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HAL is

L ω ψ = 0 in D, L ω = -∆ x -2iA ω (x)∇ x -U ω (x), x = (x 1 , . . . , x d ) ∈ D, @IFIA
where

∆ x = ∂ 2 ∂x 2 1 + • • • + ∂ 2 ∂x 2 d , ∇ x = ∂ ∂x 1 , . . . , ∂ ∂x d , @IFPA A ω (x) = ωv(x) c 2 (x) + i 2 ∇ x ρ(x) ρ(x) , U ω (x) = ω 2 c 2 (x) + 2iω α(x, ω) c(x) , α(x, ω) = ω ζ(x) α 0 (x).
@IFQA 1 gentre de wth¡ emtiques eppliqu¡ eesD iole olytehniqueD WIIPV liseuD prneY nd vomonosov wosow tte niversityD IIWWWI wosowD ussiY emilX gletsdgmilFom 2 gentre de wth¡ emtiques eppliqu¡ eesD iole olytehniqueD WIIPV liseuD prneY si eD IIUWWU wosowD ussiY nd wosow snstitute of hysis nd ehnologyD IRIUHH holgoprudnyD ussiY emilX novikovdmpFpolytehniqueFfr I sn di'erent prtiulr ses this model ws onsideredD for exmpleD in exD ffD fD rxD fuD iD F sn the present work we ssume tht the )uid prmeters cD ρD vD α re suh tht A ω and V ω are suciently regular on D for any ω > 0, @IFRA c ≥ c min > 0, ρ ≥ ρ min > 0, α 0 ≥ 0 in D for some constants c min , ρ min . @IFSA por simpliity we onsider eqution @IFIA ssuming tht ω ∈ σ(L z ), @IFTA where σ(L z ) consists of all z ∈ C such that 0 is a Dirichlet eigenvalue for operator L z in D. @IFUA por eqution @IFIAD under ssumptions @IFRAD @IFTAD we onsider the hirihletE toExeumnn oundry mp Λ ω de(ned y the reltion

Λ ω (ψ| ∂D ) = ∂ψ ∂ν | ∂D + i(A ω • ν)ψ| ∂D , @IFVA
ful(led for ll su0iently regulr solutions ψ of @IFIA in DD where ν is the unit exterior norml to ∂DF e onsider Λ ω s ll possile oundry mesurements for the model deE sried y eqution @IFIA t (xed ωF sn the present work we onsider the following inverse oundry vlue prolem for eqution @IFIAX Problem 1.1. Given boundary data Λ ω for some frequencies ω, nd uid parameters c, ρ, v, α in D.

nder the ssumption tht

A ω ≡ 0 on ∂D, @IFWA rolem IFI is losely relted with the inverse sttering prolem for the equE tion

L ω ψ = 0 on R d , @IFIHA
where

A ω ≡ 0, U ω ≡ ω 2 c 2 0 on R d \ D,
where c 0 n e onsidered s the men vlue of c on ∂DF fy sttering dt for eqution @IFIHA we menD (rst of llD the sttering mplitudeY seeD eFgFD egID exD rxD xo for de(nitions of the sttering mplitudeF hue to results going k to xoD it is known tht the inverse oundry vlue prolems nd the inverse sttering prolems for opertors like L ω reD P tullyD equivlentF por simpliity of expositionD in the present work we do not formulte the inverse sttering version of rolem IFI in detilF xote lso tht rolem IFI t (xed ω is losely relted with inverse oundry vlue nd inverse sttering prolems for the hr¤ odinger eqution in mgneti (eld t (xed energyF he reson is tht the opertor L ω t (xed ω is losely relted with the mgneti hr¤ odinger opertor t (xed energyF sn the present work we re minly foused on rolem IFI nd its inverse sttering version for the se when v ≡ 0 in DD orD in other wordsD we re foused on the ousti tomogrphy of moving )uid in the frmework of the wve propgtion model @IFIAD @IFQAF es regrds results given in the literture on this ousti tomogrphy of moving )uidD seeD eFgFD egID egPD exD ffD iD nd referenes therein inluding the se when v ≡ 0F sn prtiulrD in ex iemnn!rilert prolem pproh to the inverse sttering version of rolem IFI t (xed frequeny ω ws developed for the se when ρ ≡ onstD α ≡ 0D d = 2F

sn dditionD in egP glol uniqueness theorems for rolem IFI t (xed frequeny ω were proved for the se when ρ

≡ onstD α ≡ 0D d = 2 or d ≥ 3F
xote tht in the present work we useD in prtiulrD results developed in the literture for the se of the inverse oundry vlue prolem for the hr¤ odinger eqution in mgneti (eld t (xed energyY see fD quD u nd referenes thereinF xote lso tht in the present work we use glol uniqueness results on the hirihlet prolem for some liner nd nonEliner perturtions of the vple eqution in DY see systems @QFIQAD @QFIWA of etion Q nd relted results of qiF he min results of the present work n e summrized s followsX @eIA e show tht the oundry dt Λ ω given for two di'erent frequenies ω = ω 1 D ω 2 uniquely determine the oe0ients cD ρD v under the ssumptions tht ω 1 D ω 2 ∈ σ(L ω ) nd α ≡ 0D see heorems PFID PFP of etion PF @ePA e show tht the oundry dt Λ ω given for three di'erent frequenies ω = ω 1 D ω 2 D ω 3 uniquely determine cD ρD vD α under the ssumptions tht

ω 1 D ω 2 D ω 3 ∈ σ(L ω ) nd ζ doesn9t vnish nywhereD see heorems PFQD PFR of etion PF @fA e give exmples of oe0ients c (1) D ρ (1) D v (1) D α (1) 0 nd di'erent oe0E ients c (2) D ρ (2) D v (2) D α (2) 0 suh tht σ(L (1) ω ) = σ(L (2) ω ) nd Λ (1) ω = Λ (2) ω for ω ∈ C \ σ(L (i)
ω ) for the se when ζ ≡ 0D see heorem PFS of etion PF e rell tht in the forementioned results σ(L ω ) is de(ned y @IFUAF he uniqueness results @eIAD @ePA n e onsidered s results on glol idenE ti(ility in ousti tomogrphy of moving )uidD wheres the nonEuniqueness result @fA n e onsidered s result on prinipl nonEidenti(ility in this tomogrphil prolemF Q xote lso tht in these results the determintion of ρ is onsidered modulo the trnsformtions ρ → CρD where C is positive onstntF he min results of the present work re presented in detil in the next setionF 2 Main results vet W n,p (D, C) denote the stndrd oolev spe onsisting of omplexEvlued funtions whih re

n times di'erentile in L p (D)D where n ≥ 0D p ≥ 1 @inludE ing p = ∞A nd D is the domin of etion IF e onsider lso W n,p (D, R)D W n,p (D, R d ) nd W n,p (D, C d ) de(ned in the stndrd wyF
e sy tht D is simply onneted i' D is pth onneted nd eh ontinE uous loop in D is ontrtileF sn dditionD we sy tht set S in R d is pth onneted i' eh pir of points in S n e joined y ontinuous pth in SF eeD eFgFD hxp in onnetion with these de(nitionsF sn the present work we ssume minly tht 

c ∈ W 1,∞ (D, R), c > 0, ρ ∈ C( D) ∪ C 2 (D), ρ > 0, v ∈ W 1,∞ (D, R d ), α 0 ∈ C( D), ζ ∈ C( D), ζ = 0, α 0 , ζ are real-valued, for d ≥ 3, @PFIA c ∈ W 2,p (D, R), c > 0, ρ ∈ W 3,p (D, R), ρ > 0, v ∈ W 2,p (D, R d ), α 0 ∈ W 1,p (D, R), ζ ∈ C( D), ζ = 0,
in R d , d ≥ 3, with path connected C 1 boundary ∂D. Let L (j)
ω and Λ (j) ω correspond to coecients c (j) , ρ (j) , v (j) , α (j) , where c (j) , ρ (j) , v (j) satisfy @PFIA, α (j) ≡ 0,

j = 1, 2. Let ω 1 , ω 2 ∈ [0, +∞) \ (σ(L (1) ω ) ∪ σ(L (2) ω )), ω 1 = ω 2 . Then the coincidence of the boundary data Λ (1) ω = Λ (2) ω for ω ∈ {ω 1 , ω 2 } implies that c (1) = c (2) , ρ (1) = Cρ (2) , v (1) = v (2) , where C = const > 0. Theorem 2.2. Let D be an open bounded simply connected domain in R 2 with path connected C ∞ boundary ∂D. Let L (j)
ω and Λ (j) ω correspond to coecients c (j) , ρ (j) , v (j) , α (j) , where c (j) , ρ (j) , v (j) satisfy @PFPA, α (j) ≡ 0,

j = 1, 2. Let ω 1 , ω 2 ∈ [0, +∞) \ (σ(L (1) ω ) ∪ σ(L (2) ω )), ω 1 = ω 2 . Then the coincidence of the boundary data Λ (1) ω = Λ (2) ω for ω ∈ {ω 1 , ω 2 } implies that c (1) = c (2) , ρ (1) = Cρ (2) , v (1) = v (2) , where C = const > 0. Theorem 2.3. Let D be an open bounded simply connected domain in R d , d ≥ 3, with path connected C 1 boundary ∂D. Let L (j) ω and Λ (j) ω correspond to R coecients c (j) , ρ (j) , v (j) , α (j) 0 , ζ (j) satisfying @PFIA, j = 1, 2. Let ω 1 , ω 2 , ω 3 ∈ (0, +∞) \ (σ(L (1) ω ) ∪ σ(L (2) 
ω )) be three pairwise dierent frequencies. Then the coincidence of the boundary data Λ (1) 2) , where C = const > 0 and

ω = Λ (2) ω for ω ∈ {ω 1 , ω 2 , ω 3 } implies that c (1) = c (2) , ρ (1) = Cρ (2) , v (1) = v (2) , α (1) = α (
α (j) (x, ω) = ω ζ (j) (x) α (j) 0 (x).
Theorem 2.4. Let D be an open bounded simply connected domain in R 2 with path connected C ∞ boundary ∂D. Let L (j) ω and

Λ (j) ω correspond to coecients c (j) , ρ (j) , v (j) , α (j) 0 , ζ (j) satisfying @PFPA, j = 1, 2. Let ω 1 , ω 2 , ω 3 ∈ (0, +∞) \ (σ(L (1) ω ) ∪ σ(L (2) 
ω )) be three pairwise dierent frequencies. Then the coincidence of the boundary data Λ (1)

ω = Λ (2) ω for ω ∈ {ω 1 , ω 2 , ω 3 } implies that c (1) = c (2) , ρ (1) = Cρ (2) , v (1) = v (2) , α (1) = α (2) , where C = const > 0 and α (j) (x, ω) = ω ζ (j) (x) α (j) 0 (x). heorems PFID PFP nd PFQD PFR re proved in etions QD R nd SF vet h be a real-valued function supported in D, h ∈ C 2 (D) and |∇h| 2 < 1 in D, @PFQA where D is n open ounded domin in R d F e set c (1) ≡ onst > 0, ρ (1) ≡ onst > 0, v (1) ≡ 0, α (1) 
0 ≡ onst > -1 2 min x∈D ∆h(x), @PFRA nd c (2) = c (1) (1 -|∇h| 2 ) -1/2 , ρ (2) ≡ onst > 0, v (2) = c (1) (1 -|∇h| 2 ) -1 ∇h, α (2) 0 = (1 -|∇h| 2 ) -1/2 (α (1) 0 + 1 2 ∆h).
@PFSA xote tht for these )uid prmeters c (j) D ρ (j) D v (j) D α (j) 0 with ζ (j) ≡ 0 the onditions @IFRAD @IFSA re ful(led for oth ses j = 1 nd j = 2F sn the present workD in ddition to glol uniqueness results of heorems PFID PFPD PFQD PFR we give lso the following nonEuniqueness resultF Theorem 2.5. Let D be an open bounded domain in R d , d ≥ 2, with smooth boundary. Let h satisfy @PFQA, h ≡ 0, and c (j) , ρ (j) , v (j) , α (j) , j = 1, 2, be dened by @PFRA, @PFSA. Let L (j) ω and

Λ (j) ω correspond to coecients c (j) , ρ (j) , v (j) , α (j) 0 with ζ (j) ≡ 0. Then Λ (1) ω = Λ (2) ω for all ω ∈ C \ σ, where σ = σ(L (1) z ) = σ(L (2) z ). heorem PFS is proved in etion TF 3 Proof of Theorem 2.1 xote thtX L (j) ω = d k=1 1 i ∂ ∂x k + A (j),k ω 2 + q (j) ω , @QFIA S
where

A (j) ω = (A (j),1 ω , . . . , A (j),d ω ) = ωv (j) (c (j) ) 2 + i 2 ∇ρ (j) ρ (j) , q (j) ω = - ω 2 (c (j) ) 2 + i∇ • ω (c (j) ) 2 v (j) + i 2 ∇ρ (j) ρ (j) - ω 2 (c (j) ) 4 (v (j) ) 2 + 1 4 (ρ (j) ) -2 (∇ρ (j) ) 2 - iωv (j) ∇ρ (j) (c (j) ) 2 ρ (j) , @QFPA ∇• is the stndrd divergeneD j = 1D 2F
fy heorem IFI of f we hve tht the tngentil omponents of the (elds A

(1)

ω nd A (2)
ω on ∂D re equlF endD s orollryD tangential components of ∇ρ (1) ρ (1) and

∇ρ (2) ρ (2) on ∂D are equal, @QFQA tangential components of v (1) (c (1) ) 2 and v (2)
(c (2) ) 2 on ∂D are equal. @QFRA sing @QFQA nd the pth onnetedness of ∂D we otin

ln ρ (2) -ln ρ (1) = ln C on ∂D, ρ (2) | ∂D = Cρ (1) | ∂D for some positive constant C > 0.
@QFSA sing heorem IFI of u nd the simple onnetedness of D we getX

q (2) ω -q (1) ω = 0 in D @QFTA nd A (2) ω -A (1) ω = ∇ϕ ω in D, @QFUA
where ϕ ω ∈ W 2,∞ (D, C)D ω ∈ {ω 1 , ω 2 }F eprting the rel nd the imginry prts of @QFTA we getX j) , j = 1, 2. @QFIPA hue to @QFSAD @QFIHA nd @QFIPAD we hve

ω 2 1 (c (1) ) 2 - 1 (c (2) ) 2 + (v (1) ) 2 (c (1) ) 4 - (v (2) ) 2 (c (2) ) 4 + ∇ρ (2) 2ρ (2) 2 - ∇ρ (1) 2ρ (1) 2 -∇ • ∇ρ (2) 2ρ (2) + ∇ • ∇ρ (1) 2∇ρ (1) = 0, @QFVA where ω ∈ {ω 1 , ω 2 }Y ∇ • v (1) (c (1) ) 2 - v (2) (c (2) ) 2 - ∇ρ (1) ρ (1) v (1) (c (1) ) 2 + ∇ρ (2) ρ (2) v (2) (c (2) ) 2 = 0. @QFWA sing @QFVA nd the ssumptions tht ω 1 D ω 2 ≥ 0D ω 1 = ω 2 D we otin ∇ρ (2) 2ρ (2) 2 - ∇ρ (1) 2ρ (1) 2 -∇ • ∇ρ (2) 2ρ (2) + ∇ • ∇ρ (1) 2ρ (1) = 0, @QFIHA 1 (c (1) ) 2 - 1 (c (2) ) 2 + (v (1) ) 2 (c (1) ) 4 - (v (2) ) 2 (c (2) ) 4 = 0. @QFIIA T vet u (j) = 1 2 ln ρ (
∆u (2) -(∇u (2) ) 2 = ∆u (1) -(∇u (1) ) 2 in D, u (2) = u (1) + 1 2 ln C on ∂D. @QFIQA ine u (1) D u (2) ∈ C( D) ∩ C 2 (D)D it follows from heorem IHFI of qi tht u (2) = u (1) + 1 2 ln C in D ndD onsequentlyD ρ (2) = Cρ (1) in D. @QFIRA
purtherD tking the rel prt of @QFUA nd using @QFRA we otin

v (2) (c (2) ) 2 - v (1) (c (1) ) 2 = ∇β ω in D @QFISA nd β ω = onst on ∂D, @QFITA
where

β ω = ϕ ω . @QFIUA
king into ount @QFIRA we de(ne 2) . @QFIVA pormuls @QFWAD @QFISAD @QFITA nd @QFIVA imply tht

a := ∇ρ (1) ρ (1) = ∇ρ (2) ρ ( 
-∆β ω + a∇β ω = 0 in D, β ω = onst on ∂DF @QFIWA
xow it follows from heorem VFI of qi tht β ω = onst in DF his result nd formul @QFISA imply tht

v (1) (c (1) ) 2 = v (2) (c (2) ) 2 in D.
@QFPHA pinllyD using @QFIIAD @QFPHA we otin

c (2) = c (1) and v (2) = v (1) in D.
@QFPIA his ompletes the proof of heorem PFIF U 4 Proof of Theorem 2.2 sn similr wy with the proof of heorem PFID we hve formuls @QFIA!@QFSA for d = 2F vet

µ (j) = - i 2 ln ρ (j) , @RFIA nd L (j) ω = e -iµ (j) L (j) ω e iµ (j) , @RFPA
where e iµ (j) D e -iµ (j) denote the multiplition opertors y the funtions e iµ (j) D e -iµ (j) D j = 1D 2F sing @RFIAD @RFPA one n see tht

σ( L (j) z ) = σ(L (j) z ), j = 1, 2, @RFQA nd Λ (1) ω = Λ (2) ω , @RFRA
where Λ

(1)

ω D Λ (2)
ω re the hirihletEtoExeumnn mps for opertors L

(1)

ω D L (2) ω in DD respetivelyD ω ∈ {ω 1 , ω 2 }F
fy diret omputtion we otin tht

L (j) ω = 2 k=1 1 i ∂ ∂x k + A (j),k ω 2 + q (j) ω , @RFSA
where

A (j) ω = ( A (j),1 ω , A (j),2 ω ) = ω (c (j) ) 2 v, q (j) ω = q (j)
ω .

@RFTA xote tht the (elds A

(1)

ω D A (2) 
ω do not ontin the imginry prt in ontrst with A

(1)

ω D A (2)
ω F xowD using @RFQAD @RFRAD @RFTA nd lso heorem IFI of qu nd simple onnetedness of D we get the equlities @QFVAD @QFWA for d = 2D ω ∈ {ω 1 , ω 2 }D nd lso the equlity

A (2) ω -A (1) ω = ∇ ϕ ω in D, @RFUA where ϕ ω ∈ W 2,∞ (D, R)D ω ∈ {ω 1 , ω 2 }F
sn similr wy with the proof of heorem PFID proeeding from @QFSAD @QFVA for d = 2 we otin @QFIRA for d = 2F

xowD using @QFRAD @RFTA nd @RFUA we otin @QFISAD @QFITA for d = 2D where β ω = ϕ ω . @RFVA pinllyD using @QFWAD @QFIRAD @QFISAD @QFITA for d = 2 nd @RFVA we omplete the proof of heorem PFP in ompletely similr wy to the orresponding prt of the proof of heorem PFIF V 5 Proofs of Theorems 2.3, 2.4 xote tht under the ssumptions of heorems PFQD PFRD we hve tht L (j) ω is given y @QFIAD where

A (j) ω = (A (j),1 ω , . . . , A (j),d ω ) = ωv (j) (c (j) ) 2 + i 2 ∇ρ (j) ρ (j) , q (j) ω = - ω 2 (c (j) ) 2 + i∇ • ω (c (j) ) 2 v (j) + i 2 ∇ρ (j) ρ (j) - ω 2 (c (j) ) 4 (v (j) ) 2 + 1 4 (ρ (j) ) -2 (∇ρ (j) ) 2 - iωv (j) ∇ρ (j) (c (j) ) 2 ρ (j) -2iω 1+ζ (j) α (j) 0 c (j) , @SFIA
where j = 1D 2F

5.1 Proof of Theorem 2.3 sn similr wy with the proof of heorem PFID we hve formuls @QFQA!@QFUAD where in @QFTAD @QFUA the funtions q

(1)

ω D q (2) ω D A (1) ω D A (2) 
ω re de(ned s in @SFIA nd ω ∈ {ω 1 , ω 2 , ω 3 } F xowD seprting the rel nd imginry prts of @QFTA we otin equlity @QFVA nd lso the equlity

∇ • v (1) (c (1) ) 2 - v (2) (c (2) ) 2 - ∇ρ (1) ρ (1) v (1) (c (1) ) 2 + ∇ρ (2) ρ (2) v (2) (c (2) ) 2 +2ω ζ (2) α (2) 0 (c (2) ) 2 -2ω ζ (1) α (1) 0 (c (1) ) 2 = 0, @SFPA
where ω ∈ {ω 1 , ω 2 , ω 3 }F sing @SFPA nd the ssumption tht ω 1 D ω 2 D ω 3 re positive nd mutully di'erent frequenies we otinD in prtiulrD tht @QFWA holdsF sn similr wy with the proof of heorem PFID proeeding from @QFRA!@QFWA we otin @QFPIAF xextD in order to show tht α

(2)

0 (x) = α (1) 0 (x) for (xed x ∈ D we onsider two sesX @A ζ (1) (x) = ζ (2) (x)Y @A ζ (1) (x) = ζ (2) (x)F
por the se @A using @SFPA nd the ssumption tht ω 1 D ω 2 D ω 3 re positive nd mutully di'erent frequeniesD in ddition to @QFWAD we otin lso tht α (j) 0 (c (j) ) 2 = 0 at point x, j = 1, 2, @SFQA ndD s orollryD α

(1) 0 (x) = α

(2) 0 (x) = 0. @SFRA por the se @A using @SFPA nd the ssumption tht ω 1 D ω 2 D ω 3 re positive nd mutully di'erent frequeniesD in ddition to @QFWAD we otin lso tht

α (2) 0 (c (2) ) 2 - α (1) 0 (c (1) ) 2 = 0 at point x.
@SFSA W sing @QFPIA nd @SFSA we otin

α (2) 0 (x) = α (1) 0 (x).
@SFTA pinllyD the result tht α (2) = α (1) in D follows from @SFRA for the se @A nd from @SFTA for the se @AF his ompletes the proof of heorem PFQF 5.2 Proof of Theorem 2.4

sn similr wy with the proofs of heorems PFPD PFQ nd we hve formuls @QFIAD @SFIAD @QFQA!@QFTA for d = 2 nd formuls @RFIA!@RFUA where in @QFTAD @RFRAD @RFUA ω ∈ {ω 1 , ω 2 , ω 3 }F xowD seprting the rel nd imginry prts of @QFTA we otin equlity @QFVA nd lso equlity @SFPA for d = 2D where ω ∈ {ω 1 , ω 2 , ω 3 }F sing equlity @SFPA nd the ssumption tht ω 1 D ω 2 D ω 3 re positive mutully di'erent frequenies we otinD in prtiulrD @QFWA for d = 2F

es in the proof of heorem PFID we use @QFSAD @QFVA to otin @QFIRAF sing @QFRAD @QFWAD @QFIRA for d = 2 nd @RFUA s in the proof of heorem PFPD we otin @QFPIA for d = 2F

pinllyD using @SFPA we omplete the proof of heorem PFR in ompletely similr wy to the proof of heorem PFQF 6 Proof of Theorem 2.5 vet µ = ω c (1) h. @TFIA yne n hek y diret omputtion tht

e -iµ L (1) ω e iµ = -∆ -2iA (2) ω ∇ -U (2) ω , @TFPA where A (2) ω = ω c (1) ∇h, U (2) ω = ω 2 (c (1) ) 2 (1 -|∇h| 2 ) + 2iω c (1) (α (1) 0 + 1 2 ∆h),
@TFQA nd e iµ D e -iµ denote the multiplition opertors y the funtions e iµ D e -iµ D respetivelyF sing @TFPA one n see tht

L (2) ω = e -iµ L (1) ω e iµ .
@TFRA hue to our ssumptionsD we hve tht e ±iµ -1 is supported in D.

@TFSA IH sing @TFRAD @TFSA one n see tht 

σ(L (1) z ) = σ(L (2) z ), @TFTA nd Λ (1) ω = Λ (2) ω for all ω ∈ C \ σ, @TFUA where σ = σ(L (1) z ) = σ(L ( 

  )uid in n open ounded domin D ⊂ R d with sound speed c = c(x)D density ρ = ρ(x)D )uid veloity vetor v = v(x) nd the sound wve sorption oe0ient α = α(x, ω) t (xed frequeny ωD where x ∈ D = D ∪ ∂DF por this )uid we onsider the following model eqution for the timeE hrmoni @e -iωt A ousti pressure ψX

α 0 ,

 0 ζ are real-valued, where p > 2, d = 2. @PFPA vet L ω D σ(L ω ) nd Λ ω e de(ned s in etion IF sn the present work we otinD in prtiulrD the following glol uniqueness resutls for rolem IFIF Theorem 2.1. Let D be an open bounded simply connected domain
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