2k

∫ +∞

0
u2k−1 P( sup

x∈[0,τ ]
|ŜC(x)− SC(x)| > u) du

= 2k

∫ +∞

0
u2k−1 P(b−1 sup

x∈[0,τ ]
|SZ (ŜC − SC)(x)| > u) du

≤ 2k

∫ +∞

0
u2k−1 P(

√
n‖SZ (ŜC − SC)‖∞ > b

√
nu) du ≤ 5keA

2/8

∫ ∞
0

u2k−1 exp

(
−2b2n

[
u− A

4
√
nb

]2
)
du

≤ 5eA
2/8k

2kb2k

∫ +∞

−A/(2
√

2)

(
z +

A

2
√

2

)2k−1

e−z
2
dzn−k = ckn

−kb−2k.
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