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Abstract

Bagai and Prakasa Rao (1992) considered a competing risks model with two depen-
dent risks. The two risks are initially independent but dependence arises because of
the additive effect of an independent risk on the two initially independent risks. They
showed that the ratio of failure rates are identifiable in the nonparametric set up. In
this paper, we consider it as a measurement error/deconvolution problem and suggest
a nonparametric kernel type estimator for the ratio of two failure rates. The local error
properties of the proposed estimator are studied. Simulation studies show the efficacy
of the proposed estimator.
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1 Introduction

Consider situations where the outcome consists of paired observation with one component
being a continuous random variable and the second a discrete random variable. In lifetime
studies the continuous random variable could be the lifetime of the component and the
discrete random variable identifying the cause of failure of the component. Such data with
competing risks occur in several real life situations - survival analysis, life testing, unem-
ployment studies, sociological studies (occurrence of crime) . . . (see David and Moeschberger
(1978), Crowder (2001), Kalbfleisch and Prentice (2002) and Pintilie (2006)).

Bagai and Prakasa Rao (1992) considered an additive model based on two dependent
competing risks X and Y , where X = X0+X1, Y = X0+X2 and X0, X1, X2 are independent
random variables. For example, an individual may be exposed to risk of death due to heart
and kidney failure. But the presence of diabetes may shorten these theoretical lifetimes.
Or change in dietary habits and exercise routines could enhance these theoretical lifetimes.
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These latent failure times X,Y are not observable. We can only observe the failure time T
and the cause of failure δ, where

T = min(X,Y ) = min(X0 +X1, X0 +X2) = X0 + min(X1, X2)

and

δ = I(X < Y ) = I(X0 +X1 < X0 +X2) = I(X1 < X2).

Suppose X0, X1, X2 are independent random variables whose characteristic functions
are non-vanishing. Then Kotlarski (1966, 1967) and Prakasa Rao (1968) proved that the
distributions of X0, X1 and X2 can be determined uniquely from the joint distribution of
X,Y among the class with fixed E(X0). However, X,Y are not observable in the presence of
competing risks. Bagai and Prakasa Rao (1992) assumed that X0, X1, X2 are independent
exponential random variables with parameters λ0, λ1 and λ2, respectively. Consider the
class with λ0 fixed. Then, if only failure time T is observable, λ1 +λ2 is identifiable. If both
failure time and cause of death (T, δ) are observable then both λ1 and λ2 are identifiable.

In the nonparametric case, let X0, X1, X2 be independent random variables with distri-
bution functions G,F1 and F2, density functions g, f1 and f2, survival functions Ḡ, F̄1 and
F̄2 and failure rate functions rG, rF1 and rF2 , respectively (note rG(x) = g(x)/Ḡ(x).) Then
Bagai and Prakasa Rao (1992) showed that when T, δ are observable, then in the class of
distributions with X0 fixed, individual distributions F1 and F2 are not identifiable but the
ratio of failure rates H defined by

H(t) =
rF1(t)

rF2(t)
=
f1(t)F̄2(t)

f2(t)F̄1(t)

is identifiable.
In this paper we propose a kernel based nonparametric estimator for H based on com-

peting risks data (T1, δ1), (T2, δ2), . . . , (Tn, δn).
Let us set Z = min(X1, X2). Let the sub-density functions of (Z, δ = 1) and (Z, δ = 0)

be given by fZ(t, 1) and fZ(t, 0), respectively. Since X1, X2 are independent, one can prove
that

fZ(t, 1) = f1(t)F̄2(t), fZ(t, 0) = f2(t)F̄1(t),

Hence we can express H as

H(t) =
fZ(t, 1)

fZ(t, 0)
.

Let us now discuss the estimations of fZ(t, 1) and fZ(t, 0). Remark that the failure time T
can be written as

T = Z +X0,
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where X0 can be viewed as an error term. Since X0 and Z are independent, this can be
looked upon as additive measurement error model studied first by Carroll and Hall (1988),
Stefanski and Carroll (1990) and Zhang (1990). One could also refer to Fan (1991, 1992),
Carroll et al. (1995), Efromovich (1997), Delaigle and Gijbels (2004 a,b), Meister (2004),
Van Es and Uh (2005), Delaigle and Meister (2007, 2008), Hall and Lahiri (2008) and Wang
et al. (2010). A comprehensive discussion of nonparametric deconvolution methods can be
found in Meister (2009).

Extending the deconvolution problem to competing risks, we develop a ratio-type es-
timator Ĥ for H. It is based on Fourier-kernel methods and a thresholding technique
derived to the approach of Vasiliev (2014). We evaluate its performance under the local
risk R(Ĥ,H)(t∗) defined by, for a fixed point t∗ ∈ R,

R(Ĥ,H)(t∗) = E(|Ĥ(t∗)−H(t∗)|2). (1.1)

We prove that Ĥ attains fast rates of convergence over Hölder class according to the nature
of the density of X0 (the so-classed ordinary smooth and super smooth cases are considered).
Moreover, we illustrate its finite sample performance via a simulation study.

The remainder of the paper is structured as follows. In Section 2 we present some
notations and formulate some assumptions on the model. Our main estimator is described
in Section 3. Section 4 is devoted to its performances in terms of rates of convergence under
the local error. The results of a numerical experiment to investigate the properties of our
estimator are presented in Sections 5 and 6. The proofs are deferred to Section 8.

2 Notations and Assumptions

For any p ≥ 1, let

Lp(R) =

{
h : R→ R;

∫
|h(x)|pdx <∞

}
.

The convolution product of two functions h and k is given by

(h ∗ k)(x) =

∫
h(x− z)k(z)dz,

provided the above integral exists.
The Fourier transform of a function h ∈ L1(R) is defined as

hft(x) =

∫
eitxh(t)dt.

Let fT be the density function of T , g be the density function of X0 and fZ be the density
function of Z.
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We formulate the following boundedness assumptions. Let t ∈ R.

(A1)(t) We suppose that there exists a known constant c∗ > 0 such that

fZ(t, 0) ≥ c∗.

(A2)(t) We suppose that there exists a constant C∗ > 0 such that

fZ(t, j) ≤ C∗, j = 0, 1.

These boundedness assumptions are satisfied by a wide variety of sub-densities. In our main
Theorem, we need that (A1)(t) and (A2)(t) are satisfied only at the point t = t∗ considered
in the local error.

As usual in deconvolution problems in nonparametric estimation, we assume that the
density function of g, belongs to one of the two major types of error densities :

(B1) Ordinary smooth error densities : There exist constants C1 > 0, C2 > 0 and α ≥ 0
such that

C1(1 + |x|)−α ≤ |gft(x)| ≤ C2(1 + |x|)−α.

(B2) Super smooth error densities : There exist constants C1 > 0, C2 > 0, d1 > 0, d2 > 0
and γ ≥ 0 such that

C1 exp (−d1|x|γ) ≤ |gft(x)| ≤ C2 exp (−d2|x|γ)

for some C2 > C1 > 0, 0 < d2 < d1 and γ > 0.

Further details are given in Meister (2009). Density function of a normal random variable
is an example of a supper smooth error density and the Laplace density (also known as
double-exponential density) is an example for ordinary smooth error density.

Finally, we say that a function h belongs to the Hölder class Fβ,λ;t(M), with β > 0,
λ > 0 and M > 0 if and only if

|h([β])(y)− h([β])(ỹ)| ≤M |y − ỹ|β−[β], for all y, ỹ ∈ [t− λ, t+ λ]

and supt∈R |h(t)| ≤M .

3 The Estimators

In this section we propose an estimator for H(t), the ratio of hazard functions of X1 and
X2.
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First of all, note that the independence of Z and X0 implies that the density function
of T is given by

fT (x) = (fZ ∗ g)(x) =

∫
fZ(x− z)g(z)dz.

An elementary property of the Fourier transform and convolution product gives the following
relationship between Fourier transforms of fT , g and fZ .

fftT (x) = gft(x)fftZ (x).

For a given g, the estimator f̂T of fT is given by f̂ftT (x) = gft(x)f̂ftZ (x) where f̂ftZ (x) is

an estimator of fftZ (x). Hence,

f̂ftZ (x) =
f̂ftT (x)

gft(x)
.

Then, one can use the inversion techniques to find f̂Z(x).
We extend these ideas to the competing risks problem. Let the sub-density functions of

(T, δ = 1) and (T, δ = 0) be given by fT (t, 1) and fT (t, 0) respectively. Since Z and X0 are
independent, we have,

fT (t, 1) =

∫
fZ(t− z, 1)g(z)dz

fT (t, 0) =

∫
fZ(t− z, 0)g(z)dz

The Fourier transforms of fT (t, 1) and fT (t, 0) are given by

fftT (x, 1) = fftZ (x, 1)gft(x)

fftT (x, 0) = fftZ (x, 0)gft(x)

Then, for given g, the estimators for fT (t, 1) and fT (t, 0) are given by

f̂ftT (x, 1) = gft(x)f̂ftZ (x, 1).

f̂ftT (x, 0) = gft(x)f̂ftZ (x, 0).

Based on paired data (T1, δ1), (T2, δ2), . . . , (Tn, δn) , we propose the following estimators for
fZ(t, 1) and fZ(t, 0),

f̂Z(t, 1) =
1

2nπ

n∑
j=1

δj

∫
e−i(t−Tj)x

Kft(xb)

gft(x)
dx,

f̂Z(t, 0) =
1

2nπ

n∑
j=1

(1− δj)
∫
e−i(t−Tj)x

Kft(xb)

gft(x)
dx. (3.1)
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where Kft is Fourier transform of a kernel function, K with bandwidth b = bn satisfying
the following properties :

(a) K ∈ L1(R) ∩ L2(R),Kft has support on [−1, 1],

(b)
∫
zjK(z)dz = δj,0, for all j = 0, . . . , [β], δj,` is equal to 1, if j = `, and zero otherwise,

(c)
∫
|K(z)zβ|dz <∞.

We call these kernel functions β-order kernels (see Meister (2009)).
Let t∗ be a fixed point in R. Suppose that (A1)(t∗) holds. We consider the following

estimator for H(t∗) :

Ĥ(t∗) =
f̂Z(t∗, 1)

f̂Z(t∗, 0)
1{|f̂Z(t∗,0)|≥ c∗2 }, (3.2)

where 1 denotes the indicator function.
The proposed thresholding is a technical tool to ensure good theoretical properties of

our estimator. It is derived from the general ratio-type estimator studied by Vasiliev (2014).

4 Main Result

In this section we investigate the local error of Ĥ over Hölder spaces.

Theorem 4.1 Let t∗ be a fixed point in R. Suppose that (A1)(t∗) is satisfied and that
fZ(t∗, 1) and fZ(t∗, 0) belong to Fβ,λ;t∗(M).

• Under (B1) : let Ĥ(t∗) be defined by (3.2) with a β-order kernel and

b = O
(
n−1/(2β+2α+1)

)
. (4.1)

Then the local error (1.1) of Ĥ(t∗) satisfied

R(Ĥ,H)(t∗) = O
(
n−2β/(2β+2α+1)

)
.

• Under (B2) : let Ĥ(t∗) be defined by (3.2) with a β-order kernel and

b = c
−1/γ
b (log(n))−1/γ , cb ∈ (0, 1/(2d1)). (4.2)

Then the local error (1.1) of Ĥ(t∗) satisfied

R(Ĥ,H)(t∗) = O
(

log(n)−2β/γ
)
.
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The proof of Theorem 4.1 is based on sharp upper bounds and powerful mean L2 error
properties of our estimators f̂(t, j) for j = 0, 1.

Let us mention that the rates of convergence in Theorem 4.1 correspond to the optimal
ones (in the minimax sense) attained by the standard Fourier-kernel density estimator in a
measurement error setting under the local error (see Meister (2009)).

Remark 4.1 Theorem 4.1 can be extended for the sup error :

Ro(Ĥ,H) = sup
t∈I

E(|Ĥ(t)−H(t)|2),

where I ⊂ R provided that (A1)(t) is satisfied for any t ∈ I.

Remark 4.2 If n is such that c∗ ≥ 1/ log(log(n)), one can define Ĥ (3.2) with 1/ log(log(n))
instead of c∗. Then Theorem 4.1 is still valid with a penality of log(log(n)) in the rates of
convergence.

5 Numerical Study

In this section we carry out a numerical experiment to study the performance of our pro-
posed estimator Ĥ given by (3.2) . We employed a smooth version of estimators for ratio
of hazard rates, H after local linear regression (see, e.g., Fan (1992) and Chesneau et al.
(2014)). The competing estimator for ratio of hazard rates is the ordinary kernel type
estimator for hazard function under random censorship. We also plot the estimators for
sub-density functions given by (3.1) and the kernel-type estimators for sub-densities. We
show that our proposed estimators perform better especially when the error term is with
non-zero mean.

Here we consider two cases - when both X1 and X2 follow Weibull distribution or
Gamma distribution. The error density of X0 is considered Normal or Laplace. In all cases
the error terms have nonzero mean, µ = min(sd(X1), sd(X2))/2 and standard deviation
σ = min(sd(X1), sd(X2))/20. Graphs for zero mean error term are given in supplementary
files. In each example we plot three figures, the left figure shows the real ratio of failure
rates, i.e. H with blue curves and our proposed Ĥ with solid lines and ordinary kernel
based estimator of H with red lines. The two other figures shows the real sub-densities
fZ(t, 1) and fZ(t, 0) with blue lines versus two estimators: our proposed estimators for sub-
densities and the classical kernel-type estimator for sub-density functions with solid lines
and red lines, respectively. The codes are written R and we employed different packages:
decon, OOmisc, muhaz, KernSmooth, logspline. We used excellent software package decon
for R, which was presented by Wang and Wang (2011).
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Example 1 : We generate n = 250, X1, X2 observations from two independent Weibull
distributions. Figure 1 shows the results for Weibull distributions with parameters (3,1)
and (4,2), respectively. Figure 2 shows the results for Weibull distributions with parameters
(6,1) and (3,2), respectively.

Example 2 : We generate n = 250 X1, X2 observations from two independent Gamma
distributions - Figure 3 is for Gamma with parameters (6,1) and (3,2), respectively and
Figure 4 is for Gamma with parameters (3,2) and (2,1), respectively.

On the basis of Figures 1-4 we conclude

(i) The proposed estimator of H(t), the ratio of hazard functions is very close to the
original function for sample size 250.

(ii) There are problems at the boundary with Ĥ showing a drop.
(iii) The alternative kernel type estimator does not perform well in all cases.
(iv) The performance of Ĥ is similar for both Normal and Laplace error densities.
(v) Our estimators of the sub-density functions are smoother than the original sub-

densities.
(vi) The estimators of sub-density functions based on kernel estimators are not perform-

ing well.
(vii) The pattern of results is similar for both Weibull and Gamma densities.
The performance of our estimators with non-zero error mean (both Normal and Laplace)

is significantly better than the case of zero error mean. See Supplementary files for illustra-
tions. The results for higher sample sizes (n = 500, 1000) show similar pattern.

In all Figures the function H is represented by the curve in blue and its estimator Ĥ
by curve in black. It is clear that the estimator Ĥ is very close to the original ratio of the
hazard rates H(t). The results are similar for error distributions Normal and Laplace . The
estimator is not too good at the tails when the error density is Laplace.

Similar conclusions hold in Figures 3 and 4 when we have Gamma variables with pa-
rameter above. Note that the pictures in Figures 3 and 4 look more apart because of the
scale chosen for the Y-axis.

6 Real Data

We consider the follicular cell lymphoma data given in Pintilie (2006). There were 541
patients diagnosed with follicular cell lymphoma (I or II). The two treatments were radiation
alone and a combination of radiation and chemo. The two competing risks were disease
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Figure 1 Ratio of hazard rates and sub-densities with their estimators. Real curves are
blue and proposed estimators are solid and competitor estimators are red curves. The top
array gives the results for Weibulls with parameters (3,1) and (4,2), respectively when the
error density is normal whereas the the bottom one corresponds to error density Laplace.
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Figure 2 Ratio of hazard rates and sub-densities with their two estimators. Curve types are
as in Figure 1.Densities considered are Weibull with parameters (6,1) and (3,2), respectively.
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Figure 3 Ratio of hazard rates and sub-densities with two estimators. Curve types are
as in Figure 1.Densities considered are Gamma with parameters (6,1) and (3,2), respectively.
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Figure 4 Ratio of hazard rates and sub-densities with their two estimators. Curve types are
as in Figure 1.Densities considered are Gamma with parameters (3,2) and (2,1), respectively.
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Figure 5 Two estimators for ratio of hazard rates and sub-densities. Proposed estimators
are solid lines and the competitors are red lines. The expectation of error term is 3.
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Figure 6 Ratio of hazard rates and sub-densities with two estimators. Proposed estimators
are solid lines and the competitors are red lines. The expectation of error term is zero.
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relapse (and no response) and death in remission.The average age of patients was 57 with
sd=14. The haemoglobin levels of the patient had mean =138 and sd=15. The study had
a median follow-up time of 5.5 years. Out of the 541 patients, 272 patients were in the no
treatment response or relapse category, 76 patients died without relapse and 193 patients
were censored.

The data was analyzed by Scheike and Zhang (2011) using Timereg Package R. Using
both semi-parametric and nonparametric models they concluded that age and stage of
the disease were significant factors. For our analysis, death in remission corresponds to
δ = 1 and disease relapse with no response and censored observations have been pooled to
correspond to δ = 0. We assume that the observed death times (δ = 1) and relapse/censored
times (δ = 0) are sum of the actual times which are unobserved and common additive
random effect of age and stage of the disease. We assume that this additive effect has either
normal distribution or Laplace distribution.

Figure 5 shows the estimators of the ratio of hazard functions H and the two sub-density
functions fZ(t, 1) and fZ(t, 0) for Normal and Laplace errors with µ = 3. In each of the
figures 5 and 6 the black curves corresponds to the proposed estimator for follicular data.
The red curve for the ratio estimators corresponds to ordinary kernel type estimators of the
hazard functions. the red curve for sub-density functions correspond to classical kernel-type
estimators for sub-density functions.

Figure 6 corresponds to the case when both error densities have mean µ = 0.
It is clear that if the mean of the error density is 0, then proposed estimators are closer

to the estimators already available in literature. However, if mean effect of the additive
error is different from zero, then one should make use of the newly proposed estimators 3.2
and 3.1. From the data analysis done previously, there is significant affect of age and stage
of diseases. Hence one should use 3.2 and 3.1.

7 Conclusions

The initial motivation of the paper was to find nonparametric estimator for the ratio of
failure rates H(t). It turned out to be the extension of measurement error problem to
competing risks model. We have proposed estimators for H(t) and studied their properties.
In the process we have also proposed kernel type estimators for the sub-density function
under measurement error model. These estimators are not restricted to competing risks
model but are applicable to all real situations giving rise to paired data where one component
is a continuous random variable and the other is a discrete random variable.
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8 Proofs

8.1 Auxiliary results

Let us introduce Lemmas 8.1 and 8.2 below before proving Theorem 4.1. Note that the
main difference in the proof from other similar results in the literature (see Meister(2009)) is
that we are working with sub-density functions and hence there is another factor involving
δ in the estimators.

Lemma 8.1 Let t ∈ R. Consider the estimator f̂Z(t, j) (3.1) for j = 0, 1. Set Kb(t) =
(1/b)K(t/b) and fZj (t) = fZ(t, j) for j = 0, 1. Then, under (A2)(t), for j = 0, 1,

• we have
E(f̂Z(t, j)) = (Kb ∗ fZj )(t).

• we have

V ar(f̂Z(t, j)) ≤ 1

2πn
C∗

∫ ∣∣∣∣Kft(xb)

gft(x)

∣∣∣∣2 dx.
Proof of Lemma 8.1 : We have

E(δje
ixTj ) =

∫ ∫
δje

ixtjdFT (tj , δj) = fftT (x, 1) = gft(x)fftZ (x, 1). (8.1)

Similarly,

E
(
(1− δj)eixTj

)
= gft(x)fftZ (x, 0).

Now we obtain the expectation of f̂Z(t, 1) : The Fubini theorem, the equality (8.1) and the
Fourier inversion give

E(f̂Z(t, 1)) =
1

2πn

∫
e−itxKft(xb)

1

gft(x)

n∑
j=1

E(δje
ixTj )dx

=
1

2π

∫
e−itxKft(xb)fftZ (x, 1)dx

=
1

2π

∫
e−itx(Kb ∗ fZ1)ft(x)dx = (Kb ∗ fZj )(t).

Expectation of f̂Z(t, 0) can be obtained in a similar manner.
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Using the change of variable z = t − tj , supt∈R |(g ∗ fZ1)(t)| ≤ C∗ by (A2)(t), the
inequality : V ar(B) ≤ E(B2) and the Parseval identity, we obtain

V ar(f̂Z(t, 1)) =
1

(2πn)2

n∑
j=1

V ar

(
δj

∫
e−i(t−Tj)x

Kft(xb)

gft(x)
dx

)

≤ 1

(2π)2n
E

(∣∣∣∣δj ∫ e−i(t−Tj)x
Kft(xb)

gft(x)
dx

∣∣∣∣2
)

=
1

(2π)2n

∫ ∣∣∣∣∫ e−i(t−tj)x
Kft(xb)

gft(x)
dx

∣∣∣∣2 fT (tj , 1)dtj

=
1

(2π)2n

∫ ∣∣∣∣∫ e−izx
Kft(xb)

gft(x)
dx

∣∣∣∣2 (g ∗ fZ1)(t− z)dz

≤ C∗
1

(2π)2n

∫ ∣∣∣∣∫ e−izx
Kft(xb)

gft(x)
dx

∣∣∣∣2 dz
= C∗

1

2πn

∫ ∣∣∣∣Kft(xb)

gft(x)

∣∣∣∣2 dx.
A similar result for variance of f̂Z(t, 0) can be obtained.

This ends the proof of Lemma 8.1.

�

Lemma 8.2 Let t ∈ R. Consider the estimator f̂Z(t, j) (3.1) for j = 0, 1 and suppose that
(A2)(t) is satisfied. Then

• under (B1) :

E
(
|f̂Z(t, j)− fZ(t, j)|2

)
= O

(
b−1−2α

n
+ b2β

)
,

• under (B2) :

E
(
|f̂Z(t, j)− fZ(t, j)|2

)
= O

(
e2d1b

−γ

bn
+ b2β

)
.

Moreover :

• under (B1) : choosing b as in (4.1), we obtain

E
(
|f̂Z(t, j)− fZ(t, j)|2

)
= O

(
n−2β/(2β+2α+1)

)
,
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• under (B2) : choosing b as in (4.2), we obtain

E
(
|f̂Z(t, j)− fZ(t, j)|2

)
= O

(
log(n)−2β/γ

)
.

Proof of Lemma 8.2 :

• under (B1) : for any t ∈ R, thanks to Lemma 8.1,

E
(
|f̂Z(t, j)− fZ(t, j)|2

)
= V

(
f̂Z(t, j)

)
+
∣∣∣E(f̂Z(t, j))− fZ(t, j)

∣∣∣2
≤ C∗

1

2πn

∫ ∣∣∣∣Kft(xb)

gft(x)

∣∣∣∣2 dx+
∣∣(Kb ∗ fZj )(t)− fZ(t, j)

∣∣2 .
Since K is a β-orders kernel and fZj belong to Fβ,λ;t(M), similar arguments to those
developed in Meister (2009) (pages 37-38) yield∣∣(Kb ∗ fZj )(t)− fZ(t, j)

∣∣2 = O(b2β).

Moreover, by (B1),

1

2πn

∫ ∣∣∣∣Kft(xb)

gft(x)

∣∣∣∣2 dx = O

(
1

nb
min
|t|≤1/b

|gft(t)|−2
)

= O

(
b−1−2α

n

)
.

It follows from the inequalities above that

E
(
|f̂Z(t, j)− fZ(t, j)|2

)
= O

(
b−1−2α

n
+ b2β

)
,

• under (B2), the proof is similar to the first point. It is enough to observe that

1

2πn

∫ ∣∣∣∣Kft(xb)

gft(x)

∣∣∣∣2 dx = O

(
e2d1b

−γ

bn

)
.

The considered bandwidths are chosen to minimize the right terms.
The proof of Lemma 8.2 is complete.

�
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8.2 Proof of Theorem 4.1

Proof of Theorem 4.1 : First of all, note that (A2)(t∗) is satisfied with C∗ = M since
fZ(t∗, 1) and fZ(t∗, 0) belong to Fβ,λ;t∗(M). An elementary decomposition yields

|Ĥ(t∗)−H(t∗)| =

∣∣∣∣∣ f̂Z(t∗, 1)

f̂Z(t∗, 0)
− fZ(t∗, 1)

fZ(t∗, 0)

∣∣∣∣∣1{|f̂Z(t∗,0)|≥ c∗2 } +
fZ(t∗, 1)

fZ(t∗, 0)
1{|f̂Z(t∗,0)|< c∗

2 }.

It follows from (A1)(t∗) and (A2)(t∗), the embeddings{
|f̂Z(t∗, 0)| < c∗

2

}
⊆

{
fZ(t∗, 0)− |f̂Z(t∗, 0)| > c∗

2

}
⊆

{
|f̂Z(t∗, 0)− fZ(t∗, 0)| > c∗

2

}
and the Markov inequality that

fZ(t∗, 1)

fZ(t∗, 0)
1{|f̂Z(t∗,0)|< c∗

2 } ≤
M

c∗
1{|f̂Z(t∗,0)|< c∗

2 } ≤
M

c∗
1{|f̂Z(t∗,0)−fZ(t∗,0)|> c∗

2 }

≤ 2M

(c∗)2
|f̂Z(t∗, 0)− fZ(t∗, 0)|.

On the other hand, using again (A1)(t∗), we obtain∣∣∣∣∣ f̂Z(t∗, 1)

f̂Z(t∗, 0)
− fZ(t∗, 1)

fZ(t∗, 0)

∣∣∣∣∣1{|f̂Z(t∗,0)|≥ c∗2 }
≤ 2

(c∗)2

∣∣∣f̂Z(t∗, 1)fZ(t∗, 0)− f̂Z(t∗, 0)fZ(t∗, 1)
∣∣∣

≤ 2

(c∗)2

(
fZ(t∗, 1)|f̂Z(t∗, 0)− fZ(t∗, 0)|+ fZ(t∗, 0)|f̂Z(t∗, 1)− fZ(t∗, 1)|

)
≤ 2

(c∗)2

(
M |f̂Z(t∗, 0)− fZ(t∗, 0)|+M |f̂Z(t∗, 1)− fZ(t∗, 1)|

)
.

Therefore, there exists a constant C > 0 such that

|Ĥ(t∗)−H(t∗)| ≤ C
(
|f̂Z(t∗, 0)− fZ(t∗, 0)|+ |f̂Z(t∗, 1)− fZ(t∗, 1)|

)
Hence, by the elementary inequality : (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2,

R(Ĥ,H)(t∗) ≤ C
(
E(|f̂Z(t∗, 0)− fZ(t∗, 0)|2) + E(|f̂Z(t∗, 1)− fZ(t∗, 1)|2)

)
.

It follows from Lemma 8.2 at the point t = t∗ that
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• under (B1) : with b as (4.1), we have

R(Ĥ,H)(t∗) = O
(
n−2β/(2β+2α+1)

)
,

• under (B2) : with b as (4.2), we have

R(Ĥ,H)(t∗) = O
(

log(n)−2β/γ
)
.

This concludes the proof.

�
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