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In this paper, we study the set of the invariant probabilities of the Vlasov-Fokker-Planck equation. This is a nonlinear diffusion, since the own law of the process intervenes in the drift. In order to make our study, we are lying on the recent results by Tugaut and coauthors about the McKean-Vlasov diffusion. Indeed, we show here that the set of invariant probabilities of the Vlasov-Fokker-Planck equation is related to that of the McKean-Vlasov diffusion.

Introduction

The Vlasov-Fokker-Planck equation

We consider the following Vlasov-Fokker-Planck (VFP) equation,

∂ t ρ = -div q ρ p m + div p ρ(∇ q V + ∇ q ψ * ρ + γ p m ) + γkT ∆ p ρ. (1) 
In this equation, the spatial domain is R 2d with coordinates (q, p) ∈ R d × R d . The unknown is a time-dependent probability measure ρ : [0, T ] → P(R 2d ). Subscripts as in div q and ∆ p indicate that the differential operators act only on those variables. The functions V = V (q) and ψ = ψ(q) are given. The convolution ψ * ρ is defined by (ψ * ρ)(q) = R 2d ψ(q-q ′ )ρ(q ′ , p ′ ) dq ′ dp ′ . Finally γ, k and T are positive constants. Equation (1) is the forward Kolmogorov equation of the following stochastic differential equation (SDE),

dQ(t) = P (t) dt, dP (t) = -∇V (Q(t)) dt -∇ψ * ρ t (Q(t)) dt -γ P m dt + 2γkT dW (t). ( 2 
)
This SDE models the movement of a particle with mass m under a fixed potential V , an interaction potential ψ, a friction force (the drift term -γ P m dt) and a stochastic forcing described by the d-dimensional Wiener measures W . In this model, γ is the friction coefficient, k is the Boltzmann constant and T is the absolute temperature.

Eq. (1) and system (2) play an important role in applied sciences in particular in statistical mechanics. For instance, it is used as a simplified model for chemical reactions, or as a model for particles interacting through Coulomb, gravitational, or volume exclusion forces, see e.g., [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF][START_REF] Neunzert | On the Vlasov-Fokker-Planck equation[END_REF][START_REF] Bouchut | On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials[END_REF]. Eq. (1) (and related models) has been studied intensively in the literature by many authors from various points of view, see e.g. [Deg86, BD95, BGM10, DPZ13, DPZ14, Duo15] and references therein. In particular, invariant probabilities of Eq. (1) has been investigated in [START_REF] Dressler | Stationary solutions of the Vlasov-Fokker-Planck equation[END_REF][START_REF] Bolley | Marieu Trend to equilibrium and particle approximation for a weakly self-consistent Vlasov-Fokker-Planck equation[END_REF] (see also [START_REF] Duong | Long time behaviour and particle approximation of a generalized Vlasov dynamic[END_REF]). However, in these papers, the potential V is assumed to be either bounded or globally Lipschitz or convex. As a result, there is a unique invariant probability. In this paper, we show that when the potential V is unbounded, non-convex and non-Lipschitz, of which a double-well potential is a typical example, non-uniqueness and other interesting phenomena such as phase transition can occur. Herein, we characterise the set of invariant probabilities in such a case. Our study is lying on the recent results by Tugaut and co-authors about the McKean-Vlasov diffusion by showing that the set of invariant probabilities of the Vlasov-Fokker-Planck equation is related to that of the McKean-Vlasov diffusion.

Normalization

We first write (1) in dimensionless form. By setting q =: L q, p =: mL τ p, t =: τ t and V (q) =: mL 2 τ 2 V ( q), ψ(q) =:

mL 2 τ 2 ψ( q), ρ(p, q, t) =:

τ d m d L 2d ρ( p, q, t),
where L is the characteristic length scale, and τ := m γ is the relaxation time of the particle dynamics. Then the dimensionless form of the Vlasov-Fokker-Planck equation is (after leaving out all the tilde)

∂ t ρ = -div q ρp + div p ρ(∇ q V + ∇ q ψ * ρ + p) + ε∆ p ρ. ( 3 
)
where

ε := kT τ 2 m -1 L -2 is the dimensionless diffusion coefficient.
In this paper, we are interested in stationary solutions of Eq. (3), i.e., solutions of the following equation

K[ρ](ρ) = 0, (4) 
where

K[µ](ρ) := -div q ρp + div p ρ(∇ q V + ∇ q ψ * µ + p) + ε∆ p ρ (5) 
for given µ ∈ L 1 (R 2d ). Note that for a given µ, the operator K[µ](ρ) is linear in ρ. This can be seen as a linearised operator of K[ρ](ρ). Under the assumption that V and ψ are smooths, the linearised operator is hypo-elliptic.

Organisation of the paper

The rest of the paper is organised as follows. In Section 2, we state our assumptions and provide a characterization via an implicit equation for a stationary probability measure of Eq. (4). In Section 3 we present main results of the paper which prove the existence, (non-) uniqueness and phase transition properties of such invariant probabilities.

Characterization of invariant probabilities

We now characterize solutions of Eq. (4). First of all, we consider the following assumption: Assumption 1. Assumption (V-1): V is a smooth function and there exists m ∈ N * and C 2m > 0 such that lim ||x||→+∞ V (x)

||x|| 2m = C 2m . Assumption (V-2):
The equation ∇V (x) = 0 admits a finite number of solution. We do not specify anything about the nature of these critical points. However, the wells will be denoted by a 0 . (i.e., V is a double-well potential) and ψ = α 2 x 2 for some α (i.e., ψ is a quadratic interaction). Proposition 1. Suppose that Assumption 1 holds. If there exists a solution

Assumption (V-3): V (x) ≥ C 4 ||x|| 4 -C 2 ||x|| 2 for all x ∈ R d with C 2 , C 4 > 0. || . ||
ρ ∞ ∈ L 1 ∩ L ∞ of Eq. (4) then ρ ∞ (q, p) = Z -1 ε exp - 1 ε p 2 2 + V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) , (6) 
where Z ε is the normalizing constant

Z ε = R 2d exp - 1 ε p 2 2 + V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) dq dp. ( 7 
)
Conversely any measure whose density satisfies (6) is invariant for (3).

Proof. The idea of the proof has appeared in [START_REF] Dressler | Stationary solutions of the Vlasov-Fokker-Planck equation[END_REF], where the authors study the Vlasov-Fokker-Planck equation but with different scaling and assumptions. The proof is divided into two steps.

Step 1. We first consider the linearised equation

K(ρ) := K[µ](ρ) = 0, (8) 
where µ ∈ L 1 (R 2d ) is a given. We prove the following assertion: Define

A := v : R 2d → R v(•, p) ∈ C 1 (R d ) ∀p ∈ R d ; v(q, •) ∈ C 2 (R d ) ∀q ∈ R d ; and f := v • u -1/2 satisfies f ∈ H 1 ((1 + |q| + |p|) dqdp), ∆ p f ∈ L 2 .
Then the linearised equation ( 8) has a unique solution in A given by u(q, p)

:= C -1 ε exp - 1 ε 1 2 p 2 + V (q) + ψ * µ(q) , (9) 
where C ε is the normalisation constant so that u 1 = 1. Indeed, since -div q (up)+div p (u(∇ q V +∇ q ψ * µ)) = div p (up)+ε∆ p u = 0, it follows that K[µ](u) = 0. Now assume that Eq. ( 8) has another solution

v ∈ A and v 1 = 1. Let f := v • u -1/2 . Since v ∈ A, f satisfies f ∈ H 1 ((1 + |q| + |p|) dqdp) and ∆ p f ∈ L 2 . Moreover, we have -div q (vp) + div p (v(∇ q V + ∇ q ψ * µ)) = u 1/2 [-div q (f p) + div p (f (∇ q V + ∇ p ψ * µ))],
and

div p vp + ε∇ p v = div p vp + ε∇ p (u u -1/2 f ) = div p vp + ε(u∇ p (u -1/2 f ) + ∇ p u • u -1/2 f ) = ε div p u∇ p (u -1/2 f ) . Define Qf := -u -1/2 K(u 1/2 f) = -u -1/2 K(v).
Then from the above calculation, we get

Qf = -[-div q (f p) + div p (f (∇ q V + ∇ p ψ * µ))] -εu -1/2 div p u∇ p (u -1/2 f ) .
Therefore, by multiplying by f and integrating over R 2d , we obtain

Qf, f L 2 = 1 2 R 2d [div p (pf 2 ) -div p (f 2 (∇ q V + ∇ p ψ * µ))] dqdp -ε R 2d u -1/2 div p u∇ p (u -1/2 f ) f dqdp = 1 2 R 2d [div p (pf 2 ) -div p (f 2 (∇ q V + ∇ p ψ * µ))] dqdp -ε R 2d div p u -1/2 [u∇ p (u -1/2 f )] + ε R 2d u ∇ p (u -1/2 f ) 2 dqdp = ε R 2d u ∇ p (u -1/2 f ) 2 dqdp.
Since Qf = 0, it follows that ∇ p (u -1/2 f ) = 0, i.e., u -1/2 f = g(q) for some function g. Hence v = u 1/2 f = u • g(q), and 0 = K(v) = -up • ∇ q g(q). It implies that ∇ q g(q) = 0, i.e., g is a constant. Since v 1 = 1, we obtain that g = 1, i.e. v = u. In other words, Eq. ( 8) has u as a unique solution in A and u 1 = 1.

Step 2. Suppose that

ρ ∞ ∈ L 1 ∩ L ∞ is a solution of Eq. (4). Therefore, ρ ∞ solves the equation L[ρ ∞ ](ν) = 0. According to
Step 1, this equation has a unique solution given by ν = Z -1 ε exp -

1 ε p 2 2 + V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) .
Hence ν = ρ ∞ , i.e., ρ ∞ satisfies (6). The reverse assertion is obvious.

Main results

In this section, we assume that Assumption 1 is fulfilled.

Theorem 1. We consider a measure ρ ∞ on R d × R d . It is an invariant probability for (3) if and only if q → R d ρ ∞ (q, p)dp is an invariant probability of dX(t) = -∇V (Q(t)) dt -∇ψ * µ t (X(t)) dt + √ 2εdW (t), (10) 
Proof. Denote by ρ∞ the first marginal of ρ ∞ , i.e., ρ∞ (q) = R d ρ ∞ (q, p)dp.

Then (6) becomes

ρ ∞ (q, p) = exp -1 ε p 2 2 + V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) R 2d exp -1 ε p 2 2 + V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) dqdp = e -1 ε p 2 2 R d e -1 ε p 2 2 dp × exp -1 ε V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) R d exp -1 ε V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) dq (11) 
It follows that

ρ∞ (q) = R d ρ ∞ (q, p) dp = exp -1 ε V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) R d exp -1 ε V (q) + ψ * ρ ∞ (q) -ψ * ρ ∞ (0) dq .
Note that ρ∞ is the stationary measure of the McKean-Vlasov SDE

dX(t) = -∇V (Q(t)) dt -∇ψ * µ t (X(t)) dt + √ 2εdW (t), (12) 
where µ t is the law of X(t). The forward Kolmogorov equation associated to the McKean-Vlasov SDE is given by

∂ t µ t = div[µ t (∇V + ∇ψ * µ t )] + ε∆µ t . (13) 
Thus, the following statements hold true:

Proposition 2. For any ε > 0, there exists an invariant probability. This is a consequence of Proposition 3.1 in [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF].

Theorem 2. If both V and ψ are symmetric, there exists a symmetric invariant probability.

This is a consequence of Theorem 4.5 in [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF].

Proposition 3. Here, d = 1. We assume that the interacting potential ψ is quadratic: ψ(x) := α 2 x 2 . Let a 0 be a critical point of V such that α + V ′′ (a 0 ) > 0 and α > 2 sup

x =a 0 V (a 0 ) -V (x) (a 0 -x) 2 . ( 14 
)
Thus, for all δ ∈]0 ; 1[, there exists ε 0 > 0 such that for all ε ≤ ε 0 , Diffusion (3) admits an invariant probability ρ

∞ satisfying R R qρ ∞ (q, p)dqdp -a 0 + V (3) (a 0 ) 4V ′′ (a 0 ) (α + V ′′ (a 0 )) ε ≤ δ ε .
This is a consequence of Proposition 1.2 in [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF].

Theorem 3. Here, d = 1. We assume that

V (x) = - |V ′′ (0)| 2 x 2 + q p=2 V (2p) (0) (2p)! x 2p with deg(V ) =: 2q . (15) 
And, ψ(x) := α 2 x 2 . Thus, there exists a ε c > 0 such that:

• For all ε ≥ ε c , Diffusion (3) admits a unique invariant probability, which is symmetric.

• For all ε < ε c , Diffusion (3) admits exactly three invariant probabilities.

Moreover, ε c is the unique solution of the equation

R + 4y 2 - 1 2α e (|V ′′ (0)|-α)4y 2 - q p=2 2x p-1 V (2p) (0) (2p)! 2 2p y 2p dy = 0 . ( 16 
)
This is a consequence of Theorem 2.1 in [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF].

Proposition 4. Here, d = 1. We assume that ψ is quadratic: ψ(x) := α 2 x 2 . Thus, for any α ≥ 0, there exists a critical value ε 0 (α) such that Diffusion (3) admits a unique invariant probability provided that ε > ε 0 (α). This is a consequence of Proposition 2.4 in [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF].

Theorem 4. Let a 0 be a point where V admits a local minimum such that V (x) + F (x -a 0 ) > V (a 0 ) for all x = a 0 .

(17)

Then, for all κ > 0 small enough, there exists ε 0 > 0 such that ∀ε ∈]0; ε 0 [, the diffusion (3) admits a stationary measure ρ ∞ satisfying

R d R d ||q -a 0 || 2n ρ ∞ (q, p)dqdp ≤ κ 2n .
This is a consequence of Theorem 2.3 in [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF].

More generally, all the results in [HT10a, HT10b, HT12, McK66, McK67, Tug10, Tug11, Tug14a, Tug14b] hold.

  denotes the euclidian norm. Assumption (V-4): lim ||x||→±∞ Hess V (x) = +∞ and Hess V (x) > 0 for all x / ∈ K where K is a compact of R d which contains all the critical points of V . Assumption (ψ-1): There exists an even polynomial function G on R such that ψ(x) = G(||x||). And, deg(G) =: 2n ≥ 2. Assumption (ψ-2): G and G ′′ are convex. Assumption (ψ-3): G(0) = 0. The simplest example (most famous in the literature) is that V (x) = x 4 4 -x 2 2
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