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Identi�ability and non-identi�ability in acoustic

tomography of moving �uid

A.D. Agaltsov1 and R.G. Novikov2

Abstract

We consider a model time-harmonic wave equation of acoustic to-
mography of moving �uid in an open bounded domain in Rd, d ≥ 2,
with variable sound speed c, density ρ, �uid velocity v and absorp-
tion coe�cient α. We give global uniqueness results for related in-
verse boundary value problem for the cases of boundary measure-
ments given for two and for three �xed frequencies. Besides, we also
give a non-uniqueness result for this inverse problem for the case of
boundary measurements given for all frequencies.

Keywords: moving �uid, magnetic Schr�odinger equation, acoustic
tomography, inverse boundary value problems, identi�ability and
non-identi�ability

AMS Classi�cation: 35R30, 35Q35

1 Introduction

We consider a moving �uid in an open bounded domain D ⊂ Rd with sound
speed c = c(x), density ρ = ρ(x), �uid velocity vector v = v(x) and the sound
wave absorption coe�cient α = α(x, ω) at �xed frequency ω, where x ∈ D̄ =
D ∪ ∂D. For this �uid we consider the following model equation for the time-
harmonic (e−iωt) acoustic pressure ψ:

Lωψ = 0 in D,

Lω = −∆x − 2iAω(x)∇x − Uω(x), x = (x1, . . . , xd) ∈ D,
(1.1)

where

∆x =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

, ∇x =
(

∂

∂x1
, . . . ,

∂

∂xd

)
, (1.2)

Aω(x) =
ωv(x)
c2(x)

+
i

2
∇xρ(x)
ρ(x)

,

Uω(x) =
ω2

c2(x)
+ 2iω

α(x, ω)
c(x)

,

α(x, ω) = ωζ(x)α0(x).

(1.3)
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In di�erent particular cases this model was considered, for example, in [AN],
[BBS], [BSZR], [HN], [RBKS], [RE], [RW].

In the present work we assume that the �uid parameters c, ρ, v, α are such
that

Aω and Vω are su�ciently regular on D̄ for any ω > 0, (1.4)

c ≥ cmin > 0, ρ ≥ ρmin > 0, α0 ≥ 0 in D̄

for some constants cmin, ρmin.
(1.5)

For simplicity we consider equation (1.1) assuming that

ω 6∈ σ(Lz), (1.6)

where
σ(Lz) consists of all z ∈ C such that

0 is a Dirichlet eigenvalue for operator Lz in D.
(1.7)

For equation (1.1), under assumptions (1.4), (1.6), we consider the Dirichlet-
to-Neumann boundary map Λω de�ned by the relation

Λω(ψ|∂D) = ∂ψ
∂ν |∂D + i(Aω · ν)ψ|∂D, (1.8)

ful�led for all su�ciently regular solutions ψ of (1.1) in D̄, where ν is the unit
exterior normal to ∂D.

We consider Λω as all possible boundary measurements for the model de-
scribed by equation (1.1) at �xed ω.

In the present work we consider the following inverse boundary value problem
for equation (1.1):

Problem 1.1. Given boundary data Λω for some frequencies ω, �nd �uid pa-

rameters c, ρ, v, α in D̄.

Under the assumption that

Aω ≡ 0 on ∂D, (1.9)

Problem 1.1 is closely related with the inverse scattering problem for the equa-
tion

Lωψ = 0 on Rd, (1.10)

where

Aω ≡ 0, Uω ≡
ω2

c20
on Rd \D,

where c0 can be considered as the mean value of c on ∂D. By scattering data for
equation (1.10) we mean, �rst of all, the scattering amplitude; see, e.g., [Ag1],
[AN], [HN], [No] for de�nitions of the scattering amplitude.

Due to results going back to [No], it is known that the inverse boundary
value problems and the inverse scattering problems for operators like Lω are,
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actually, equivalent. For simplicity of exposition, in the present work we do not
formulate the inverse scattering version of Problem 1.1 in detail.

Note also that Problem 1.1 at �xed ω is closely related with inverse boundary
value and inverse scattering problems for the Schr�odinger equation in magnetic
�eld at �xed energy. The reason is that the operator Lω at �xed ω is closely
related with the magnetic Schr�odinger operator at �xed energy.

In the present work we are mainly focused on Problem 1.1 and its inverse
scattering version for the case when v 6≡ 0 in D, or, in other words, we are
focused on the acoustic tomography of moving �uid in the framework of the
wave propagation model (1.1), (1.3).

As regards results given in the literature on this acoustic tomography of
moving �uid, see, e.g., [Ag1], [Ag2], [AN], [BBS], [RE], [RW] and references
therein including the case when v ≡ 0.

In particular, in [AN] a Riemann�Hilbert problem approach to the inverse
scattering version of Problem 1.1 at �xed frequency ω was developed for the
case when ρ ≡ const, α ≡ 0, d = 2.

In addition, in [Ag2] global uniqueness theorems for Problem 1.1 at �xed
frequency ω were proved for the case when ρ ≡ const, α ≡ 0, d = 2 or d ≥ 3.

Note that in the present work we use, in particular, results developed in the
literature for the case of the inverse boundary value problem for the Schr�odinger
equation in magnetic �eld at �xed energy; see [BS], [GuT], [KU] and references
therein.

Note also that in the present work we use global uniqueness results on the
Dirichlet problem for some linear and non-linear perturbations of the Laplace
equation in D; see systems (3.13), (3.19) of Section 3 and related results of
[GiT].

The main results of the present work can be summarized as follows:

(A1) We show that the boundary data Λω given for two di�erent frequencies ω =
ω1, ω2 uniquely determine the coe�cients c, ρ, v under the assumptions
that ω1, ω2 6∈ σ(Lω) and α ≡ 0, see Theorems 2.1, 2.2 of Section 2.

(A2) We show that the boundary data Λω given for three di�erent frequencies
ω = ω1, ω2, ω3 uniquely determine c, ρ, v, α under the assumptions that
ω1, ω2, ω3 6∈ σ(Lω) and ζ doesn't vanish anywhere, see Theorems 2.3, 2.4
of Section 2.

(B) We give examples of coe�cients c(1), ρ(1), v(1), α
(1)
0 and di�erent coe�-

cients c(2), ρ(2), v(2), α
(2)
0 such that σ(L(1)

ω ) = σ(L(2)
ω ) and Λ(1)

ω = Λ(2)
ω for

ω ∈ C \ σ(L(i)
ω ) for the case when ζ ≡ 0, see Theorem 2.5 of Section 2.

We recall that in the aforementioned results σ(Lω) is de�ned by (1.7).
The uniqueness results (A1), (A2) can be considered as results on global iden-

ti�ability in acoustic tomography of moving �uid, whereas the non-uniqueness
result (B) can be considered as a result on principal non-identi�ability in this
tomographical problem.
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Note also that in these results the determination of ρ is considered modulo
the transformations ρ→ Cρ, where C is a positive constant.

The main results of the present work are presented in detail in the next
section.

2 Main results

LetWn,p(D,C) denote the standard Sobolev space consisting of complex-valued
functions which are n times di�erentiable in Lp(D), where n ≥ 0, p ≥ 1 (includ-
ing p = ∞) and D is the domain of Section 1. We consider also Wn,p(D,R),
Wn,p(D,Rd) and Wn,p(D,Cd) de�ned in the standard way.

We say that D is simply connected i� D is path connected and each contin-
uous loop in D is contractible. In addition, we say that a set S in Rd is path
connected i� each pair of points in S can be joined by a continuous path in S.
See, e.g., [DNF] in connection with these de�nitions.

In the present work we assume mainly that

c ∈W 1,∞(D,R), c > 0, ρ ∈ C(D̄) ∪ C2(D), ρ > 0,

v ∈W 1,∞(D,Rd), α0 ∈ C(D̄), ζ ∈ C(D̄), ζ 6= 0,
α0, ζ are real-valued, for d ≥ 3,

(2.1)

c ∈W 2,p(D,R), c > 0, ρ ∈W 3,p(D,R), ρ > 0,

v ∈W 2,p(D,Rd), α0 ∈W 1,p(D,R), ζ ∈ C(D̄), ζ 6= 0,
α0, ζ are real-valued, where p > 2, d = 2.

(2.2)

Let Lω, σ(Lω) and Λω be de�ned as in Section 1.
In the present work we obtain, in particular, the following global uniqueness

resutls for Problem 1.1.

Theorem 2.1. Let D be an open bounded simply connected domain in Rd,
d ≥ 3, with path connected C1 boundary ∂D. Let L

(j)
ω and Λ(j)

ω correspond to

coe�cients c(j), ρ(j), v(j), α(j), where c(j), ρ(j), v(j) satisfy (2.1), α(j) ≡ 0,
j = 1, 2. Let ω1, ω2 ∈ [0,+∞) \ (σ(L(1)

ω ) ∪ σ(L(2)
ω )), ω1 6= ω2. Then the

coincidence of the boundary data Λ(1)
ω = Λ(2)

ω for ω ∈ {ω1, ω2} implies that

c(1) = c(2), ρ(1) = Cρ(2), v(1) = v(2), where C = const > 0.

Theorem 2.2. Let D be an open bounded simply connected domain in R2 with

path connected C∞ boundary ∂D. Let L
(j)
ω and Λ(j)

ω correspond to coe�cients

c(j), ρ(j), v(j), α(j), where c(j), ρ(j), v(j) satisfy (2.2), α(j) ≡ 0, j = 1, 2.
Let ω1, ω2 ∈ [0,+∞) \ (σ(L(1)

ω ) ∪ σ(L(2)
ω )), ω1 6= ω2. Then the coincidence

of the boundary data Λ(1)
ω = Λ(2)

ω for ω ∈ {ω1, ω2} implies that c(1) = c(2),
ρ(1) = Cρ(2), v(1) = v(2), where C = const > 0.

Theorem 2.3. Let D be an open bounded simply connected domain in Rd,
d ≥ 3, with path connected C1 boundary ∂D. Let L

(j)
ω and Λ(j)

ω correspond to
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coe�cients c(j), ρ(j), v(j), α
(j)
0 , ζ(j) satisfying (2.1), j = 1, 2. Let ω1, ω2,

ω3 ∈ (0,+∞) \ (σ(L(1)
ω ) ∪ σ(L(2)

ω )) be three pairwise di�erent frequencies. Then

the coincidence of the boundary data Λ(1)
ω = Λ(2)

ω for ω ∈ {ω1, ω2, ω3} implies

that c(1) = c(2), ρ(1) = Cρ(2), v(1) = v(2), α(1) = α(2), where C = const > 0 and

α(j)(x, ω) = ωζ
(j)(x)α

(j)
0 (x).

Theorem 2.4. Let D be an open bounded simply connected domain in R2 with

path connected C∞ boundary ∂D. Let L
(j)
ω and Λ(j)

ω correspond to coe�cients

c(j), ρ(j), v(j), α
(j)
0 , ζ(j) satisfying (2.2), j = 1, 2. Let ω1, ω2, ω3 ∈ (0,+∞) \

(σ(L(1)
ω )∪σ(L(2)

ω )) be three pairwise di�erent frequencies. Then the coincidence

of the boundary data Λ(1)
ω = Λ(2)

ω for ω ∈ {ω1, ω2, ω3} implies that c(1) = c(2),
ρ(1) = Cρ(2), v(1) = v(2), α(1) = α(2), where C = const > 0 and α(j)(x, ω) =
ωζ

(j)(x)α
(j)
0 (x).

Theorems 2.1, 2.2 and 2.3, 2.4 are proved in Sections 3, 4 and 5.
Let

h be a real-valued function supported in D,

h ∈ C2(D) and |∇h|2 < 1 in D,
(2.3)

where D is an open bounded domain in Rd.
We set

c(1) ≡ const > 0, ρ(1) ≡ const > 0,

v(1) ≡ 0, α
(1)
0 ≡ const > − 1

2 min
x∈D

∆h(x),
(2.4)

and
c(2) = c(1)(1− |∇h|2)−1/2, ρ(2) ≡ const > 0,

v(2) = c(1)(1− |∇h|2)−1∇h,

α
(2)
0 = (1− |∇h|2)−1/2(α(1)

0 + 1
2∆h).

(2.5)

Note that for these �uid parameters c(j), ρ(j), v(j), α
(j)
0 with ζ(j) ≡ 0 the

conditions (1.4), (1.5) are ful�led for both cases j = 1 and j = 2.
In the present work, in addition to global uniqueness results of Theorems

2.1, 2.2, 2.3, 2.4 we give also the following non-uniqueness result.

Theorem 2.5. Let D be an open bounded domain in Rd, d ≥ 2, with smooth

boundary. Let h satisfy (2.3), h 6≡ 0, and c(j), ρ(j), v(j), α(j), j = 1, 2, be de�ned
by (2.4), (2.5). Let L

(j)
ω and Λ(j)

ω correspond to coe�cients c(j), ρ(j), v(j), α
(j)
0

with ζ(j) ≡ 0. Then Λ(1)
ω = Λ(2)

ω for all ω ∈ C \ σ, where σ = σ(L(1)
z ) = σ(L(2)

z ).

Theorem 2.5 is proved in Section 6.

3 Proof of Theorem 2.1

Note that:

L(j)
ω =

d∑
k=1

(
1
i

∂

∂xk
+A(j),k

ω

)2

+ q(j)ω , (3.1)
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where

A(j)
ω = (A(j),1

ω , . . . , A(j),d
ω ) =

ωv(j)

(c(j))2
+
i

2
∇ρ(j)

ρ(j)
,

q(j)ω = − ω2

(c(j))2
+ i∇ ·

(
ω

(c(j))2
v(j) +

i

2
∇ρ(j)

ρ(j)

)
− ω2

(c(j))4
(v(j))2

+
1
4

(ρ(j))−2(∇ρ(j))2 − iωv(j)∇ρ(j)

(c(j))2ρ(j)
,

(3.2)

∇· is the standard divergence, j = 1, 2.
By Theorem 1.1 of [BS] we have that the tangential components of the �elds

A
(1)
ω and A

(2)
ω on ∂D are equal. And, as a corollary,

tangential components of
∇ρ(1)

ρ(1)
and

∇ρ(2)

ρ(2)
on ∂D are equal, (3.3)

tangential components of
v(1)

(c(1))2
and

v(2)

(c(2))2
on ∂D are equal. (3.4)

Using (3.3) and the path connectedness of ∂D we obtain

ln ρ(2) − ln ρ(1) = lnC on ∂D,

ρ(2)|∂D = Cρ(1)|∂D for some positive constant C > 0.
(3.5)

Using Theorem 1.1 of [KU] and the simple connectedness of D we get:

q(2)ω − q(1)ω = 0 in D (3.6)

and
A(2)
ω −A(1)

ω = ∇ϕω in D, (3.7)

where ϕω ∈W 2,∞(D,C), ω ∈ {ω1, ω2}.
Separating the real and the imaginary parts of (3.6) we get:

ω2

[
1

(c(1))2
− 1

(c(2))2
+

(v(1))2

(c(1))4
− (v(2))2

(c(2))4

]
+

[(
∇ρ(2)

2ρ(2)

)2

−
(
∇ρ(1)

2ρ(1)

)2

−∇ ·
(
∇ρ(2)

2ρ(2)

)
+∇ ·

(
∇ρ(1)

2∇ρ(1)

)]
= 0,

(3.8)

where ω ∈ {ω1, ω2};

∇ ·
(

v(1)

(c(1))2
− v(2)

(c(2))2

)
− ∇ρ

(1)

ρ(1)

v(1)

(c(1))2
+
∇ρ(2)

ρ(2)

v(2)

(c(2))2
= 0. (3.9)

Using (3.8) and the assumptions that ω1, ω2 ≥ 0, ω1 6= ω2, we obtain(
∇ρ(2)

2ρ(2)

)2

−
(
∇ρ(1)

2ρ(1)

)2

−∇ ·
(
∇ρ(2)

2ρ(2)

)
+∇ ·

(
∇ρ(1)

2ρ(1)

)
= 0, (3.10)

1
(c(1))2

− 1
(c(2))2

+
(v(1))2

(c(1))4
− (v(2))2

(c(2))4
= 0. (3.11)

6



Let
u(j) = 1

2 ln ρ(j), j = 1, 2. (3.12)

Due to (3.5), (3.10) and (3.12), we have{
∆u(2) − (∇u(2))2 = ∆u(1) − (∇u(1))2 in D,

u(2) = u(1) + 1
2 lnC on ∂D.

(3.13)

Since u(1), u(2) ∈ C(D̄)∩C2(D), it follows from Theorem 10.1 of [GiT] that

u(2) = u(1) + 1
2 lnC in D

and, consequently,
ρ(2) = Cρ(1) in D. (3.14)

Further, taking the real part of (3.7) and using (3.4) we obtain

v(2)

(c(2))2
− v(1)

(c(1))2
= ∇βω in D (3.15)

and
βω = const on ∂D, (3.16)

where
βω = <ϕω. (3.17)

Taking into account (3.14) we de�ne

a :=
∇ρ(1)

ρ(1)
=
∇ρ(2)

ρ(2)
. (3.18)

Formulas (3.9), (3.15), (3.16) and (3.18) imply that{
−∆βω + a∇βω = 0 in D,

βω = const on ∂D.
(3.19)

Now it follows from Theorem 8.1 of [GiT] that βω = const in D. This result
and formula (3.15) imply that

v(1)

(c(1))2
=

v(2)

(c(2))2
in D. (3.20)

Finally, using (3.11), (3.20) we obtain

c(2) = c(1) and v(2) = v(1) in D. (3.21)

This completes the proof of Theorem 2.1.
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4 Proof of Theorem 2.2

In a similar way with the proof of Theorem 2.1, we have formulas (3.1)�(3.5)
for d = 2.

Let

µ(j) = − i
2

ln ρ(j), (4.1)

and
L̃(j)
ω = e−iµ

(j)
L(j)
ω eiµ

(j)
, (4.2)

where eiµ
(j)
, e−iµ

(j)
denote the multiplication operators by the functions eiµ

(j)
,

e−iµ
(j)
, j = 1, 2.

Using (4.1), (4.2) one can see that

σ(L̃(j)
z ) = σ(L(j)

z ), j = 1, 2, (4.3)

and
Λ̃(1)
ω = Λ̃(2)

ω , (4.4)

where Λ̃(1)
ω , Λ̃(2)

ω are the Dirichlet-to-Neumann maps for operators L̃
(1)
ω , L̃

(2)
ω in

D, respectively, ω ∈ {ω1, ω2}.
By direct computation we obtain that

L̃(j)
ω =

2∑
k=1

(
1
i

∂

∂xk
+ Ã(j),k

ω

)2

+ q̃(j)ω , (4.5)

where
Ã(j)
ω = (Ã(j),1

ω , Ã(j),2
ω ) =

ω

(c(j))2
v,

q̃(j)ω = q(j)ω .

(4.6)

Note that the �elds Ã
(1)
ω , Ã

(2)
ω do not contain the imaginary part in contrast

with A
(1)
ω , A

(2)
ω .

Now, using (4.3), (4.4), (4.6) and also Theorem 1.1 of [GuT] and simple
connectedness of D we get the equalities (3.8), (3.9) for d = 2, ω ∈ {ω1, ω2},
and also the equality

Ã(2)
ω − Ã(1)

ω = ∇ϕ̃ω in D, (4.7)

where ϕ̃ω ∈W 2,∞(D,R), ω ∈ {ω1, ω2}.
In a similar way with the proof of Theorem 2.1, proceeding from (3.5), (3.8)

for d = 2 we obtain (3.14) for d = 2.
Now, using (3.4), (4.6) and (4.7) we obtain (3.15), (3.16) for d = 2, where

βω = ϕ̃ω. (4.8)

Finally, using (3.9), (3.14), (3.15), (3.16) for d = 2 and (4.8) we complete
the proof of Theorem 2.2 in a completely similar way to the corresponding part
of the proof of Theorem 2.1.
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5 Proofs of Theorems 2.3, 2.4

Note that under the assumptions of Theorems 2.3, 2.4, we have that L
(j)
ω is

given by (3.1), where

A(j)
ω = (A(j),1

ω , . . . , A(j),d
ω ) =

ωv(j)

(c(j))2
+
i

2
∇ρ(j)

ρ(j)
,

q(j)ω = − ω2

(c(j))2
+ i∇ ·

(
ω

(c(j))2
v(j) +

i

2
∇ρ(j)

ρ(j)

)
− ω2

(c(j))4
(v(j))2

+
1
4

(ρ(j))−2(∇ρ(j))2 − iωv(j)∇ρ(j)

(c(j))2ρ(j)
− 2iω1+ζ(j) α

(j)
0

c(j)
,

(5.1)

where j = 1, 2.

5.1 Proof of Theorem 2.3

In a similar way with the proof of Theorem 2.1, we have formulas (3.3)�(3.7),

where in (3.6), (3.7) the functions q
(1)
ω , q

(2)
ω , A

(1)
ω , A

(2)
ω are de�ned as in (5.1)

and ω ∈ {ω1, ω2, ω3} .
Now, separating the real and imaginary parts of (3.6) we obtain equality

(3.8) and also the equality[
∇ ·
(

v(1)

(c(1))2
− v(2)

(c(2))2

)
− ∇ρ

(1)

ρ(1)

v(1)

(c(1))2
+
∇ρ(2)

ρ(2)

v(2)

(c(2))2

]
+2ωζ

(2)

[
α

(2)
0

(c(2))2

]
− 2ωζ

(1)

[
α

(1)
0

(c(1))2

]
= 0,

(5.2)

where ω ∈ {ω1, ω2, ω3}.
Using (5.2) and the assumption that ω1, ω2, ω3 are positive and mutually

di�erent frequencies we obtain, in particular, that (3.9) holds.
In a similar way with the proof of Theorem 2.1, proceeding from (3.4)�(3.9)

we obtain (3.21).

Next, in order to show that α
(2)
0 (x) = α

(1)
0 (x) for �xed x ∈ D we consider

two cases: (a) ζ(1)(x) 6= ζ(2)(x); (b) ζ(1)(x) = ζ(2)(x).
For the case (a) using (5.2) and the assumption that ω1, ω2, ω3 are positive

and mutually di�erent frequencies, in addition to (3.9), we obtain also that

α
(j)
0

(c(j))2
= 0 at point x, j = 1, 2, (5.3)

and, as a corollary,

α
(1)
0 (x) = α

(2)
0 (x) = 0. (5.4)

For the case (b) using (5.2) and the assumption that ω1, ω2, ω3 are positive
and mutually di�erent frequencies, in addition to (3.9), we obtain also that

α
(2)
0

(c(2))2
− α

(1)
0

(c(1))2
= 0 at point x. (5.5)

9



Using (3.21) and (5.5) we obtain

α
(2)
0 (x) = α

(1)
0 (x). (5.6)

Finally, the result that α(2) = α(1) in D follows from (5.4) for the case (a)
and from (5.6) for the case (b).

This completes the proof of Theorem 2.3.

5.2 Proof of Theorem 2.4

In a similar way with the proofs of Theorems 2.2, 2.3 and we have formulas
(3.1), (5.1), (3.3)�(3.6) for d = 2 and formulas (4.1)�(4.7) where in (3.6), (4.4),
(4.7) ω ∈ {ω1, ω2, ω3}.

Now, separating the real and imaginary parts of (3.6) we obtain equality
(3.8) and also equality (5.2) for d = 2, where ω ∈ {ω1, ω2, ω3}.

Using equality (5.2) and the assumption that ω1, ω2, ω3 are positive mutually
di�erent frequencies we obtain, in particular, (3.9) for d = 2.

As in the proof of Theorem 2.1, we use (3.5), (3.8) to obtain (3.14).
Using (3.4), (3.9), (3.14) for d = 2 and (4.7) as in the proof of Theorem 2.2,

we obtain (3.21) for d = 2.
Finally, using (5.2) we complete the proof of Theorem 2.4 in a completely

similar way to the proof of Theorem 2.3.

6 Proof of Theorem 2.5

Let
µ =

ω

c(1)
h. (6.1)

One can check by direct computation that

e−iµL(1)
ω eiµ = −∆− 2iA(2)

ω ∇− U (2)
ω , (6.2)

where
A(2)
ω =

ω

c(1)
∇h,

U (2)
ω =

ω2

(c(1))2
(1− |∇h|2) +

2iω
c(1)

(α(1)
0 + 1

2∆h),
(6.3)

and eiµ, e−iµ denote the multiplication operators by the functions eiµ, e−iµ,
respectively. Using (6.2) one can see that

L(2)
ω = e−iµL(1)

ω eiµ. (6.4)

Due to our assumptions, we have that

e±iµ − 1 is supported in D. (6.5)
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Using (6.4), (6.5) one can see that

σ(L(1)
z ) = σ(L(2)

z ), (6.6)

and
Λ(1)
ω = Λ(2)

ω for all ω ∈ C \ σ, (6.7)

where σ = σ(L(1)
z ) = σ(L(2)

z ).
This completes the proof of Theorem 2.5.
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