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Optimal Path Discovery Problem with

Homogeneous Knowledge

Christopher Thraves Caro∗ Josu Doncel† Olivier Brun‡

Abstract

Consider the following problem: given a complete graphG = (V,E),
two nodes s and t in V , and a positive hidden value f(e) for each edge
e ∈ E, discover an s − t-path P that minimizes the value F (P ), for
some objective function F . The issue is that the edge values f(·) are
hidden, hence, to discover an optimal path, it is required to uncover
the value of some edges. The goal then is to discover an optimal path
by means of uncovering the least possible amount of edge values. This
problem, named the Optimal Path Discovery (OPD) problem, is an
extension of the well known Shortest Path Discovery problem in which
f(e) represents the length of e, and F (P ) computes the length of P .

In this paper, we study the OPD problem when the only previous
information known about the f(·) values is that they fall in the interval
(0,∞) for all e ∈ E. We first study the number of uncovered edges
as a measure to evaluate algorithms. We see that this measure does
not differentiate correctly algorithms according to their performance.
Therefore, we introduce the query ratio, the ratio between the number
of uncovered edges and the least number of edge values required to
solve the problem. We prove a 1 + 4/n − 8/n2 lower bound on the
query ratio and we present an algorithm whose query ratio, when it
finds the optimal path, is upper bounded by 2 − 1/(n − 1), where
n = |V |. Finally, we implement different algorithms and evaluate their
query ratio experimentally.

Keywords: Optimal path, Query ratio, Shortest path discovery prob-
lem, Lower and upper bounds.
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1 Introduction

Shortest path problems are arguably among the most fundamental prob-
lems studied in computer science and have a variety of applications in as
diverse areas as computational geometry, geographical information systems,
network optimization and robotics, to mention just a few. This is reflected
by the large body of literature devoted to shortest path problems and by the
many algorithms that have been proposed to solve them (cf. [1]). Neverthe-
less, in some situations the difficulty lies more in collecting the information
on the graph than in computing a shortest path. In this paper, we consider
situations in which the cost of obtaining the length of the edges dominates
the total cost of computing a shortest path.

For instance, such a situation occurs with routing overlays deployed over
the Internet [33]. This is actually our main motivation for studying the
problem addressed in the present paper. Consider a set of n nodes located
at various spots in the Internet, and imagine that a source node wants to
deliver a message to a destination node with the best performance possible
according to a certain metric (e.g., minimization of the transmission delay).
It may happen that the direct Internet path between the source and desti-
nation nodes has an unacceptable performance. In that case, provided that
other nodes can act as relays for the message, it may be worth searching
for the optimal path in the complete graph formed by all nodes. However,
active monitoring of the quality of Internet paths by sending probe packets
is costly. Therefore, in that case, the cost of finding a shortest path is clearly
dominated by the cost of obtaining the costs associated with the edges [32].
As discussed in [30], the same difficulty appear in segmentation lattice based
character recognition systems, speech recognition, hierarchical planning, or
exploration of unsafe environments.

In such situations, it makes sense to seek to minimize the amount of
information required to compute a minimum-cost path, that is, to collect
the value of as few edges as possible enabling to guarantee that a minimum-
cost path has been discovered. To study such situations, we introduce the
Optimal Path Discovery (OPD) problem in graphs. In the OPD problem the
costs of the edges are initially unknown but can be discovered by querying
an oracle. The goal is to find an optimal path between two given nodes
querying the minimum number of edges. In some cases, rather than requiring
an optimal path, we might be less ambitious and be satisfied with a path
whose cost is at most α times that of an optimal path, for some α ≥ 1.

Note that in our motivation, the Internet, there is (almost) always con-
nection between two nodes. Hence, under the eyes of a user, the network
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is complete. That will be actually our assumption, we work with complete
graphs. When we assume that the graph is complete, we consider that the
actual graph is connected, i. e., there exists a path between any two nodes,
nevertheless, we, as users, are blind to the structure of the path and see it
as a direct connection between the nodes. We remark that this assumption
does not harm our model since it is the weakest assumption we can take:
no previous knowledge about the network topology or the actual f-values of
the edges.

Problem Statement: Let G = (V,E) be a complete undirected graph
with n nodes. It is assumed that each edge e ∈ E has an unknown positive
value f(e) > 0. The value of a set of edges, and hence of a path in G, depend
on the individual values of the edges it is comprised of and is determined
by a function F : 2E → [0,∞), which for the moment will be assumed to be
F (H) =

∑
e∈H f(e).

As mentioned before, given two distinguished vertices s and t in G, the
goal is to find a simple path between these vertices that provides some
performance guarantee. Let Ps,t be the set of all paths connecting s and t,
and let δ∗s,t be the (unknown) value of an optimal path1:

δ∗s,t = min
P∈Ps,t

F (P )

Then, given α ≥ 1, the goal is to discover an α-approximation of an
optimal path, that is, a path Ps,t ∈ Ps,t such that F (Ps,t) ≤ α · δ∗s,t. The
issue is that the edge values f(·) are unknown. It is however possible to
query an oracle to determine the value of an edge. When the oracle is
queried for the value of an edge e ∈ E, it reveals the value f(e). For short,
we say that the edge e is uncovered.

Obviously, to be able to certify that an α-approximation between s and
t has been discovered, the set of uncovered edges has to provide enough
information for a lower bound on δ∗s,t to be inferred. Indeed, as long as
nothing is known on δ∗s,t (except for the fact that it is positive and finite),
there is absolutely no guarantee on the values of each path Ps,t ∈ Ps,t with
respect to that of an optimal path. A set of uncovered edges allowing to
certify that an α-approximation between s and t has been discovered will
be called an α-certificate of an s − t-path. More precisely, an α-certificate
of an s− t-path is defined as a set of edges C ⊆ E such that

1Although we focus on discovering a minimum-cost path, the extension to a maximiza-
tion problem is straightforward.
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- the values of the edges in C are known,

- C contains an s− t-path, the so-called proposed path, and

- there are enough uncovered edges in C to guarantee that the proposed
path is an α-approximation.

We remark that every edge in the proposed path belongs to the α-
certificate, implying that its value is fully known. Note also that for any
value of α ≥ 1, there always exists at least one α-certificate since the set E
that contains all the edges of the graph is an α-certificate for any α.

With the above definitions in mind, we can now define the OPD problem
as follows:

Definition 1. Given a complete graph G = (V,E), special nodes s and t
and a parameter α:

minimize |C| (OPD)

subject to

C is an α-certificate of an s− t-path, (1)

where |C| denotes the cardinality of C ⊆ E.

Although the problem as presented above assumes an additive cost func-
tion F (H) =

∑
e∈H f(e), the results presented in the sequel are valid for

more general cost functions. All results hold for any function F : 2E →
[0,∞) such that for all H ⊂ E, F (H) is fully determined by the f-values of
the edges in H (and does not depend on the identity of the edges in H), and
meeting the following additional technical conditions:

(i) For all e ∈ E, F (e) = f(e).

(ii) For all H ⊆ E, in order to compute F (H) it is required to know f(e)
for all e ∈ H.

(iii) F (H) = 0 if and only if H = ∅.

(iv) Given H,H ′, H ′′ ⊆ E such that H ∩H ′ = ∅ and H ∩H ′′ = ∅, it holds
that:

F (H ′) ≤ F (H ′′) ⇐⇒ F (H ∪H ′) ≤ F (H ∪H ′′).

(v) Given H ⊂ H ′ ⊆ E, it holds that F (H) < F (H ′).
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It is immediate to check that the function F (H) =
∑

e∈H f(e) meets the
above conditions. Another example is the function F (H) =

∏
e∈H f(e) for

a maximization problem2. In contrast, F (H) = mine∈H f(e) is an example
of a function which does not satisfy these conditions. The rationale behind
these conditions is as follows. Condition (iii) imposes that at least one edge
of a path is required to have a lower bound on the value of that path. Condi-
tions (iv) and (v) guarantee that F (·) is a set-wise monotonically increasing
function.

We assume as well that the function F can be computed in polynomial
time. Therefore, the OPD problem arises in a context in which obtaining
the value f of the edges dominates the total cost of computing the optimal
path according to F .

Two different performance metrics: Given an algorithm A solving the
OPD problem, let U(A(I)) be the α-certificate given by this algorithm as
a solution to an instance I. We shall consider two metrics for assessing the
performance of the algorithm A.

• The number of queried edges of A for instances of size3 n is defined as:

βn = max
I:|I|=n

|U(A(I))|.

• The query ratio of A is defined as:

max
I:|I|=n

|U(A(I))|
|Cαmin(I)|

,

where |Cαmin(I)| is the size of a smallest (in cardinality) α-certificate
for instance I.

In Section 3, we shall use the the number of queried edges to prove that
there is no efficient algorithm for the OPD problem, in the sense that for
any algorithm there always exists a bad instance for which the algorithm
will query a number of edges which is of the same order of magnitude than
the total number of edges. Interestingly, any algorithm may still have to do

2For a maximization problem, the first assumption does not change, the second as-
sumption would read F (H) =∞ ⇐⇒ H = ∅, ∀H ⊂ E, whereas the fourth assumption
would be F (H ′) < F (H).

3We define the size of an instance I as the number of nodes n of the complete graph
G, and it is denoted by |I|.
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a number of queries of order n2 even if we are ready to accept a significant
performance degradation by requiring only an α-approximation of an opti-
mal path for any large value of α. In that respect, the number of queried
edges does not allow to correctly differentiate algorithms according to their
performance. As we will see, the query ratio is a much more appropriate
performance measure.

Contributions: We prove that, for any instance with n nodes, any al-
gorithm will need to query at least n − 1 edges to find a feasible solution.
Moreover, we also show that for any algorithm there exists a bad input such
that the number of edges queried by the algorithm will be of the same order
of magnitude than the total number of edges. We then use the query ratio
to evaluate the performance of algorithms that solve the OPD problem. We
prove that any algorithm has a query ratio of at least 1 + 4

n −
8
n2 for any α

and propose an algorithm whose query ratio is upper bounded by 2 − 1
n−1

when α = 1.

Paper organization: The rest of the paper is organized as follows. In
Section 2 we put our work in the context of the existing literature. We prove
lower bounds on the number of queried edges in Section 3. In Section 4, we
establish lower and upper bounds on the query ratio. Section 5 is devoted
to the comparison of the proposed algorithm with other methods from the
literature, both from a theoretical point of view and from an experimental
point of view. Finally, in Section 6, some conclusions are drawn and future
research directions are proposed.

2 Related Work

Shortest path problems have been extensively studied in a setting where
the decision-maker has full information about the graph [4, 14, 13, 18, 6].
Researchers have also considered the use of additional knowledge on the
graph in order to speedup the search [22]. It is worth noticing that standard
algorithms, such as A∗ [16] or Dijkstra’s algorithm [9], perform poorly
for solving the Shortest Path Discovery Problem. Indeed, we can give an
instance with n nodes where the query ratio of these algorithms is as bad
as n/2. Consider an input in which the direct edge has value 1/2, any other
edge that is incident to the destination node has value 1, and the rest of
the edges have value ε ≈ 0. Without loss of generality, we assume that
the search algorithm starts its search in the source node. The algorithm
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will query all the edges incident to the source node. Then, it will pick any
node different from the source and the destination, and will query all the
edges incident to that node. The algorithm will repeat that process until it
has queried all the edges incident to any node that is not the source nor the
destination node. Hence, in total, such an algorithm will perform n(n−1)/2
queries. Nevertheless, the certificate of minimum size for this instance has
size (n− 1).

Our work is somewhat related to the vast literature dealing with prob-
lems in which the actual data values are not known precisely but can be
updated at some cost [26, 19, 11, 21, 5]. Generally speaking, in that type
of problems, a problem instance consists of a function of n inputs to be
computed (e.g., the maxima) and a specification of the possible values each
of the input might take (e.g., a set of n real intervals). The goal is to decide
which of the inputs should be updated in order to compute the function
with a given precision at minimum cost. A major difference with our work
is of course that in these references, no graph structure is assumed. It is
also worth mentioning the works on robust shortest path and spanning tree
problems [27, 25, 3, 20, 31] with interval data, although it is usually assumed
that the uncertain data cannot be updated. A noticeable exception is [12],
but which considers only the off-line setting.

The most closely related work is the Shortest Path Discovery Problem
introduced in [30]. This problem and the OPD problem coincide when the
cost of a path is the sum of the cost of the edges it is comprised of and α = 1.
In [30], the authors propose a greedy algorithm that increments the search
following the shortest path known at each step. We extend the Shortest Path
Discovery Problem in several directions. First, we consider a broader class
of cost functions, and we relax the constraint that an optimal path has to be
discovered, allowing the discovered path to be an α-approximation. Second,
whereas in [30] the performance of algorithms was measured with the number
of queries, we show that this performance measure does not provide enough
information and propose rather to compare algorithms through their query
ratios. We also propose a bidirectional search algorithm [29, 24, 23, 8, 15, 7]
for solving the OPD problem. Although this algorithm has performances
similar to the greedy algorithm of [30] in the case of an additive cost function,
its main interest is that the analysis of its query ratio is far much simpler.

Another closely related work is [2], where the authors investigate the
problem of learning a shortest path in a network with unknown link delays
thanks to end-to-end measurements (that is, by transmitting probe pack-
ets along the different paths and observing their trip times). Although this
problem is similar to the Shortest Path Discovery Problem, the main differ-
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ence is that only the total cost of a path can be queried.
In [17], the authors consider the minimum spanning tree problem with

uncertainty and propose an algorithm with query ratio 2. Furthermore,
they show that this query ratio is the best possible among deterministic
algorithms for the minimum spanning tree problem.

Finally, in [10] the authors extend the framework to cheapest set prob-
lems with uncertainty that englobe previously studied problems such as
the minimum spanning tree, or the minimum matroid based problem under
uncertainty. For the cheapest set problems with uncertainty, the authors
present an algorithm that makes d · OPT + d queries, where OPT is the
optimal number of queries required to solve the problem and d is the max-
imum cardinality of a feasible set in a given instance. They also provide
an algorithm with query ratio 2 for the minimum matroid base problem. It
is worth noticing that in this work we consider a family of problems that
can be understood as cheapest set problems with uncertainty. Nevertheless,
we consider unbounded uncertainty areas in contrast with the bounded un-
certainty areas considered previously. Furthermore, due to the particular
structure of our problem, we obtain a query ratio of 2 − 1/(n − 1), which
improves over the general d ·OPT + d queries for the general case, and over
the 2 ·OPT for the minimum spanning tree problem.

3 Lower Bound on βn

In this section, we present lower bounds on the number of queried edges
required by any algorithm providing any α-approximation.

Lemma 1. For any instance of the OPD problem with α ≥ 1, all α-
certificates contain a cut-set in G such that the corresponding cut places
s in one set of the partition and t in the other.

Proof. First, we remark that an α-certificate contains a proposed path by
definition. Therefore, the value F (Ps,t) of the proposed path Ps,t is fully
determined. Second, we remark that, in order to provide any finite approxi-
mation guarantee α, the α-certificate needs to provide a bound for the value
of an optimal path between s and t.

Now, consider an instance I of the OPD problem and an α-certificate
C. Let us assume that the α-certificate does not contain a cut-set that sep-
arates s from t. Hence, there exists a path P ∗s,t between s and t such that
P ∗s,t ∩ C = ∅. Since only edges in C have a known value, the value of P ∗s,t is
totally unknown for the α-certificate C. Hence, according to Condition (iii),
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the value of P ∗s,t can be estimated by 0. Therefore, C can not guarantee a
lower bound on the value of an optimal path. Thus, there is a contradic-
tion with the fact that C is an α-certificate, since C cannot guarantee any
approximation for its proposed solution.

Lemma 2. For any instance of the OPD problem, let C be any set of edges
that contains a path between s and t and a cut-set in G such that the cor-
responding cut places s in one part and t in the other. Hence, C is an
α-certificate for some finite α ≥ 1.

Proof. Consider a set of edges C as in the statement of the Lemma. Let us
denote by P Cs,t the path in C between s and t. It holds that Ps,t ∩ C 6= ∅ for
any path Ps,t ∈ Ps,t. Set

α =
F (P Cs,t)

min{F (Ps,t ∩ C) : Ps,t ∈ Ps,t}
.

Since min{F (Ps,t ∩ C) : Ps,t ∈ Ps,t} ≤ δ∗s,t, it holds that

F (P Cs,t) ≤
F (P Cs,t)

min{F (Ps,t ∩ C) : Ps,t ∈ Ps,t}
δ∗s,t := α δ∗s,t.

We observe that α is finite and not necessarily bounded as a function of
n. Therefore, C is an α−certificate for the above value of α.

Lemma 1 allows us to present lower bounds on the number of queries βn
required so that an algorithm can guarantee a finite α-approximation.

Corollary 1. For any algorithm that solves the OPD problem for a finite
approximation α ≥ 1, it holds that βn ≥ n− 1.

This is a direct consequence of Lemma 1 and the fact that the smallest
cut-set in the complete graph has size n− 1.

Nevertheless, the previous lower bound for βn is optimistic since there
exist cases in which any algorithm needs to uncover strictly more than n−1
edges in order to provide a finite approximation.

Lemma 3. For any α ≥ 1 and any integer 1 ≤ p ≤ n/2, there exists
an instance of the OPD problem with approximation factor α so that any
algorithm requires at least p · (n− p) uncovered edges in order to provide an
α-approximation.
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Proof. We prove this Lemma via the construction of an instance that certifies
the conditions stated in the Lemma. Consider the complete graph with n
nodes. Let us split the set of nodes in one set of size p that contains s and
one set of size n − p that contains t. We set the values f(·) of the edges
as follows: each edge e with its two endpoints in the same set has value
f(e) = ε. The direct edge (s, t) has value f(s, t) = b, where b > ε. Each
edge e with its endpoints in different sets (except for the direct edge) has
value f(e) > αb. In such a graph, we have that δ∗s,t = f(s, t). Besides,
using that F (e) = f(e) ∀e ∈ E, and the condition (v) on the function F (·),
for any Ps,t, it holds that F (Ps,t)/δ

∗
s,t > α, except for the direct path that

verifies that F (s, t)/δ∗s,t = 1. Therefore, the only α-approximation is indeed
the direct path (s, t).

Nevertheless, in order to guarantee that the only α-approximation is the
direct path (s, t), any algorithm needs to uncover at least the cut-set of size
p·(n−p) that contains all the edges of value αb. Thus, any algorithm requires
at least p · (n− p) uncovered edges in order to provide an α-approximation.

From this result, considering p = n/2, it follows the following corollary.

Corollary 2. For any algorithm A that solves the OPD problem for a finite
approximation factor α ≥ 1, there exists an instance so that A requires at
least n2/4 uncovered edges in order to provide an α-approximation.

According to Corollary 2, for any algorithm and any value α ≥ 1, it
is always possible to find a bad instance such that the number of edges
uncovered by the algorithm will be of the same order of magnitude than
the total number of edges. Therefore we change our aim. In the rest of
the document, we focus on the study of the query ratio of algorithms that
solve the OPD problem. We believe that the query ratio is a fair measure to
evaluate the performance of algorithms for this problem since it expresses
how far is the number of queries asked by an algorithm with respect to the
best possible that any algorithm can perform in that instance.

4 Lower and Upper Bounds on the Query Ratio

In this section, we concentrate on the study of the query ratio. We present
a lower bound and an upper bound on the query ratio. The first bound is
obtained via the design of a malicious adversary that plays the role of the
oracle. This adversary works for any algorithm. For the second bound, we
present an algorithm and analyze its query ratio.
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4.1 An Adversary for Any Algorithm

Lemma 4. For any α ≥ 1 and for any algorithm A that solves the OPD
problem, there exists an instance I with approximation factor α such that
the following inequality holds:

|U(A(I))|
|Cαmin(I)|

≥ 1 +
4

n
− 8

n2
.

Proof. See Appendix A.1.

A direct consequence of Lemma 4 is the following Theorem.

Theorem 1. For any α ≥ 1 and for any algorithm A that solves the OPD
problem, it holds the following inequality for the query ratio,

max
I

|U(A(I))|
|Cαmin(I)|

≥ 1 +
4

n
− 8

n2
.

4.2 An Algorithm that Searches from the Source and the
Sink

In this Subsection, we present an algorithm that solves the OPD problem for
any approximation factor α ≥ 1. We remark that in the proposed algorithm
α ≥ 1 is a parameter of the instance, and it can be set arbitrarily. Therefore,
the proposed algorithm is a parametrized algorithm that guarantees the
approximation factor that we arbitrarily decide to obtain. We compute
the query ratio of such an algorithm for the particular case when α = 1
proving that it never queries more than two times the size of the smallest
certificate of an instance. A precise description of the algorithm is presented
in Algorithm 1.

We now explain how the algorithm works. First, it initializes the values
s∗ and t∗ to s and t respectively (see line 1 in Algorithm 1). The algorithm
works in rounds. At each round, the algorithm advances one step further in
a double search that starts from nodes s and t. First, Algorithm 1 adds s∗

(resp. t∗) to the set ms (resp. mt). Then, it queries the edge (s∗, t∗) as well
as all the edges of the form (s∗, u) and (u, t∗) where u are all the nodes not
belonging to ms or mt (see lines 5 to 7 in Algorithm 1). The algorithm then
computes the optimal path between s and t that contains only uncovered
edges which is denoted PATHprop (see lines 8 and 9 in Algorithm 1). Then,
the algorithm picks the closest nodes to s and t among the nodes that have

11



Algorithm 1 Algorithm for Optimal Path Discovery Problem

1: INITIALIZE sets ms = {∅}, mt = {∅};
paths PATHprop = ∅;
paths PATHs,u = ∅, and PATHu,t = ∅ ∀u ∈ V/{s, t};
variable approx =∞;
variables s∗ = s and t∗ = t;

2: while approx > α do
3: UPDATE ms := ms ∪ s∗.
4: UPDATE mt := mt ∪ t∗.
5: QUERY {(s∗, t∗)}.
6: QUERY {(s∗, u) : ∀u ∈ V/{ms ∪mt}}.
7: QUERY {(u, t∗) : ∀v ∈ V/{ms ∪mt}}.
8: COMPUTE the optimal path from s to t containing only uncovered

edges.
9: UPDATE PATHprop to the optimal path from s to t containing only

uncovered edges.
10: COMPUTE the optimal su-path containing only uncovered edges

∀ u ∈ V/{ms ∪mt}.
11: UPDATE PATHs,u to the optimal su-path containing only uncovered

edges ∀ u ∈ V/{ms ∪mt}.
12: COMPUTE the optimal ut-path containing only uncovered edges

∀ u ∈ V/{ms ∪mt}.
13: UPDATE PATHt,u to the optimal ut-path containing only uncovered

edges ∀ u ∈ V/{ms ∪mt}.
14: COMPUTE s∗ := argminu∈V/{ms∪mt} F (PATHs,u).
15: COMPUTE t∗ := argminu∈V/{ms∪mt} F (PATHu,t).

16: UPDATE approx :=
F (PATHprop)

F (PATHs,s∗∪PATHt∗,t)
.

17: end while
18: RETURN Ps,t := PATHprop.

not been previously picked. The closest node to s (resp. t) is denoted by
s∗ (resp. t∗) (see lines 14 and 15 in Algorithm 1). Finally, the algorithm
computes whether PATHprop is an α-approximation in line 16. If that is
the case, Algorithm 1 stops and returns PATHprop, otherwise, it iterates
one more round.

The correctness of the algorithm follows directly from the following two
facts. First, the algorithm proposes a fully uncovered path. Second, the
proposed path is an α-approximation since in the last round it holds that
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F (PATHprop)
F (PATHs,s∗∪PATHt∗,t)

≤ α and also that F (PATHs,s∗ ∪PATHt∗,t) is a lower

bound on δ∗s,t.
We now analyze the query ratio of Algorithm 1. To do so, we first

compute the number of queries performed by the algorithm up to a generic
round i.

Lemma 5. For any instance I of size n with α ≥ 1, the number of queried
edges by Algorithm 1 up to the i-th round is equal to i(2n− 2i− 1).

Proof. At each round, the algorithm queries 2|V/{ms ∪ mt}| + 1 edgesac-
cording to lines 5 to 7 of Algorithm 1. At each round, the sizes of ms and mt

increases by one. Note that s∗ and t∗ are different at each round. Otherwise,
if at some round s∗ = t∗, in the previous round the algorithm would have
stopped since the union of the optimal path from s to s∗ and the optimal
path from t∗ to t would have been the optimal path from s to t. Hence,
approx would have been equal to 1. Therefore, at the j-th round, the size
of V/{ms ∪mt} is equal to (n− 2j).

Thus, the number of edges queried by the algorithm up to round i is the
sum of the queries at all the previous rounds, i.e.,

i∑
j=1

(2(n− 2j) + 1) = i(2n− 2i− 1).

On the other hand, if Algorithm 1 stops after i rounds, we are able to
give a lower bound on the size of the smallest certificate of the instance. We
give such a lower bound in the following lemma.

Lemma 6. If Algorithm 1 stops after i rounds in an instance I of size n
with α = 1, the size of the smallest 1-certificate of that instance is at least
i(n− i), i.e.,

|C1min(I)| ≥ i(n− i).

Proof. See Appendix A.2.

We are now in position to present the query ratio of Algorithm 1.

Theorem 2. Let AOPD denote Algorithm 1. Therefore, for any instance I
of size n such that α = 1,

max
I

|U(AOPD(I))|
|C1min(I)|

≤ 2− 1

n− 1
.
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Hence, the query ratio of AOPD is at most 2− 1
n−1 in these instances.

Proof. From Lemmas 5 and 6, it holds:

|U(AOPD(I))|
|C1min(I)|

≤ i(2n− 2i− 1)

i(n− i)
= 2− 1

n− i
≤ 2− 1

n− 1
.

5 Comparison with Previous Algorithms

In this section we compare the query ratio of Algorithm 1 with the query
ratio of two algorithms already presented in the literature. We first analyze
the query ratio of a greedy algorithm presented in [30] that aims to solve the
SPD problem, a particular case of the OPD problem (nevertheless, it can be
easily extended to solve the general OPD problem). Then, we experimentally
compare the query ratio of Algorithm 1 with two algorithms also mentioned
in [30].

5.1 Analytical Comparison

We first note that our upper bound on the query ratio of Algorithm 1 is
strictly less than 2. On the other hand, as mentioned in Section 2, the
query ratio of the well known search algorithm A∗ (cf. [16]) is n/2 which is
much higher than the upper bound obtained for the query ratio of Algorithm
1.

We now compare the performance of Algorithm 1 with an extension of
the algorithm presented in [30] to solve the SPD problem. In the SPD
problem the function F (·) is the sum of the values f(·) of each edge in the
set. The SPD problem aims to find the shortest path with a minimum
number of queries.

In the OPD problem there is a general function F (·) that applies to set
of edges. We denote by AGrehom the greedy algorithm of [30] that computes
optimal paths according to the function F (·) instead of shortest paths. In
this algorithm the values of each edge has to be estimated. We consider in
AGrehom that all the edges are initially estimated to 0, i.e., the knowledge of
the real values of the edges is homogeneous and set to the minimum value.

In its original version for the SPD problem, the AGrehom algorithm works
as follows. This algorithm works in rounds. In each round, it computes the
shortest path between s and t with the current knowledge (all the queried
edges up to the current round) and the initial estimations. If all the edges
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of the shortest path had been previously queried, it stops and returns that
path as the shortest path. Otherwise, it queries all the edges not queried
yet on the shortest path and continues. Ties are broken according to the
number of edges of the path, where the priority is given to a path with
the least amount of edges. Besides, there is a policy θGre that establishes
priorities given to the paths with the same number of edges.

For this analysis we consider that in each step of Algorithm 1 there are
several rounds. In the first round of each step, the algorithm queries the
edge (s∗, t∗). In each of the following rounds, the algorithm selects a two-hop
path formed by (s∗, u) and (u, t∗) according to a given policy θOPD, and it
queries the edges (s∗, u) and (u, t∗). We also consider that, at each step,
the algorithm computes its current approximation factor and it stops if this
value is less than the desired α.

Lemma 7. For any instance I of size n of the OPD problem, it holds that:

- If θGre and θOPD provide the same ordering in the selection of paths

⇒ U(AOPD(I)) = U(AGrehom(I)).

- Otherwise,

|U(AOPD(I))− U(AGrehom(I))| ≤ 2(n− 2).

Proof. See Appendix B.1.

Using this result we state that the query ratio of algorithm AGrehom and
Algorithm 1 is the same for any instance of the OPD problem.

Theorem 3. For any instance I of size n of the OPD problem, it holds
that:

|U(AGrehom(I))|
|C1min(I)|

=
|U(AGrehom(I))|
|C1min(I)|

.

In Theorem 2 we prove an upper-bound on the query ratio of Algorithm
1 for instances of the OPD problem with α = 1 and in Theorem 3 we show
that the query ratio of algorithm AGrehom and Algorithm 1 coincide for any
instance. We remark that the upper-bounds given in these theorems are
tight for these algorithms, and it is achieved when the size of the smallest
certificate is n− 1. In this case the algorithms uncover 2n− 3 edges.

It is also important to note that, for the OPD problem with α = 1,
Algorithm 1 and AGrehom have the same query ratio. However, the query ratio
of Algorithm 1 is easier to analyze.
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5.2 Numerical Comparison

In this section, we experimentally analyze the algorithm presented in Sub-
section 4.2. We focus on the particular case of the SPD problem and thus
we consider f(e) ∈ (0,∞) ∀e ∈ E and that F (·) is the sum of the values of
the edges, i.e., F (H) =

∑
e∈H f(e).

We first analyze the query ratio of Algorithm 1 for the OPD problem with
α = 1 to compare it with upper-bound presented in Section 4.2. In order to
do that, we first need to compute the size of the minimum certificate for a
given graph. We denote by f(e) the value of an edge e ∈ E and δ∗(s,t) denotes
the length of a shortest path between s and t. The minimum certificate can
be obtained as a solution of the following 0-1 integer linear program:

min
∑
e∈E

u(e)

s.t. δ∗s,t ≤
∑
e∈Ps,t

u(e)f(e), ∀Ps,t ∈ Ps,t

u(e) ∈ {0, 1},

where the {u(e)}e∈E is the set of variables. According to this formulation,
the minimum certificate is formed by the set of edges such that u(e) = 1.

Query Ratio Distribution We have used 100 graphs with 8 nodes where
the values of the edges are random numbers uniformly distributed between
zero and one. We execute Algorithm 1 and we calculate the size of the
minimum certificate. In Table 1 we show the distribution of the values of
the query ratio that we obtained. For clarity, in Table 1 we only represent
the values of the query ratio with frequency larger than 5%. We observe that
in the 23% of the cases the query ratio is 1, which means that Algorithm
1 have solved the OPD problem optimally for 23 graphs out of the 100
graphs. On the other hand, the upper-bound given in Theorem 2, that is
7 − 1/7 = 1.8571, is attained 20 times. The mean of the query ratio over
the 100 cases is 1.437.

Comparison of the Query Ratio In the second set of experiments, we
compare the performance of Algorithm 1 (Algorithm “algo” in Figure 1)
with two modifications of the greedy algorithm presented in [30].

(a) The first algorithm computes at each step the shortest path according
to the value of the uncovered edges and the value of the unknown
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Query Ratio of Algorithm 1 Frequency

1 23%

1.22 23%

1.2941 7%

1.6923 12%

1.8571 20%

Table 1: Distribution of the query ratio of the presented algorithm for 100
random graphs of 8 nodes

edges set to 0, and uncovers the edge of this path that is closest to the
source. We refer to this algorithm as deterministic and in Figure 1 it
is represented as “determ”.

(b) The second algorithm computes at each step the shortest path accord-
ing to the value of the uncovered edges and the value of the unknown
edges set to 0, and uncovers an edge of this path picked uniformly at
random. We refer to this algorithm as ”random” in Figure 1.

We consider an instance with 50 nodes where the values of the edges
are uniformly distributed random numbers between zero and one. We ex-
ecute Algorithm 1, the deterministic algorithm and the random algorithm
for all the origin-destination pairs of this graph. In each execution of all
the algorithms, we compute the evolution of the approximation factor with
respect to the number of uncovered edges. We recall that the approximation

factor is given by the ratio
F (PATHprop)

F (PATH(s,s∗)∪PATH(t∗,t))
, where PATHprop is the

proposed path and PATH(s,s∗) ∪PATH(t∗,t) is a lower bound on the short-
est path. In Figure 1 we plot the average of the approximation factor over
all the possible source-destination pairs to show the average performance of
different algorithms. The y-axis of this figure is in logarithmic scale.

Figure 1 shows that the mean approximation factor of the deterministic
algorithm decreases fast during the first 50 queries. However, this algorithm
needs to uncover almost 1000 edges to achieve an approximation factor equal
to one which is much higher than for the other algorithms. Moreover, we see
that the average approximation factor of Algorithm 1 achieves the value 1 for
a lower number of uncovered edges comparing with the random algorithm.
Furthermore, the average approximation factor of Algorithm 1 is smaller
than the deterministic algorithm when the number of uncovered edges is
higher than 100 and always less than the random algorithm.
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Figure 1: Approximation factor evolution comparison. Uniformly dis-
tributed edges and 50 nodes. Y axis in logarithmic scale.

6 Conclusions and Future Work

In this document we present and study the OPD problem. For a given
function F that is applied to set of edges, an algorithm that solves the OPD
problem aims to find the path that optimizes the value of F when it is
applied to a path, while, at the same time, it has to minimize the number
of queried edges it uses to find such path.

We show that the number of queried edges, as an absolute measure in
order to compare algorithms that solve the OPD problem, does not provide
insightful information with respect to algorithms that solve the OPD prob-
lem. However, we introduce the query ratio, a measure which provides an
important insight into the real quality of an algorithm solving this problem.
That is because it compares the number of queries performed by the algo-
rithm with the least amount of queries required to solve the problem. In
this document, we give a 1 + 4/n − 8/n2 lower bound and we present an
algorithm that finds the optimal path with a 2− 1/(n− 1) upper bound on
the query ratio, where n = |V |.

Under our consideration, the most appealing problem that this document
leaves open is the gap between the lower and upper bounds. The question
is whether there exists an algorithm, or on the contrary an adversary that
produces a bad instance for any algorithm, so that the gap is closed. We
also consider interesting the comprehension of the trade-off between the
approximation factor α for the proposed path and the query ratio of an
algorithm. The question is whether when we relax the approximation factor
α we obtain better results for the query ratio.
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Another open problem is to extend the results presented in this document
to instances with heterogeneous knowledge, i.e., when previous knowledge
regarding the values of the edges is not necessarily the same for all edges. In
the same line, we also consider interesting to study this problem in graphs
that are not necessarily complete. Both situations are in fact strongly related
since any topology can be modeled as a complete graph with heterogeneous
knowledge on the value of the edges. Indeed, it is enough to assume that
edges not present in the original graph have values such that they can be
directly discarded from any possible solution (e.g. f(e) = ∞ for shortest
path problems). Therefore, an algorithm would be able to decide not to
query an edge that is not present in the graph. In that respect, the two
mentioned extensions are closely related and can probably be treated as one
single case.
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A Proof of Results in Section 4

A.1 Proof of Lemma 4

Proof of Lemma 4. In order to prove the Theorem, we construct a bad in-
stance I for each algorithm. The construction is made adversarially. We
give a malicious adversary that acts as the oracle and, each time that an
algorithm uncovers an edge, the adversary gives the value of that edge to
the algorithm so that the performance of the algorithm is as bad as possible.
The adversary is precisely described in Algorithm 2.

The adversary constructs an instance similar to the instance of Lemma
3, but ad-hoc to each algorithm. The adversary is deciding the values of
each edge online at the same time as the algorithm is uncovering each edge.
In the instance constructed by the adversary, the optimal path between s
and t is always the direct edge (s, t). Furthermore, the direct path is the
only α-approximation (for the α determined in the statement). The instance
has a partition of the set of vertices with s in one set of the partition and t
in the other set.

The exact partition and the size of each set of the partition depends
on the algorithm. Nevertheless, the adversary always gives the following
values to the edges. Each edge e with its two endpoints in the same set has
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Algorithm 2 Adversary that construct a bad instance for any algorithm
that solves the OPD problem, where e1, e2 . . . , el are the edges queried by
the algorithm, i. e., ei is the edge queried at the i-th step.

1: INITIALIZE sets Gs = {s} and Gt = {t};
functions g(u) = 0, ∀u ∈ V/{s, t}, g(s) = s, and g(t) = t.

2: for i = 1, . . . , l do
3: if ei = (s, t) then
4: REPLAY f(ei) = bγ.
5: end if
6: if ei = (s, u) such that g(u) = 0 then
7: REPLAY f(ei) = ε and update g(u) := s and Gs := Gs ∪ {u}.
8: end if
9: if ei = (s, u) such that g(u) = t then

10: REPLAY f(ei) = γ > αb.
11: end if
12: if ei = (u, t) such that g(u) = 0 then
13: REPLAY f(ei) = ε and update g(u) := t and Gt := Gt ∪ {u}.
14: end if
15: if ei = (u, t) such that g(u) = s then
16: REPLAY f(ei) = γ > αb.
17: end if
18: if ei = (u, v) such that g(u) = g(v) = 0 then
19: REPLAY f(ei) = ε.
20: end if
21: if ei = (u, v) such that g(u) = 0 and g(v) ∈ {s, t} then
22: REPLAY f(ei) = ε.
23: UPDATE g(u) := g(v).
24: UPDATE g(u′) := g(v) ∀ u′ such that there exists a path from u to

u′ composed by uncovered edges each with value equal to ε.
25: UPDATE Gg(v) := Gg(v) ∪ {u} ∪ {u′ : u′ →ε u}, where u′ →ε u

means that u and u′ are connected by a path of uncovered edges
each with value equal to ε.

26: end if
27: if ei = (u, v) such that g(u) ∈ {s, t} and g(v) ∈ {s, t}/g(u) then
28: REPLAY f(ei) = γ > αb.
29: end if
30: if ei = (u, v) such that g(u) ∈ {s, t} and g(v) = g(u) then
31: REPLAY f(ei) = ε.
32: end if
33: end for
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value f(e) = ε. The direct edge (s, t) has value f(s, t) = b, where b > ε.
Each edge e with its endpoints in different sets (except for the direct edge)
has value f(e) > αb. In any graph with this characteristics, the path with
minimum value is the direct path whose value is δ∗s,t = b. Due to the fact
that F (e) = f(e) ∀e ∈ E, and due to condition (v) on the function F (·), it
holds for any path Ps,t that F (Ps,t)/δ

∗
s,t > α, except for the direct path that

verifies that F (s, t)/δ∗s,t = 1. Therefore, the only α-approximation is indeed
the direct path (s, t).

Now we describe how the adversary proceeds. Each algorithm can be
seen as a sequence of edges to be uncovered. An algorithm queries to the
oracle an edge to be uncovered. The oracle answers each query providing the
value of that edge. In this particular construction, the adversary plays the
role of the oracle. Edges to be uncovered by an algorithm can be grouped
in four groups:

i) {(s, t)},

ii) {(s, u) : u ∈ V/{t}},

iii) {(u, t) : u ∈ V/{s}} and,

iv) {(u, v) : u ∧ v ∈ V/{s, t}}.

The way in which the adversary determines the partition is described
in the following lines. Nodes s and t are initially placed one in each set
of the partition. Let us denote these sets by Gs and Gt, respectively (see
the initialization of function g(s) and g(t) in line 1 of Algorithm 2). If the
algorithm queries the edge (s, t) to be uncovered, the adversary answers to
the algorithm f(s, t) = b (see lines 3 and 4 in Algorithm 2). If the algorithm
queries an edge of the second group (ii) to be uncovered and the node u has
not been placed in any set of the partition, the adversary answers f(s, u) = ε
and places u in the set Gs (see lines 6 and 7 in Algorithm 2). Otherwise,
when u has been placed in a set of the partition (it can be only the set Gt),
the adversary answers f(s, u) > αb (see lines 9 and 10 in Algorithm 2). The
adversary acts equivalently when the algorithm queries an edge of the third
group (iii). That is, if u has not been placed in any set of the partition,
the adversary answers f(u, t) = ε and places u in the set Gt (see lines 12
and 13 in Algorithm 2). Otherwise, when u has been placed in a set of the
partition (it can be only the set Gs), the adversary answers f(u, t) > αb (see
lines 15 and 16 in Algorithm 2). Finally, if the algorithm queries an edge of
the fourth group (iv), there exist four different cases: u and v have not been
placed in any set of the partition, then the adversary answers f(u, v) = ε and

24



none is placed in any set of the partition (see lines 18 and 19 in Algorithm
2). When one of them has been placed in a set of the partition, say u,
and the other one has not, the adversary answers f(u, v) = ε and node v is
placed in the same set than u. In this case, node v might have neighbors not
yet assigned to a set of the partition as well. In that case, all the nodes in
the same connected component than v are placed in the same set as nodes
u and v (see lines 21 to 25 in Algorithm 2). Finally, if the two nodes have
been placed in a set of the partition, the adversary answers f(u, v) = ε if the
two nodes belong to the same set of the partition, or f(u, v) > αb if they
belong to different sets (see lines 27 to 31 in Algorithm 2).

We observe that the optimal path from s to t in any instance constructed
by the adversary, regardless the algorithm, is the edge (s, t). Moreover,
the only α-approximation is the direct path. On the other hand, for any
algorithm, we obtain two sets Gs and Gt, that form a partition of V , i.e.,
Gs ∩ Gt = ∅ and Gs ∪ Gt = V . The sets Gs and Gt form a partition since
every node is added either to the set Gs or to the set Gt. Moreover, since
any algorithm needs to present an α-certificate and such certificate must
contain a partition of V , every node is added to one set.

The smallest α-certificate consists in all the edges that connect the nodes
of both sets of the partition Gs and Gt. Hence, it holds that |Cαmin(I)| =
|Gs| · |Gt|. Moreover, we see that the number of uncovered edges by the
algorithm is the sum of |Cαmin(I)| and the number of uncovered edges in each
set of the partition. The graph formed by the uncovered edges in each set of
the partition is connected, since by construction there exists a path from s
(resp, t) to any node in Gs (resp, Gt). Therefore, the number of uncovered
edges in each set of the partition is at least |Gs|−1 and |Gt|−1, respectively.
Thus, it holds that:

|U(A(I))|
|Cαmin(I)|

≥ |Cαmin(I)|+ |Gs| − 1 + |Gt| − 1

|Cαmin(I)|

= 1 +
|Gs|+ |Gt| − 2

|Gs| · |Gt|
.

Since, it also holds that |Gs| + |Gt| = n, the fraction |Gs|+|Gt|−2
|Gs|·|Gt| yields its

minimum value when |Gs| = |Gt| = n
2 . Hence, we obtain

|U(A(I))|
|Cαmin(I)|

≥ 1 +
4

n
− 8

n2
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A.2 Proof of Lemma 6

Proof of Lemma 6. In this proof we use the following notation. We denote
by ms,j (respectively, mt,j) the set ms (respectively mt) at the end of the
j-th round of the algorithm. We also denote by s∗j (respectively t∗j ) the
node that was added to ms (respectively to mt) at the j-th round of the
algorithm. According to these definitions, we have that in round j,

ms,j = ms,j−1 ∪ {s∗j}, mt,j = mt,j−1 ∪ {t∗j},

where ms,0 = mt,0 = {∅} and s∗1 = s and t∗1 = t. We use ms = ms,i and
mt = mt,i to denote the sets ms and mt after Algorithm 1 has finished.
Moreover, for any two nodes u, v and a set of nodes U ⊆ V , we denote by
P ∗u,v|U an optimal path between u and v in the graph induced by the set of
nodes U .

First we show that the following inequality holds for all 1 ≤ j ≤ i.

F (P ∗s,s∗j−1
|ms,j−1 ∪ P ∗t∗j−1,t

|mt,j−1) ≤ F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j ) (2)

We first consider that the path P ∗s,s∗j
visits s∗j−1 and P ∗t∗j ,t

visits t∗j−1. In

this case, we observe that:

P ∗s,s∗j−1
|ms,j−1 ⊂ P ∗s,s∗j |ms,j ,

which implies that:

P ∗s,s∗j−1
|ms,j−1 ∪ P ∗t∗j−1,t

|mt,j−1 ⊂ P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j ,

and it follows that:

F (P ∗s,s∗j−1
|ms,j−1 ∪ P ∗t∗j−1,t

|mt,j−1) ≤ F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j ).

We now consider that the path P ∗s,s∗j
|ms,j does not visit the node s∗j−1.

Due to the order in which Algorithm 1 chooses nodes s∗j−1 and s∗j , it holds:

F (P ∗s,s∗j−1
|ms,j−1) ≤ F (P ∗s,s∗j |ms,j−1−{s∗j−1}).

which implies that:

F (P ∗s,s∗j−1
|ms,j−1 ∪P ∗t∗j−1,t

|mt,j−1) ≤ F (P ∗s,s∗j |ms,j−1−{s∗j−1}∪{s∗j} ∪P
∗
t∗j−1,t

|mt,j−1).

Otherwise, the algorithm would have picked s∗j before s∗j−1. Since the
path P ∗s,s∗j

|ms,j does not visit the node s∗j−1, it also holds that

P ∗s,s∗j |ms,j = P ∗s,s∗j |ms,j−1−{s∗j−1}∪{s∗j}.
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Therefore, it holds:

F (P ∗s,s∗j−1
|ms,j−1 ∪ P ∗t∗j−1,t

|mt,j−1) ≤ F (P ∗s,s∗j |ms,j−1−{s∗j−1}∪{s∗j} ∪ P
∗
t∗j−1,t

|mt,j−1)

= F (P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t
|mt,j−1).

Now, if P ∗t∗j ,t
|mt,j visits t∗j−1 then with the same argument as before we

state that

P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t
|mt,j−1 ⊂ P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j

and thus Equation (2) holds since

F (P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t
|mt,j−1) ≤ F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j ).

On the contrary, if P ∗t∗j ,t
|mt,j does not visit t∗j−1, we use the previous

reasoning to derive that:

F (P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t
|mt,j−1) ≤ F (P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t

|mt−1,j−{t∗j−1}∪{t∗j})

= F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j ).

In conclusion, Equation (2) holds for all 1 ≤ j ≤ i.
Second, we show that:

F (Ps,t)

F (P ∗s,s∗i
|ms ∪ P ∗t∗i ,t|mt)

≥ 1. (3)

The optimal path proposed by the algorithm might be fully uncovered
either at the very last round of the algorithm or it was uncovered in an
earlier round. When the proposed path was uncovered in the last round of
the algorithm, Equation (3) holds because in this case the proposed path
must visit s∗i and t∗i and thus Ps,t = P ∗s,s∗i

|ms∪P ∗s∗i ,t∗i ∪P
∗
t∗i ,t
|mt , where P ∗s∗i ,t∗i

is

the optimal path from s∗i to t∗i . Hence P ∗s,s∗i
|ms ∪P ∗t∗i ,t|mt ⊆ Ps,t which means

that the ratio F (P ∗s,s∗i
|ms ∪ P ∗t∗i ,t|mt) ≤ F (Ps,t), i.e, the ratio of Equation (3)

is strictly larger than one.
In the case when the proposed path was uncovered in a round earlier

than the last round of the algorithm, Equation (3) holds because in the

round i − 1, the algorithm computes
F (Ps,t)

F (P ∗
s,s∗

i
|ms∪P ∗t,t∗

i
|mt )

and the result has

to be larger than 1 since the algorithm does not stop. Therefore it holds:

F (Ps,t)

F (P ∗s,s∗i
|ms ∪ P ∗t∗i ,t|mt)

> 1.
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Now, using Equations (2) and (3), we are able to show that, for all
1 ≤ j ≤ i,

F (Ps,t)

F (P ∗s,s∗j
|ms,j ∪ P ∗t∗j ,t|mt,j )

> 1.

Therefore, for any 1 ≤ j ≤ i and any path that intersects P ∗s,s∗j
|ms,j and

P ∗t∗j ,t
|mt,j , any 1-certificate needs at least one edge not in P ∗s,s∗j

|ms,j ∪P ∗t∗j ,t|mt,j

to show that the proposed path is the optimal path. Now, for any pair of
nodes s∗j , t

∗
j , consider the paths of the form P ∗s,s∗j

|ms,j ∪ Ps∗j ,t∗j |V/{ms,j∪mt,j} ∪
P ∗t∗j ,t
|mt,j , where Ps∗j ,t∗j |V/{ms,j∪mt,j} denotes a path between s∗j and t∗j in

V/{ms,j ∪mt,j}. There exists at least n− 2j + 1 disjoint paths of the form
previously described, one per each node in V/{ms,j ∪ mt,j} plus the path
that connects directly s∗j and t∗j . Hence, at least n− 2j+ 1 edges need to be
present in any 1-certificate for each pair of nodes s∗j , t

∗
j .

Therefore, if we sum up all these edges, we obtain that any 1-certificate
needs to contain at least the following number of edges:

i∑
j=1

n− 2j + 1 = in− i(i+ 1) + i = i(n− i).

B Proof of Results in Section 5

B.1 Proof of Lemma 7

Proof of Lemma 6. In this proof we use a similar notation than in the proof
of Lemma 6, that is, we say that in round j Algorithm 1 uncovers the edge
(s∗j , t

∗
j ) and all the edges (s∗j , u) and (u, t∗j ) for all u that do not belong to

ms,j ∪mt,j .
The proof proceeds by an induction in the steps. Therefore, we define

a common notion of step for both algorithms. We consider that, at step j,
algorithm AGrehom does n − 2j + 1 rounds where, in each round, it computes
the optimal path with the current information and uncovers all the edges of
this path. A step for AOPD is the set of instructions from line 2 to line 16
of Algorithm 1.

We first show that, at the end of each step, the set of edges that both
algorithms uncover is the same. To do that, we show that, at each step j,
both algorithms uncover the same set of edges by induction on the number
of steps.
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We now check that in the first step both algorithms uncover the same set
of edges. Since all the edges are initially estimated to a ≥ 0, the algorithm
AGrehom finds that the optimal path is the direct path (s, t). In the next 2(n−1)
rounds, AGrehom finds that the optimal paths are all the two-hop paths. Hence,
algorithm AGrehom uncovers the edge (s, t) and the edges (s, u) and (u, t) for all
u ∈ V/{s, t}. On the other hand, Algorithm 1 also uncovers the mentioned
set of edges in its first step.

We then suppose that until step j both algorithms have uncovered the
same set of edges and they have not stopped yet. We aim to prove that the
set of uncovered edges after step j also coincide. At step j algorithm AGrehom

does n−2j+1 rounds and in each round it computes the optimal path with
the known information and uncovers all the edges of this path. We know
that the optimal paths computed by AGrehom at step j must contain unknown
edges since the algorithm has not stopped. Furthermore, at step j, the only
edges that are unknown are those that connect nodes that do not belong to
ms,j−1 ∪mt,j−1. Hence, we have that

s∗j = argmin
v∈V/{ms,j−1∪mt,j−1}

F (Ps,v),

and
t∗j = argmin

v∈V/{ms,j−1∪mt,j−1}
F (Pv,t)

and the unknown edges are estimated to a which is the minimum possible
value. This means that the optimal paths computed by AGrehom at step j are of
the form PATHs,s∗j

∪Ps∗j ,t∗j∪PATHt∗j ,t
, where Ps∗j ,t∗j is either (s∗j , t

∗
j ) or a path

from s∗ to t∗ that traverses only one node that does not belong to ms,j∪mt,j .
Furthermore, in these paths the unique unknown edges are (s∗j , t

∗
j ) and the

edges (s∗j , u) and (u, t∗j ) where u does not belong to ms,j ∪mt,j , which are

the edges that uncovers Algorithm 1 at step j. Therefore, AGrehom uncovers
the same set of edges than Algorithm 1 at the end of step j. Thus, if both
algorithms provide an α−approximation at the end of a step, then we have
shown that both algorithms uncover the same set of edges.

We now focus on the case where, at least, one algorithm finds an α-
approximation before an step is finished. In the first round of a step, the
optimal path that algorithm AGrehom finds is P ∗s,s∗ ∪ (s∗, t∗) ∪ P ∗t∗,t and thus it
queries the edge (s∗, t∗), which is the edge that Algorithm 1 queries. In the
following rounds of this step, we observe that if θGre and θOPD provide the
same of ordering of paths selection, then both algorithms at each round will
uncover the same edges and thus they will stop in the same round. On the
other hand, if these policies do not provide the same order of paths selection,
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then an algorithm can stop in the second round of this step and the other
can stop in the last round of the same step. The algorithm that stops in
the second round uncovers 1 + 2 edges in that step and the algorithm that
stops in the last round uncovers 1 + 2(n− i) edges. Thus, the difference in
the number of uncovered edges by both algorithms is 2(2− i− 1). Finally,
we conclude that the larger value of this difference is given in the fist step,
which is 2(n− 2).
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