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Introduction

This paper, a companion to [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF], develops tools to get useful quantitative bounds on rates of convergence to quasi-stationarity for absorbing Markov processes. With notation explained below, the bounds in [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] In the middle is the term of interest: µ t is the transition probability conditioned on non-absorbtion at time t ě 0 and ν is the quasi-stationary distribution. On both sides, r P t is the Doob transform (forced to be non-absorbing), r µ 0 is an associated starting distribution and r η is the stationary distribution of the transformed process. The point is that quantitative rates of convergence to quasi-stationarity are hard to come by, requiring new tools which are not readily available. The pair p r P t , r ηq is a usual ergodic Markov chain with many techniques available. The two sides differ by a factor ϕ ^{2ϕ _ . Here ϕ is the usual Peron-Forbenius eigenfunction for the matrix restricted to the non-absorbing sites and ϕ ^≔ min ϕ, ϕ _ ≔ max ϕ. For the bounds to be useful, we must get control of this ratio. In [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF], this control was achieved in special examples where analytic expressions are available with explicit diagonalization. The purpose of the present paper is to give a probabilistic interpretation of this ratio as well as several bounding techniques. For background on quasi-stationarity see Méléard and Villemonais [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF], Collet, Martínez and San Martín [START_REF] Collet | Quasi-stationary distributions[END_REF], van Doorn and Pollett [START_REF] Van Doorn | Quasi-stationary distributions for discrete-state models[END_REF], Champagnat and Villemonais [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF] or the discussion in [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF]. We proceed to a more careful description.

Let us begin by introducing the finite setting. The whole finite state space is S ≔ S \ t8u, where 8 is the absorbing point. This means that S is endowed with a Markov generator matrix L ≔ p Lpx, yqq x,yP S whose restriction to S ˆS is irreducible and such that @ x P S, Lp8, xq " 0 D x P S : Lpx, 8q ą 0.

Recall that a Markov (respectively subMarkovian) generator is a matrix whose off-diagonal entries are non-negative and such that the sums of the entries of a row all vanish (resp. are non-positive).

An eigenvalue λ of L is said to be of Dirichlet type if an associated eigenvector vanishes at 8. Equivalently, λ is an eigenvalue of the S ˆS minor K of L. Since the matrix K is an irreducible subMarkovian generator, the Perron-Frobenius theorem implies that K admits a unique eigenvalue λ 0 whose associated eigenvector is positive. The eigenvalue λ 0 is simple and we denote by ϕ an associated positive eigenvector. Its renormalization is not very important for us, because we will be mainly concerned by its amplitude defined by

a ϕ ≔ ϕ _ ϕ ^, with ϕ _ ≔ max xPS ϕpxq, ϕ ^≔ min xPS ϕpxq.
We refer to [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] for the importance of a ϕ in the investigation of the convergence to quasistationarity of the absorbing Markov processes generated by L. Our purpose here is to estimate this quantity.

Our approach is based on a probabilistic interpretation of ϕ and, more precisely, of the ratios of its values. For any x P S, let X x ≔ pX x t q tě0 be a càdlàg Markov process generated by L and starting from x. For any y P S, denote by τ x y the first hitting time of y by X x :

τ x y ≔ inftt ě 0 : X x t " yu, (1) 
with the convention that τ x y " `8 if X x never reaches y. The first identity below comes from Jacka and Roberts [START_REF] Jacka | Weak convergence of conditioned processes on a countable state space[END_REF].

Proposition 1 For any x, y P S, we have ϕpxq ϕpyq " Erexppλ 0 τ x y q1 τ x y ăτ x 8 s.

In particular, with O ≔ tx P S : Lpx, 8q ą 0u, we have

a ϕ " max xPS, yPO
Erexppλ 0 τ x y q1 τ x y ăτ x 8 s.

This probabilistic interpretation leads to two methods of estimating a ϕ . The first one is through a path argument.

If γ " pγ 0 , γ 1 , ..., γ l q is a path in S, with Lpγ k , γ k`1 q ą 0 for all k P 0, l ´1 , denote

P pγq ≔ ź kP 0,l´1 Lpγ k , γ k`1 q ˇˇL pγ k , γ k q ˇˇ´λ 0 (2) 
(for any l 1 ď l 2 P Z, l 1 , l 2 ≔ tl 1 , l 1 `1, ..., l 2 ´1, l 2 u and for l 1 P N, l 1 ≔ 1, l 1 ).

Proposition 2 Assume that for any y P O and x P S, we are given a path γ y,x going from y to x.

Then we have

a ϕ ď ˆmin yPO, xPS P pγ y,x q ˙´1 .
The second method requires that K (the generator restricted to S) admit a reversible probability η on S, namely satisfying @ x, y P S, ηpxq Lpx, yq " ηpyq Lpy, xq.

The operator ´K is then diagonalizable. Let λ 0 ă λ 1 ď λ 2 ď ¨¨¨ď λ N ´1 be its eigenvalues, where N is the cardinality of S (the first inequality is strict, due to the Perron Frobenius theorem and to the irreducibility of K). For any x P S, let λ 0 pSztxuq be the first eigenvalue of the pSztxuqˆpSztxuq minor of ´K (or of ´L). Finally, consider

λ 1 0 ≔ min xPO λ 0 pSztxuq. (3) 
Proposition 3 Under the reversibility assumption, we have

a ϕ ď ¨ˆ1 ´λ0 λ 1 0 ˙ź kP N ´2 ˆ1 ´λ0 λ k ˙' ´1 .
One advantage of the last result is that it can be extended to absorbing processes on denumerable state spaces, at least under appropriate assumptions. We won't develop a whole theory here, so let us just give the example of birth and death processes on Z `absorbing at 0 and for which 8 is an entrance boundary. To follow the usual terminology in this domain, we change the notation, 0 being the absorbing point and 8 being the boundary point at infinity of Z `. We consider S ≔ N ≔ t1, 2, 3, ...u and S ≔ Z `≔ t0, 1, 2, 3, ...u, endowed with a birth and death generator L, namely of the form @ x " y P S, Lpx, yq "

$ ' ' & ' ' % b x , if y " x `1 d x , if y " x ´1 ´dx ´bx , if y " x 0 , otherwise,
where pb x q xPZ `and pd x q xPN are the positive birth and death rates, except that b 0 " 0: 0 is the absorbing state and the restriction of L to N is irreducible. The boundary point 8 is said to be an entrance boundary for L (cf. for instance Section 8.1 of the book [START_REF] Anderson | Continuous-time Markov chains[END_REF] of Anderson) if the following conditions are met:

8 ÿ x"1 1 π x b x x ÿ y"1 π y " `8 (4) 8 ÿ 
x"1

1 π x b x 8 ÿ y"x`1 π y ă `8, (5) 
where

@ x P N, π x ≔ # 1 , if x " 1 b 1 b 2 ¨¨¨b x´1 d 2 d 3 ¨¨¨dx , if x ě 2. ( 6 
)
The meaning of ( 4) is that it is not possible (a.s.) for the underlying process X x , for x P Z `to explode to 8 in finite time, while (5) says it can come back in finite time from as close as wanted to 8. One consequence of ( 5) is that Z ≔ ř xPN π x ă `8, so we can consider the probability

@ x P N, ηpxq ≔ Z ´1π x .
Denote by F the space of functions which vanish outside a finite subset of points from N and by K the restriction of the operator L to F. It is immediate to check that K is symmetric on L 2 pηq. Thus we can consider its Freidrich's extension (see e.g. the book of Akhiezer and Glazman [START_REF] Akhiezer | Theory of linear operators in Hilbert space[END_REF]), still denoted K, which is a self-adjoint operator in L 2 pηq. The fact that 8 is an entrance boundary ensures indeed that such a self-adjoint extension is unique. It is furthermore known that the spectrum of ´K only consists of eigenvalues of multiplicity one, say the pλ n q nPZ `in increasing order, see for instance Gong, Mao and Zhang [START_REF] Gong | Hitting time distributions for denumerable birth and death processes[END_REF]. Let ϕ be an eigenvector associated to the eigenvalue λ 0 ą 0 of ´K. As in (3), since the absorbing point is only reachable from 1, we also introduce

λ 1 0 ≔ λ 0 pNzt1uq,
which is the first eigenvalue of the restriction of ´K to functions which vanish at 1. We can now state the extension of Proposition 3:

Theorem 4 Under the above assumptions, we have λ 1 0 ą λ 0 and ÿ

nPZ `1 λ n ă `8. (7) 
In particular, we deduce that

ˆ1 ´λ0 λ 1 0 ˙ź nPN ˆ1 ´λ0 λ n ˙ą 0.
Up to a change of sign, the eigenvector ϕ is increasing on Z `(with the convention ϕp0q " 0). It is furthermore bounded and its amplitude satisfies:

a ϕ ≔ sup xPN ϕpxq inf yPN ϕpyq " lim xÑ8 ϕpxq ϕp1q ď ˜ˆ1 ´λ0 λ 1 0 ˙ź nPN ˆ1 ´λ0 λ n ˙¸´1 .
A priori, this result is interesting only if one has at his disposal some estimates on the gap λ 1 0 ´λ0 and on the spectrum pλ n q nPZ `. For the latter, it can be useful to take into account the other principal Dirichlet eigenvalues: for n P Z `, define λ pnq ≔ λ 0 pZ `z 0, n q (namely the first eigenvalue of the restriction of ´K to functions which vanish on 1, n ´1 , so that λ p0q 0 " λ 0 and λ p1q 0 " λ 1 0 ).

Corollary 5 With the notation and assumptions of Theorem 4, we have

a ϕ ď ¨ˆ1 ´λ0 λ 1 0 ˙2 ź nPNzt1u ˜1 ´λ0 λ pnq 0 ¸' ´1 ď ¨ˆ1 ´λ0 λ 1 0 ˙1`m ź nPNz 1,m ˜1 ´λ0 λ pnq 0 ¸' ´1
for any given m P N.

The advantage of the latter inequality, is that there exist Hardy bounds on the λ pnq which are semi-explicit and relatively sharp: define

@ n P Z `, A n " sup mąn ÿ kP n`1,m 1 πpkqd k ÿ lěm πplq.
It was proven in [START_REF] Miclo | An example of application of discrete Hardy's inequalities. Markov Process[END_REF] that

@ n P Z `, A ´1 n {4 ď λ pnq 0 ď A ´1 n . (8) 
This suggests the following procedure to apply Corollary 5 on concrete examples. Compute or evaluate the A n , for n P Z `, and find m P N such that A n ď 2A 0 for all n ą m. It follows from [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] that for n ě m, 1 ´λ0 {λ n ě 1 ´An {p4A 0 q ě 1{2, so we get

a ϕ ď ¨ˆ1 ´λ0 λ 1 0 ˙1`m ź nPNz 1,m ˆ1 ´An 4A 0 ˙' ´1
It would then remain to estimate the gap λ 1 0 ´λ0 (e.g. Lemma 15 below can serve as a first step in this direction). Nevertheless, the above approach can quickly lead to involved computations. In the final Example 19, we present a class of birth and death processes which can be treated directly through Corollary 5.

There is a classical result converse to Theorem 4, showing that the criterion of entrance boundary is in some sense optimal for effective absorption at 0 and boundedness of ϕ. It is typically based on the Lyapounov function approach of convergence of Markov processes (cf. the book of Meyn and Tweedie [START_REF] Meyn | Markov chains and stochastic stability[END_REF]), Proposition 6 below gives a more precise statement for an example.

Let L be a birth and death generator on Z `, absorbing at 0 and irreducible on N. It is always possible to associate to it the minimal Markov processes X x ≔ pX t q 0ďtăσ8 , starting from x P Z ànd defined up to the explosion time σ 8 . These are constructed in the following probabilistic way, where all the used random variables are independent (conditionally to the parameters entering in the definition of their laws). We take X x t " x for 0 ď t ă σ 1 , where σ 1 is distributed according to an exponential variable of parameter ˇˇL px, xq ˇˇ(if x " 0, Lp0, 0q " 0, so σ 1 " `8 " σ 8 , namely the trajectory stays at the absorbing point 0). Next, if x " 0, the position X x σ 1 " y is chosen according to the distribution pLpx, yq{|Lpx, xq|q yP S ztxu . The process stays at this position for t P rσ 1 , σ 2 q, where σ 2 ≔ σ 1 `E2 , with E 2 an exponential variable of parameter ˇˇL pX x σ 1 , X x σ 1 q ˇˇ. If X x σ 1 " 0, the next position X x σ 2 " y is chosen according to the distribution pLpX x σ 1 , yq{|LpX x σ 1 , X x σ 1 q|q yP SztX x σ 1 u . This procedure goes on up to the time σ 8 ≔ lim nÑ`8 σ n (by convention σ 8 " `8 if one of the σ n , n P N, is infinite, which a.s. means that 0 has been reached).

We consider again the first hitting times τ x y defined in (1), now for x, y P Z `.

Proposition 6 Assume on one hand, that there exist x P N such that τ x 0 is a.s. finite, namely the process X x a.s. ends up being absorbed at 0. Then this is true for all x P Z `. On the other hand, that there exist a positive number λ ą 0 and a positive function ϕ on N, with finite amplitude a ϕ ă `8, which satisfy Krϕs ď ´λϕ. Then 8 is an entrance boundary for L.

Condition (5) (coming back from infinity in finite time) for birth and death processes satisfying (4) (non explosion) and admitting a positive generalized eigenvector (i.e. not necessarily belonging to L 2 pηq) associated to a positive eigenvalue of ´K is also known to be equivalent to the uniqueness of the quasi-invariant probability distribution, see Theorem 3.2 of Van Doorn [START_REF] Van Doorn | Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes[END_REF] (or Theorem 5.4 of the book [START_REF] Collet | Quasi-stationary distributions[END_REF] of Collet, Martínez and San Martín). Thus the quantitative reduction (through the amplitude a ϕ ) of convergence to quasi-stationarity to the convergence to equilibrium presented in [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] can be applied to such birth and death processes, if and only if they admit a unique quasiinvariant distribution.

The uniqueness of the quasi-stationary probability was characterized in a general setting by Champagnat and Villemonais [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF]. It appears that a ϕ may be infinite in this situation, in particular if diffusion processes are considered (then inf ϕ " 0).

Recently Gao and Mao [START_REF] Gao | Quasi-stationary distribution for the birth-death process with exit boundary[END_REF] also gave probabilist and spectral representations of the first Dirichlet eigenvector in the context of Theorem 4, see their Lemmas 3.2 and 3.4. Their formula (3.15) for its amplitude corresponds to the (extension to the infinite setting of the) r.h.s. of ( 25) below, due to the fact that in the absorbed (at the boundary) birth and death framework, ( 23) and [START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF] are in fact equalities.

The paper is constructed according to the following plan. In the next section, Proposition 1 is recovered along with a probabilistic interpretation of the first Dirichlet eigenvector ϕ. As a consequence, Propositions 2 and 3 are obtained in Section 3. The situation of denumerable absorbing at 0 birth and death processes is treated in Section 4, where an example is given.

Probabilistic interpretation of ϕ

Our main purpose here is to recover the stochastic representation of the ratio of the first Dirichlet eigenvector ϕ given in Proposition 1. This is due to Jacka and Roberts [START_REF] Jacka | Weak convergence of conditioned processes on a countable state space[END_REF], who deduce it from the corresponding discrete time result proven by Seneta [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF]. Since these authors work with denumerable state spaces, for the sake of simplicity and completeness, we present here a direct proof for finite state spaces.

We start by recalling three simple and classical results. Consider PpSq the set of probability measures on S. Generalizing (1), let us define, for any initial distribution µ P PpSq and for any y P S,

τ µ y ≔ inftt ě 0 : X µ t " yu,
where pX µ t q tě0 is a càdlàg Markov process generated by L and starting from µ.

Lemma 7 For any λ ě 0, we have 

D
For given x, y P S, let γ " pγ 0 , γ 1 , ..., γ l q be a path in S going from x to y and satisfying Lpγ k , γ k`1 q ą 0. Such a path exists, by irreducibility of K. Let A γ be the event that the first jump of the trajectory X x is from x " γ 0 to γ 1 , that the second jump of X x is from γ 1 to γ 2 , ..., that the l-th jump of X x is from γ l´1 to γ l . By the probabilistic construction of X x , we have that

PrA γ s " Lpγ 0 , γ 1 q |Lpγ 0 , γ 0 q| Lpγ 1 , γ 2 q |Lpγ 1 , γ 1 q| ¨¨¨L pγ l´1 , γ l q |Lpγ l´1 , γ l´1 q| (10) ą 0.
Using the strong Markov property of X x at the minimum time between the time of the l-th jump time and the absorbing time, we get

Erexppλτ x 8 qs ě Er1 A γ exppλτ x 8 qs ě Er1 A γ Erexppλτ y 8 qss " PrA γ sErexppλτ y 8 qs,
which implies [START_REF] Stewart | Markov processes[END_REF].

Define

Λ ≔ tλ ě 0 : @ µ P PpSq, Erexppλτ µ 8 qs ă `8u.

Lemma 8 We have

Λ " r0, λ 0 q.

Proof Consider ν P PpSq the quasi-stationary distribution associated to L, namely the left eigenvector of K (extended to vanish at 8) associated to the eigenvalue ´λ0 . For any t ě 0, the distribution of X ν t is expp´λ 0 tqν `p1 ´expp´λ 0 tqqδ 8 . It follows that @ t ě 0, Prτ ν 8 ą ts " PrX ν t P Ss " expp´λ 0 tq, namely, τ ν 8 is distributed according to the exponential law of parameter λ 0 . In particular, we have @ λ ě 0, Erexppλτ ν 8 qs "

" λ 0 λ 0 ´λ , if λ ă λ 0 `8 , if λ ě λ 0 .
The announced result follows from the previous lemma, showing that Λ ≔ tλ ě 0 : Erexppλτ ν 8 qs ă `8u.

For any λ P Λ, we can consider the mapping ϕ λ defined on S by

@ x P S, ϕ λ pxq ≔ Erexppλτ x 8 qs Erexppλτ ν 8 qs
, where ν P PpSq is the quasi-stationary distribution of L, whose definition was recalled in the above proof (but for our purpose, ν could be replaced by any other fixed distribution of PpSq).

Proposition 9 As λ P Λ converges to λ 0 , the mapping ϕ λ converges on S to a function ϕ which is a positive eigenvector associated to the eigenvalue λ 0 of ´K.

Proof

We begin by checking that for fixed λ P Λ, ϕ λ satisfies

@ x P S, Lrϕ λ spxq " ´λϕ λ pxq. (11) 
To simplify the notation, define

@ x P S, ψ λ pxq ≔ Erexppλτ x 8 qs, (12) 
it is sufficient to show that Lrψ λ s " ´λψ λ on S. This comes from the fact that for x P S, the quantity ψ λ pxq can be seen as the Feynman-Kac integral with respect to the Markov process X x and the potential λ1 S (for the diffusion analogue, see e.g. Section 4.7 of the book of Chung and Walsh [START_REF] Lai | Markov processes, Brownian motion, and time symmetry[END_REF]). But maybe the shortest way to deduce it is to use the martingale problem associated to X x (for a general reference, see the book of Ethier and Kurtz [START_REF] Stewart | Markov processes[END_REF]). More precisely, consider the mapping f on R `ˆS defined by @ pt, yq P R `ˆS , f pt, yq ≔ exppλtqψ λ pyq.

There exists a local martingale M " pM t q tě0 such that a.s.

@ t ě 0, f pt, X x t q " f p0, xq `ż t 0 B s f ps, X x s q `Lrf ps, ¨qspX x s q ds `Mt
This is sometimes known as the time-inhomogeneous Dynkin formula (or the Dynkin formula for the time-space Markov process pt, X t q tě0 ), cf. for instance the book of Rogers and Williams [START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF].

The fact that λ P Λ implies that M is an actual martingale (namely that for all t ě 0, M t is integrable). In particular, by the stopping theorem, we get that for any t ě 0, ErM t^τ x 8 s " 0, so that

Erf pt ^τ x 8 , X x t^τ x 8 qs " ψ λ pxq `E "ż t^τ x 8 0 B s f ps, X x s q `Lrf ps, ¨qspX x s q ds  .
But the strong Markov property applied to the stopping time t ^τ x 8 implies that Erf pt ^τ x 8 , X x t^τ x 8 qs " Erexppλτ x 8 qs " ψ λ pxq, and we get that

E "ż t^τ x 8 0 B s f ps, X x s q `Lrf ps, ¨qspX x s q ds  " 0.
Taking into account that for any s ě 0 and y P S, B s f ps, yq " λf ps, yq, we deduce that

λψ λ pxq `Lrψ λ spxq " lim tÑ0 `t´1 E "ż t^τ x 8 0
λf ps, X x s q `Lrf ps, ¨qspX x s q ds  " 0, which amounts to [START_REF] Gao | Quasi-stationary distribution for the birth-death process with exit boundary[END_REF]. Of course, the λ P Λ are not Dirichlet eigenvalues of L, because ϕ λ p8q " 0:

ϕ λ p8q " 1 Erexppλτ ν 8 qs
, but as λ P Λ goes to λ 0 , this expression converges to zero. Furthermore, if for x, y P S, we call r x,y the r.h.s. of (10) and r " min

x,yPS r x,y , then

@ λ P Λ, @ x, y P S, r ď ϕ λ pyq ϕ λ pxq ď r ´1. ( 13 
)
Thus we can find a sequence pl n q nPN of elements of Λ converging to λ 0 such that ϕ ln converges toward a function ϕ on S, positive on S. According to the previous observation ϕp8q " 0 and taking the limit in [START_REF] Gao | Quasi-stationary distribution for the birth-death process with exit boundary[END_REF], we get

Lrϕs " ´λ0 ϕ, it follows that the restriction to S of ϕ is a positive eigenvector associated to the eigenvalue λ 0 of ´K. Furthermore, νrϕs " lim λÑλ 0 ´νrϕ λ s " 1, and this normalization entirely determines ϕ. It follows that the mapping ϕ does not depend on the chosen sequence pl n q nPN . A usual compactness argument based on [START_REF] Horn | Matrix analysis[END_REF] shows that in fact lim λÑλ 0 ´ϕλ " ϕ.

We need a last preliminary result.

Lemma 10 For any x P S, we have

λ 0 pSztxuq ą λ 0 ,
where we recall that the l.h.s. is the first eigenvalue of the pSztxuq ˆpSztxuq minor of ´L.

Heuristically, this result says that for any fixed x P S, it is asymptotically strictly easier for the underlying processes to exit Sztxu than S. It is well-known in the reversible context, via the variational characterization of the eigenvalues, but we cannot use that argument here. Note also that in the trivial case where S is reduced to a singleton, by convention λ 0 pHq " `8 and the above inequality is also true.

Proof

Fix x P S and let ϕ x be a non-negative eigenvector associated to the eigenvalue ´λ0 pSztxuq of the pSztxuq ˆpSztxuq minor of ´L. Extending ϕ x on S by making it vanish on t8, xu, we have that @ y P Sztxu, Lrϕ x spyq " ´λ0 pSztxuqϕ x pyq.

Consider the set S 1 ≔ ty P S : ϕ x pyq " 0u Ą txu (S 1 may be larger than txu, since it can happen that the restriction of L to Sztxu is no longer irreducible). By irreducibility of K, there exists x 0 P S 1 and y 0 P SzS 1 with Lpx 0 , y 0 q ą 0. It follows that Lrϕ x spx 0 q " ÿ yP S Lpx 0 , yqpϕ x pyq ´ϕx px 0 qq " ÿ yPS Lpx 0 , yqϕ x pyq ě Lpx 0 , y 0 qϕ x py 0 q ą 0.

Similarly, we prove that @ y P S 1 , Lrϕ x spyq ě 0 (this is the maximum principle for the Markovian generator L).

Let ν be the quasi-stationary measure associated to L, already encountered in the proof of Lemma 8. Since ν L " ´λ0 ν, we have in particular νr Lrϕ x ss " ´λ0 νrϕ x s.

But according to the previous observations, we have νr Lrϕ x ss " νr1 SzS 1 Lrϕ x ss `νr1 S 1 Lrϕ x ss " ´λ0 pSztxuqνr1 SzS 1 ϕ x s `νr1 S 1 Lrϕ x ss " ´λ0 pSztxuqνrϕ x s `νr1 S 1 Lrϕ x ss ą ´λ0 pSztxuqνrϕ x s.

It follows that λ 0 pSztxuq ą λ 0 .

We can now come to the

Proof of Proposition 1

Concerning the first equality, let us fix x, y P S. We can assume that x " y, since the equality is trivial for x " y. According to Proposition 9, it is sufficient to see that lim

λÑλ 0 ´ϕλ pxq ϕ λ pyq " Erexppλ 0 τ x y q1 τ x y ăτ x 8 s. (14) 
Define τ " τ x y ^τ x 8 . It is the exit time from Sztyu for X x . In particular, we have @ l P R `, Erexpplτ qs ă `8 ô l ă λ 0 pSztyuq, and Lemma 10 implies that

Erexppλ 0 τ qs ă `8 (15) 
For λ P Λ, consider again the function ψ λ defined in [START_REF] Gong | Hitting time distributions for denumerable birth and death processes[END_REF]. Using the strong Markov property at time τ , we have

ψ λ pxq " Erexppλτ q1 X x τ "y ψ λ pyqs `Erexppλτ q1 X x τ "8 ψ λ p8qs " ψ λ pyqErexppλτ q1 X x τ "y s `Erexppλτ q1 X x τ "8 s
Dividing by ψ λ pyq, taking into account [START_REF] Karlin | The classification of birth and death processes[END_REF] and letting λ go to λ 0 , we get [START_REF] Jacka | Weak convergence of conditioned processes on a countable state space[END_REF]. In particular, we deduce that

a ϕ " max xPS, yPS Erexppλ 0 τ x y q1 τ x y ăτ x 8 s
To show the representation of a ϕ in Proposition 1, it is enough to check that ϕ ^" min yPO ϕpyq. This is a consequence of the fact that for any y P S, either y P O or there exists a neighbor z P S of y (namely a point satisfying Lpy, zq ą 0) with ϕpzq ă ϕpyq. Indeed this comes from ÿ zP S Lpy, zqpϕpzq ´ϕpyqq " ´λ0 ϕpyq ă 0.

Path and spectral arguments

It will be seen here how the probabilistic representation of the amplitude a ϕ can be used to deduce more practical estimates.

We begin with a path argument, similar in spirit to the one already encountered in the proof of Lemma 7. Let γ " pγ 0 , γ 1 , ..., γ l q be a path in S, to which we associate the event A γ requiring that the first jump of the trajectory X γ 0 is from γ 0 to γ 1 , that the second jump of X γ 0 is from γ 1 to γ 2 , ..., that the l-th jump of X γ 0 is from γ l´1 to γ l . Lemma 11 For any λ P r0, minp ˇˇL pγ k , γ k q ˇˇ: k P 0, l ´1 qq, we have

Er1 A γ exppλτ γ 0 γ l qs " ź kP 0,l´1 Lpγ k , γ k`1 q ˇˇL pγ k , γ k q ˇˇ´λ .
If λ ě minp ˇˇL pγ k , γ k q ˇˇ: k P 0, l ´1 q, the expectation in the l.h.s. is infinite.

Proof

This result is directly based on the probabilistic construction of the trajectory X γ 0 . Let us recall it: X γ 0 stays at γ 0 for an exponential time of parameter ˇˇL pγ 0 , γ 0 q ˇˇ, then it chooses a new position x 1 according to the probability Lpγ 0 , x 1 q{ ˇˇL pγ 0 , γ 0 q ˇˇ. Next it stays at x 1 for an exponential time of parameter ˇˇL px 1 , x 1 q ˇˇ, until it chooses a new position x 2 with respect to the probability Lpx 1 , x 2 q{ ˇˇL px 1 , x 1 q ˇˇ, etc. To simplify the notation, denote

@ k P 0, l ´1 , L k ≔ ˇˇL pγ k , γ k q ˇˇ.
It follows that if λ ă minpL k : k P 0, l ´1 q,

Er1 A γ exppλτ γ 0 γ l qs " ¨ź kP 0,l´1 Lpγ k , γ k`1 q L k 'ż ż ¨¨¨ż e λpt 0 `t1 `¨¨¨`t k q L 0 e ´L0 t 0 dt 0 L 1 e ´L1 t 1 dt 1 ¨¨¨L l´1 e ´Ll´1 t l´1 dt l´1 " ź kP 0,l´1 ˆLpγ k , γ k`1 q L k L k ż e pλ´L k qt k dt k " ź kP 0,l´1 Lpγ k , γ k`1 q L k ´λ .
The same computation shows that if for some k P 0, l´1 , λ ě ˇˇL pγ k , γ k q ˇˇ, then Er1 A γ exppλτ γ 0 γ l qs " `8.

Proof of Proposition 2

It is now a consequence of the following observation: if γ y,x is a path going from y to x in S, then from Proposition 1, we get ϕpyq ϕpxq " Erexppλ 0 τ y x q1 τ y

x ăτ y 8 s ě Er1 A γ exppλ 0 τ y x qs " P pγ y,x q, according to the previous lemma (where the functional P was defined in (2)). Indeed, one would have noticed that

λ 0 ď min xPS ˇˇL px, xq ˇˇ.
Arguments similar to those given in the proof of Lemma 10 (reinterpret Lpx, xq as the first Dirichlet eigenvalue associated to the txu ˆtxu minor of L) show that the above inequality is strict, except if S is a singleton. In the latter case, say S " tx 0 u, necessarily y " x " x 0 and γ x 0 ,x 0 " px 0 q, so that the product defining P pγ x 0 ,x 0 q is void, meaning that P pγ x 0 ,x 0 q " 1, as it should be.

Coming back to the general case and taking the minimum over x P S and y P O, we get One can deduce a rougher estimate, where λ 0 does not enter: with the notation of (2), define

Qpγq ≔ ź kP 0,l´1 ˇˇL pγ k , γ k q ˇĽ pγ k , γ k`1 q ,
then we have

a ϕ ď max yPO, xPS Qpγ y,x q. ( 16 
)
Let us illustrate these computations with

Example 12 (a) Consider an oriented finite strongly connected graph G on the vertex set S and denote by E the set of its oriented edges. Let O be a non-empty subset of S. Let Ḡ be the oriented graph on S " S \ t8u obtained by adding to E the edges px, 8q, with x P O. Let d be the maximum outgoing degree of Ḡ and D be the "oriented diameter" of G. Let L be the random walk generator associated to Ḡ: @ x " y P S, Lpx, yq ≔ " 1 , if px, yq P Ē 0 , otherwise.

Choosing geodesics (with respect to the "oriented graph distance") for the underlying paths, the bound [START_REF] Mao | The eigentime identity for continuous-time ergodic Markov chains[END_REF] implies that

a ϕ ď d D .
There is an easy comparison allowing weighted edges in the case above. If the generator L is perturbed to another generator L only satisfying, for some constants 0 ă r ď R ă `8, @ x " y P S, Lpx, yq P " rr, Rs , if px, yq P Ē t0u

, otherwise, we end up with

a ϕ ď ˆRd r ˙D . (17) 
(b) To see if this bound is of the right order, let us consider a specific birth and death examples on S " 0, N , with N P N, absorbed in 0 (namely 8 in the previous notation). The only non-zero jump rates of L are given by

@ x P 1, N ´2 , " Lpx, x `1q ≔ ρ Lpx `1, xq ≔ 1 (18) 
Lp1, 0q " 1, LpN ´1, N q " ρ and LpN, N ´1q " 1 `ρ,

for some fixed ρ ą 0. The bound (17) leads to

a ϕ ď ˆ2p1 _ ρq 1 ^ρ ˙N . (20) 
It was seen in [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] that

a ϕ " " 2N π p1 `OpN ´2qq , if ρ " 1 ρ ρ´1 p1 `Opρ ´N qq , if ρ ą 1, (21) 
but it can be deduced from the computations presented in Section 3.3 of [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] that if ρ ă 1 is fixed, then a ϕ explodes exponentially with respect to N . So [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF] corresponds to the right behavior of a ϕ (i.e. it does explode exponentially with respect to N ) if and only if ρ ă 1. In the previous example for ρ ě 1, the path estimate does not catch the fact that either a ϕ is bounded (for ρ ą 1) or explodes linearly with respect to N (for ρ " 1). The spectral estimates we are about to present are more precise and we will see how to recover these behaviors of a ϕ for ρ ě 1 and large N .

We begin with a general result which can be deduced from Miclo [START_REF] Miclo | On absorption times and Dirichlet eigenvalues[END_REF].

Lemma 13 In the finite setting and under the reversibility assumption, whatever µ P PpSq, the time τ µ 8 is stochastically dominated by the sum of independent exponential variables of respective parameters λ 0 , λ 1 , ..., λ N ´1, where N is the cardinality of S. Proof Indeed, for any k P 0, N ´1 , denote by L k the convolution of k `1 exponential laws of parameters λ N , λ N ´1, ..., λ N ´k. It was seen in [START_REF] Miclo | On absorption times and Dirichlet eigenvalues[END_REF] that the law of τ µ 8 is a mixture of the L k , for k P 0, N ´1 , the coefficients of the mixture depending on µ (and the coefficient of L N ´1 being positive). The announced result follows from the fact that each of the laws L k , for k P 0, N ´2 , is clearly stochastically dominated by L N ´1.

We can now come to the

Proof of Proposition 3

Note that

a ϕ " 1 _ max xPS, yPO, y "x Erexppλ 0 τ x y q1 τ x y ăτ x 8 s, thus it is sufficient to show that max xPS, yPO, y "x Erexppλ 0 τ x y q1 τ x y ăτ x 8 s ď ¨ˆ1 ´λ0 λ 1 0 ˙ź kP N ´1 ˆ1 ´λ0 λ k ˙' ´1 .
Fix y P O, let r K be the pSztyuq ˆpSztyuq minor of L and denote r λ 0 ă r λ 1 ď ¨¨¨ď r λ N ´2 the eigenvalues of ´r K. By the usual interlacing property of the eigenvalues of minors (see for instance Theorem 4.3.8 of the book [START_REF] Horn | Matrix analysis[END_REF] of Horn and Johnson), we have

λ 0 ă r λ 0 ď λ 1 ď r λ 1 ď λ 2 ď ¨¨¨ď λ N ´2 ď r λ N ´2 ď λ N ´1. ( 22 
)
The first inequality is strict, due to Lemma 10. According to the previous lemma, we have that for any x P Sztyu, τ 

ď Erexppλ 0 pE 0 `¨¨¨`E N ´2qqs, (24) 
where E 0 , ..., E N ´2 are independent exponential variables of respective parameters r λ 0 , r λ 1 , ..., r λ N ´2. Thus the last expectation is also equal to

ź lP 0,N ´2 Erexppλ 0 E l qs " ź lP 0,N ´2 r λ l r λ l ´λ0 (25) ď ¨ˆ1 ´λ0 r λ 0 ˙ź kP N ´2 ˆ1 ´λ0 λ k ˙' ´1 ď ¨ˆ1 ´λ0 λ 1 0 ˙ź kP N ´2 ˆ1 ´λ0 λ k ˙' ´1 ,
where the interlacing [START_REF] Miclo | On absorption times and Dirichlet eigenvalues[END_REF] was used, as well as the definition of λ 1 0 given in (3). Proposition 3 follows, since the above upper bound no longer depends on the choice of y P O.

Let us now show how the spectral estimate can provide a better bound than the path estimate, at least when some knowledge on the relevant eigenvalues is available.

Example 14

We return to the birth and death processes presented at the end of Example 12 with ρ ě 1.

We first treat the case ρ " 1, for which we have seen in [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF] that the eigenvalues of ´K are given by

@ k P 0, N ´1 , λ k " 2p1 ´cospp2k `1qπ{p2N qqq.
With the notation of the proof of Proposition 3, we have O " t1u and the matrix r K is the same as K, except that N has been replaced by N ´1. Thus we get that

@ k P 0, N ´2 , r λ k " 2p1 ´cospp2k `1qπ{p2pN ´1qqqq.
By using ( 25) directly, we get the bound

a ϕ ď ź lP 0,N ´2 r λ l r λ l ´λ0 " ź lP 0,N ´2 ˆ1 ´λ0 r λ l ˙´1 ,
and the first bound is in fact an equality, because it is known that the time needed by a finite birth and death process to go from one boundary point to the other one is exactly a sum of independent exponential variables whose parameters are the corresponding Dirichlet eigenvalues (see e.g. Fill [START_REF] Allen | The passage time distribution for a birth-and-death chain: strong stationary duality gives a first stochastic proof[END_REF] or Diaconis and Miclo [START_REF] Diaconis | On times to quasi-stationarity for birth and death processes[END_REF] for a probabilistic proof as well as a review of the history of this property). In the above product, we begin by considering the first factor 1 ´λ0 r λ 0 " 1 ´sin 2 pπ{p4N qq sin 2 pπ{p4pN ´1qqq " sin 2 pπ{p4pN ´1qqq ´sin 2 pπ{p4N qq sin 2 pπ{p4pN ´1qqq " sinpπ{p4N pN ´1qqq sinpπp2N ´1q{p4N pN ´1qqq sin 2 pπ{p4pN ´1qqq ,

where we used the trigonometric formula @ a, b P R, sin 2 paq ´sin 2 pbq " sinpa `bq sinpa ´bq.

Letting N go to infinity, it appears that

ˆ1 ´λ0 r λ 0 ˙´1 " N 2 , (26) 
which provides us with the announced linear explosion in N . It remains to treat the other factors

1 ´λ0 r λ k " 1 ´sin 2 pπ{p4N qq sin 2 pp2k `1qπ{p4pN ´1qqq , for k P 1, N ´2 . Taking into account that lim N Ñ8 sin 2 pπ{p4N qq sin 2 p3π{p4pN ´1qqq " 1 9 , 
and that for all θ P r0, π{2s, 2θ{π ď sinpθq ď θ, we can find a constant c ą 0 such that for N large enough,

@ k P 1, N ´2 , sin 2 pπ{p4N qq sin 2 pp2k `1qπ{p4pN ´1qqq ď 1 8 ^c p2k `1q 2 .
This bound and the dominated convergence theorem show lim

N Ñ8 ÿ kP 1,N ´2 ln ˆ1 ´sin 2 pπ{p4N qq sin 2 pp2k `1qπ{p4pN ´1qqq ˙" ÿ kPN ln ˆ1 ´1 p2k `1q 2 ˙ą ´8.
The above observations and ( 21) lead in fact to Wallis' formula:

ź kPNzt1u : k even 1 ´1 k 2 " π 4 .
We now come to the case ρ ą 1. As remarked above, for all finite birth and death processes absorbed at 0, we have an exact formula

a ϕ " ź lP 0,N ´2 ˆ1 ´λ0 r λ l ˙´1 ,
but to exploit it, one needs a knowledge of the eigenvalues λ 0 , r λ 0 , r λ 1 , . . . , r λ N ´2. The only behavior provided in [START_REF] Diaconis | On quantitative convergence to quasi-stationarity[END_REF], is that for large

N λ 0 " 1 2 pρ `1qpρ ´1q 2 1 ρ N `1 . (27) 
Let us show how this is sufficient to deduce that a ϕ remains bounded as N go to infinity. Indeed, we will just need an additional qualitative result about the number of nodal domains of the corresponding eigenvectors, which is a discrete analogue of Sturm's theorem for one dimensional diffusions.

We begin by treating the first factor. As above, by spatial homogeneity, r λ 0 is just λ 0 when N has been replaced by N ´1. It follows that r λ 0 " 1 2 pρ `1qpρ ´1q 2 1 ρ N , so that lim

N Ñ8 ˆ1 ´λ0 r λ 0 ˙´1 " ˆ1 ´1 ρ ˙´1 ,
which in comparison with [START_REF] Van Doorn | Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes[END_REF], is a first indication why a ϕ should stay bounded as N goes to infinity.

It remains to prove that lim sup

N Ñ8 ´ÿ lP 1,N ´2 ln ˆ1 ´λ0 r λ l ˙ă `8.
Since we know that

@ l P 1, N ´2 , λ 0 r λ l ď λ 0 r λ 0 ď 1 `ρ´1 2 ă 1,
for N large enough, it is sufficient to find a constant c ą 0 such that

@ l P 1, N ´2 , λ 0 r λ l ď cρ ´l,
or similarly, such that

@ l P 1, N ´1 , λ 0 λ l ď cρ ´l. (28) 
For given l P 1, N ´1 , let ϕ l be an eigenvector of ´L associated to the eigenvalue λ l and vanishing at 0. Since L is a tri-diagonal matrix, ϕ l has l `1 nodal domains. More precisely, extend ϕ l into a continuous function on r0, N s by making it affine on each of the segments rn, n `1s with n P 0, N ´1 . Then ϕ l has exactly l `1 zeros: x 0 " 0 ă x 1 ă ¨¨¨ă x l and it was seen in Miclo [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF] that if x k R 0, N , there is a natural way to define the jump rates Lprx k s, x k q and Lptx k u, x k q such that we have

@ k P 0, l , λ 0 prx k , x k`1 sq " λ l
with the convention x l`1 " N . Since each of the segments rx k , x k`1 s, for k P 0, l , contains at least one integer, we have x l ě l and by consequence λ l " λ 0 prx l , N sq ě λ 0 prl, N sq.

Due to the spacial homogeneity of the initial generator L, λ 0 prl, N sq is the same as λ 0 where N is replaced by N ´l. The bound ( 28) is now an easy consequence of ( 27), through the existence of a constant C ě 1 (depending on ρ ą 1) such that

@ N P N, C ´1ρ ´N ď λ 0 ď Cρ ´N .
4

Some denumerable birth and death processes

This section treats denumerable birth and death processes absorbing at 0 and with 8 as entrance boundary via approximation by finite absorbing birth and death processes.

We begin by recalling the theory of approximation of birth and death processes with 8 as entrance boundary, as developed by Gong, Mao and Zhang [START_REF] Gong | Hitting time distributions for denumerable birth and death processes[END_REF]. For N P N, consider the finite state spaces S N ≔ N and SN ≔ 0, N endowed with the Markovian generator LN which is the restriction of L to SN , except that LN pN, N q " ´bN´1 , so that a Neumann (reflection) condition is put at N . The point 0 is still absorbing for LN . Denote by

λ N,0 ă λ N,1 ă λ N,2 ă ¨¨¨ă λ N,N ´1,
the eigenvalues of the subMarkovian generator K N , the restriction of LN to S N . By convention, take λ N,n ≔ `8 for n ě N .

Theorem 5.4 of Gong, Mao and Zhang [START_REF] Gong | Hitting time distributions for denumerable birth and death processes[END_REF] asserts that for any fixed n P Z `, the sequence pλ N,n q N PN is non-increasing and that lim

N Ñ8 λ N,n " λ n , (29) 
where pλ n q nPZ `are the eigenvalues of ´K defined in the introduction.

For N P Nzt2u, let λ 1 N,0 be the smallest eigenvalue of the restriction of LN to 2, N . Consider the absorbing Markov generator L1 on N, coinciding with the restriction of L there, except that 1 is absorbing: L1 p1, 1q " L1 p1, 2q " 0. Applying (29) with n " 0 and with respect to L1 , shows that the sequence pλ 1 N,0 q N PNzt1u is non-increasing and lim

N Ñ8 λ 1 N,0 " λ 1 0 . (30) 
These convergence properties are the main ingredient to deduce the estimate of Theorem 4 from Proposition 3. We will also need the fact that the eigenvector ϕ can be chosen to be positive on N and increasing. This is well-known, see for instance Chen [START_REF] Chen | Analytic proof of dual variational formula for the first eigenvalue in dimension one[END_REF] or Miclo [START_REF] Miclo | Monotonicity of the extremal functions for one-dimensional inequalities of logarithmic Sobolev type[END_REF], whose arguments can be extended to the present denumerable absorbing birth and death setting. We present a succinct proof for the sake of completeness.

For any function f defined on N, consider the value Epf q " ηp1qd 1 f 2 p1q `ÿ xě1 ηpxqb x pf px `1q ´f pxqq 2 P R `\ t`8u.

Then ϕ is a minimizer of Epf q{ηpf 2 q over all functions f P L 2 pηqzt0u.

Since Epf q ě Ep|f |q for any function f , we can assume that ϕ is non-negative, up to replacing it by |ϕ|. For fixed x P N, considering the quantity ϕpxq as a variable in the ratio Epϕq{ηpϕ 2 q, it appears by minimization that ϕpxq P rminpϕpx ´1q, ϕpx `1qq, maxpϕpx ´1q, ϕpx `1qqs and even ϕpxq P pminpϕpx ´1q, ϕpx `1qq, maxpϕpx ´1q, ϕpx `1qqq if ϕpx ´1q " ϕpx `1q. This property implies the monotonicity of ϕ. Since ϕp0q " 0 and ϕ must be positive somewhere, it follows that ϕ is non-decreasing. Consider x 0 ≔ maxtx : ϕpxq " 0u. From ϕpxq P p0, ϕpx `1qq, we end up with a contradiction if x " 0. So x 0 " 0 and ϕ is positive on N. The same argument shows that if there exists x P N such that ϕpxq " ϕpx `1q then ϕpx ´1q " ϕpxq. By iteration it would imply that ϕ vanishes identically. Thus ϕ is increasing, not only non-decreasing.

This observation is also valid for L1 : there is an eigenvector ϕ 1 associated to the eigenvalue ´λ1 0 (of K 1 , the restriction to Nzt1u of L1 ) which is positive and increasing on Nzt1u. Indeed, 8 is also an entrance boundary for L1 , so that its spectrum consists equally of eigenvalues of multiplicity 1, in particular ϕ 1 exists. As a consequence we get that λ 1 0 ą λ 0 :

Lemma 15 With the above notation,

λ 1 0 ´λ0 " ηp1qb 1 ϕ 1 p2qϕp1q ηrϕ 1 ϕs ą 0
(where ϕ 1 is seen as function defined on N with the convention ϕ 1 p1q " 0).

Proof

The result follows from the computation of ηrϕ 1 Krϕss: by definition of ϕ, ηrϕ 1 Krϕss " ´λ0 ηrϕ 1 ϕs.

By self-adjointness of K the l.h.s. is equal to ηrϕKrϕ 1 ss. We remark that for x P N, Krϕ 1 spxq " K 1 rϕ 1 spxq `b1 ϕ 1 p2q1 t1u pxq " ´λ1 0 ϕ 1 pxq `b1 ϕ 1 p2q1 t1u pxq (by convention, K 1 rϕ 1 sp1q " 0), so that by multiplication by ϕpxq and integration with respect to η, ηrϕKrϕ 1 ss " ´λ1 0 ηrϕ 1 ϕs `ηp1qb 1 ϕ 1 p2qϕp1q.

Let us next check the second assertion of Theorem 4.

Lemma 16 Under the entrance boundary condition, (7) is valid.

Proof

If we were working with an ergodic birth and death on Z `, this result is due to Mao [START_REF] Mao | The eigentime identity for continuous-time ergodic Markov chains[END_REF]. To come back to this situation, let us consider the Markov generator p L on N which coincides with L, except that p Lp0, 1q " 1 " ´p Lp0, 0q. For this process, 8 is still an entrance boundary. Let p p λ n q nPZ `be the eigenvalues of ´p L. We have p λ 0 " 0 and Mao [START_REF] Mao | The eigentime identity for continuous-time ergodic Markov chains[END_REF] has shown that

ÿ nPN 1 p λ n ă `8.
It is well-known that the eigenvalues pλ n q nPZ `and p p λ n q nPZ `are interlaced:

p λ 0 ă λ 0 ď p λ 1 ď λ 1 ď ¨¨(
see for instance Miclo [START_REF] Miclo | On ergodic diffusions on continuous graphs whose centered resolvent admits a trace[END_REF] where this kind of comparison was extensively used). This implies the validity of [START_REF] Diaconis | On times to quasi-stationarity for birth and death processes[END_REF].

We can now readily end the

Proof of the bound of Theorem 4

For N P N, let ϕ N be an eigenvector associated with the eigenvalue λ N,0 of K N and normalized by ϕ N p1q " 1. According to Proposition 3, whose reversibility assumption is satisfied, we have

a ϕ N ď ¨˜1 ´λN,0 λ 1 N,0 ¸ź kP N ´2 ˆ1 ´λN,0 λ N,n ˙' ´1 . (31) 
Let N 0 P N be large enough so that

λ N 0 ,0 ď λ 0 `λ1 0 ^λ1 2 p ą λ 0 q. It follows that for N ě N 0 , 1 ´λN,0 λ 1 N,0 ě 1 ´λN,0 λ 1 0 ě 1 ´λ0 `λ1 0 2λ 1 0 " λ 1 0 ´λ0 2λ 1 0 .
In a similar manner, we get that for any n P N,

1 ´λN,0 λ N,n ě 1 ´λ0 `λ1 2λ n , so that for all N ě N 0 , a ϕ N ď ˜ˆλ 1 0 ´λ0 2λ 1 0 ˙ź kPN ˆ1 ´λ0 `λ1 2λ n ˙¸´1 ,
which is finite because of Lemma 15 and (7).

The functions ϕ N are also increasing on N ´1 . Consider them as non-decreasing mappings defined on N by taking ϕ N pnq " ϕ N pN q for all n ě N . Due to this monotonicity property and to the above uniform bound on a ϕ N over N ě N 0 , we can find an increasing subsequence pN l q lPN and a non-decreasing and bounded function r ϕ on N with r ϕp1q " 1 such that ϕ N l converge uniformly on N toward r ϕ as l goes to infinity. We are then allowed to pass to the limit in the equation K N rϕ N s " ´λN,0 ϕ N to get on N, Kr r ϕs " ´λ0 r ϕ.

Since the function r ϕ is bounded, it also belongs to L 2 pηq and so it is an eigenvector associated to the eigenvalue ´λ0 of K. It must thus be proportional to ϕ.

The previous considerations also enable to pass to the limit in (31) and this ends the proof of Theorem 4.

Corollary 5 is an easy consequence of the above considerations.

Proof of Corollary 5

For any n P Z `, consider the birth and death rates given by b

pnq k ≔ " b n`k , if k ě 1 0 , if k " 0 (32) d pnq k ≔ " d n`k , if k ě 1 0 , if k " 0 (33) 
Denote by Lpnq and π pnq the associated generator and invariant measure. Since the rates pb pnq k q kPZ ànd pd pnq k q kPZ `satisfy Conditions (4) and ( 5), the spectrum of Lpnq in L 2 pπ pnq q is discrete and simple. Let λ In particular, by iteration, it follows that

@ n P Z `, λ n " λ p0q n ě λ pnq 0
Injecting these inequalities in Theorem 4, we get the first bound of Corollary 5. The second bound comes from the fact that pλ pnq 0 q nPZ `is non-decreasing, as another consequence of the interlacing property.

Remark 17

It is theoretically possible to improve the first bound of Corollary 5, up to a certain knowledge of the eigenfunctions of L. More precisely, let pϕ k q kPZ `be a family of eigenvectors of L associated to the eigenvalues pλ k q kPZ `. For any k P Z `, by the discrete Courant theorem in dimension 1, the function ϕ k changes sign exactly k times. Let n k be the last time it changes sign (i.e. the smallest n P Z `such that for any m ě n, the values ϕ k pmq have the same sign (with the convention that 0 has both signs). Using the considerations developed in [START_REF] Miclo | On eigenfunctions of Markov processes on trees[END_REF] (and extending them to the infinite entrance boundary setting by approximation), it appears that λ k ě λ According to Karlin and McGregor [15], the a.s. absorption of the processes X x , for x P N, is equivalent to

8 ÿ x"1 1 π x b x " `8,
and this divergence clearly implies that of (4).

Similarly to the proof of Proposition 9, consider next the mapping f on R `ˆZ `defined by @ pt, xq P R `ˆZ `, f pt, xq ≔ exppλtqϕpxq (as usual, we impose ϕp0q " 0). By the martingale problem solved by the law of X x , for x P N, the process M ≔ pM t q tě0 given by @ t ě 0, M t ≔ f pt, X x t q ´f p0, xq ´ż t 0 B s f ps, X x s q `Lrf ps, ¨qspX x s q ds is a local martingale and even a martingale, because for any fixed t ě 0, M t is bounded, due to the assumption a ϕ ă `8. The stopped stochastic process pM t^τ x,1 q tě0 is also a martingale, so taking expectations at time t ě 0, we get Erf pt, X x t^τ x,1 qs " ϕpxq `E "ż t^τ x,1 0 B s f ps, X x s q `Lrf ps, ¨qspX x s q ds  " ϕpxq `E "ż t^τ x,1 0 pλϕ `LrϕsqpX x s q exppλsqds  .

By assumption, we have λϕ `Lrϕs ď 0 on N, so that ErϕpX x t^τ x,1 q exppλpt ^τx,1 qqs ď ϕpxq, and it follows that Erexppλpt ^τx,1 qqs ď a ϕ .

Letting t go to infinity, we deduce that Erτ x,1 s ď Erexppλτ x,1 qs ´1 λ ď a ϕ λ .

But it is well-known (see for instance Paragraph 8.1 of Anderson [START_REF] Anderson | Continuous-time Markov chains[END_REF]) that Erτ x,1 s " Let us now discuss the conditions (4) and (5). The following example is quite academic, it shows that (5) is not true for the benchmark M/M/8 (absorbed) queueing process, but it is almost at the frontier of applicability, since a mild modification of it enters in the setting of Theorem 4.

Example 18 Consider the rates given for all n P Z `by b n ≔ "

1 , if n ě 1 0 , if n " 0

d n ≔ " n , if n ě 1 0 , if n " 0.
The measure π defined in ( 6) is proportional to the restriction on N of the Poisson distribution of parameter 1:

@ n P N, π n " 1 n! . ( 34 
)
It is easily computed that ( 5) is not satisfied.

To transform 8 into an entrance boundary, the underlying Markov process must be accelerated near 8: consider the rates given for all n P Z `by b n ≔ " ln 2 pe `nq , if n ě 1 0 , if n " 0

d n ≔ " n ln 2 pe ´1 `nq , if n ě 1 0 , if n " 0.
The measure π is not modified, still given by (34). Nevertheless Conditions (4) and ( 5) are satisfied and Theorem 4 can be applied. It is quite painful to try to apply to the previous example the procedure described after Corollary 5. So let us finish the paper by a class of examples where Corollary 5 does lead to quantitative estimates.

Example 19 Assume that there exists ρ ą 1 such that the rates satisfy

@ k P N, " b k`1 ď ρb k d k`1 ě ρd k (35) 
Under the additional assumptions (4) and ( 5), we get

a ϕ ď ˜`1 ´ρ´2 ˘2 ź ně2 `1 ´ρ´n ˘¸´1
Indeed, let us show that @ n P Z `, λ pn`1q ě ρλ pnq (36) so that the previous bound is a consequence of Corollary 5 and of λ pnq ě ρ n λ 0 , for all n P Z `.

Fix n P Z `. Consider the birth and death rates given by ( 32) and (33), as well as the associated generator Lpnq and invariant measure π pnq . Since the rates pb pn`1q k q kPZ `and pd pn`1q k q kPZ `satisfy

pnq 0 ă λ pnq 1 ă λ pnq 2 ă

 2 ¨¨¨be the eigenvalues of ´L pnq . By the interlacing property, we have @ n, k P Z `,

  5 by observing that n k ě k for all k P Z `, due to the discrete Courant theorem. Let us recall a classical Proof of Proposition 6

8 ÿ y" 1 1 π y b y 8 ÿz"y` 1 π z ď a ϕ λ ă ` 8 ,

 81818 thus letting x go to infinity we obtain namely[START_REF] Lai | Markov processes, Brownian motion, and time symmetry[END_REF] is satisfied. This ends the proof that 8 is an entrance boundary for L.

  are of the form

	ϕ 2ϕ _	› › ›r µ 0 r P t ´r η › › ›	tv	ď }µ t ´ν} tv ď 2	ϕ _ ϕ ^› › ›r µ 0 r P t ´r η › › ›

tv

.

Acknowledgments: The work of Persi Diaconis was partially supported by the CIMI (Centre International de Mathématiques et d'Informatique) Excellence program while he was invited in Toulouse during the first semester of 2014. The work of Laurent Miclo was partially supported by the ANR STAB (Stabilité du comportement asymptotique d'EDP, de processus stochastiques et de leurs discrétisations).

Partially supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02 ; Partially supported by ANR-12-BS01-0019 1

Conditions (4) and [START_REF] Lai | Markov processes, Brownian motion, and time symmetry[END_REF], there exists an increasing function ϕ pn`1q on Z `, with ϕ pn`1q p0q " 0, such that Lpn`1q rϕ pn`1q s " ´λpn`1q ϕ pn`1q . Namely, we have for all k P Z `, b pn`1q pkqpϕ pn`1q pk `1q ´ϕpn`1q pkqq `dpn`1q pkqpϕ pn`1q pk ´1q ´ϕpn`1q pkqq " ´λpn`1q ϕ pn`1q pkq Taking into account that ϕ pn`1q pk `1q ´ϕpn`1q pkq ě 0, that ϕ pn`1q pk ´1q ´ϕpn`1q pkq ď 0 and (35), we get by dividing by ρ, b pnq pkqpϕ pn`1q pk `1q ´ϕpn`1q pkqq `dpnq pkqpϕ pn`1q pk ´1q ´ϕpn`1q pkqq ě ´λpn`1q ρ ϕ pn`1q pkq i.e. Lpnq rϕ pn`1q s ě ´λpn`1q ϕ pn`1q {ρ. Multiplying this relation by ϕ pn`1q and integrating with respect to π pnq , we obtain λ pn`1q ρ ě ´πpnq rϕ pn`1q Lpnq rϕ pn`1q ss π pn`1q rpϕ pn`1q q 2 s The r.h.s. is bounded below by λ pnq , so (36) follows. An example in the spirit of Example 18 satisfying (4), ( 5) and ( 35), is given by

with ρ ą 1.