
HAL Id: hal-01149901
https://hal.science/hal-01149901v1

Preprint submitted on 7 May 2015 (v1), last revised 14 Nov 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Path Discovery Problem with Homogeneous
Knowledge

Christopher Thraves-Caro, Josu Doncel, Olivier Brun

To cite this version:
Christopher Thraves-Caro, Josu Doncel, Olivier Brun. Optimal Path Discovery Problem with Homo-
geneous Knowledge. 2015. �hal-01149901v1�

https://hal.science/hal-01149901v1
https://hal.archives-ouvertes.fr

Optimal Path Discovery Problem with

Homogeneous Knowledge

Christopher Thraves Caroa,c, Josu Doncela,b and Olivier Bruna,c

a CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
b Univ. de Toulouse, INSA, LAAS, F-31400 Toulouse, France

c Univ. de Toulouse, LAAS, F-31400 Toulouse, France

Abstract

In this work we study the Optimal Path Discovery (OPD) problem.
That is: given a complete graph G = (V,E), a function F : 2E →
[0,∞) that assigns a positive value to each sub set of E, two nodes
s and t in V , and a positive hidden value f(e) for each edge e ∈ E,
discover a path P ∗ between s and t that optimizes the value of F (P ∗).
The issue is that the edge values f(·) are hidden. Hence, any algorithm
that aims to solve the problem needs to uncover the value of some
edges to discover an optimal path. The goal then is to discover an
optimal path by means of uncovering the least possible amount of edge
values. This problem is an extension of the well known Shortest Path
Discovery problem in which f(e) represents the length of e ∈ E, and
F (P) computes the length of P .

In this paper, we present a study of the OPD problem in a setting
in which homogeneous information with respect to the values f(e) is
given beforehand. As a measure to evaluate the performance of an
algorithm, we first study the maximum number of queries asked by an
algorithm in any instance of size |V | = n. We see that this measure
does not differentiate correctly algorithms according to their perfor-
mance. Therefore, we introduce the query ratio, the ratio between the
number of uncovered edge values and the least number of edge values
required to solve the problem, as a new measure to evaluate algorithms
that solve the OPD problem. When an input of size |V | = n is consid-
ered, we prove a lower bound of 1 + 4/n− 8/n2 on the query ratio of
any algorithm that solves the OPD problem. As well, we present an
algorithm that solves the problem and we prove that its query ratio is
equal to 2− 1/(n− 1). Finally, we implement different algorithms and
evaluate their query ratio experimentally.

1

Keywords: Optimal path, Query ratio, Shortest path discovery problem,
Lower and upper bounds.

1 Introduction

Shortest path problems are arguably among the most fundamental prob-
lems studied in computer science and have a variety of applications in as
diverse areas as computational geometry, geographical information systems,
network optimization and robotics, to mention just a few. This is reflected
by the large body of literature devoted to shortest path problems and by the
many algorithms that have been proposed to solve them (see, e.g., [1] for
an introduction). Nevertheless, in some situations the difficulty lies more in
collecting the information on the graph than in computing a shortest path.
In such situations, it makes sense to seek to minimize the amount of infor-
mation required to compute a shortest path. In this paper, we particularly
consider situations in which the cost of obtaining the length of the edges
dominates the total cost of computing a shortest path. To study such situa-
tions, we introduce the Optimal Path Discovery (OPD) problem in graphs.
In the OPD problem the costs of the edges are initially unknown but can
be discovered by querying an oracle. The goal is to find an optimal path
between two given nodes querying the minimum number of edges, where the
cost of a path is a function of the costs of the edges it is comprised of.

We investigate the OPD problem for a broad class of cost functions,
including, but not restricted to, additive functions for which the cost of a
path is the sum of the costs of its edges. We handle both the cases when
the performance metric has to be minimized or maximized. We consider as
well the extension obtained by relaxing the constraint that an optimal path
has to be discovered and allowing the cost of a feasible path to be at most α
times that of an optimal path for some α ≥ 1. Of course, we fall back on the
original problem when α = 1. We note that for additive performance metrics
and α = 1 the OPD problem coincides with the so-called Shortest Path
Discovery problem introduced in [18]. As detailed in [18], this problem finds
applications in speech recognition, systems based on segmentation lattices,
hierarchical planning, or exploration of unsafe environments.

Our particular motivation for studying the OPD problem comes from
a routing problem in communication networks. Consider a set of n nodes
located at various spots in the Internet, and imagine that a source node
wants to deliver a message to a destination node with the best performance
possible according to a certain metric (e.g., minimization of the transmission

2

delay or maximization of the probability of successful transmission). It may
happen that the direct Internet path between the source and destination
nodes has an unacceptable performance. In that case, provided that other
nodes can act as relays for the message, it may be worth searching for an
alternate path passing through one or more intermediate nodes. One can
be even more ambitious and search for the optimal path in the complete
graph formed by all nodes. However, monitoring the quality of the Internet
paths between all pairs of nodes by sending probe packets can be excessively
costly since the number of such paths grows as n2. Hence, it makes sense to
minimize the monitoring effort required to discover an optimal path. This
scenario perfectly falls within the scope of the OPD problem.

In order to keep the discussion as general as possible, we formulate the
OPD problem for arbitrary graphs assuming no prior knowledge on edge
costs. Nevertheless, due to our particular motivation, we focus the analysis
on the case of complete graphs. We prove that, for any instance with n
nodes, any algorithm will need to query at least n−1 edges to find a feasible
solution. On the other hand, we also show that for any algorithm there exists
a bad input such that the number of edges queried by the algorithm will be
of the same order of magnitude than the total number of edges. The latter
results suggest that the number of queries is not an appropriate measure to
discriminate between algorithms for the OPD problem. We thus propose
a new measure, the query ratio, to evaluate the performance of algorithms
that solve the OPD problem. The query ratio of an algorithm is defined as
the worst-case ratio (over all instances) of the number of queries made by
an algorithm on an instance to the minimum number of queries required to
find a feasible path for that instance. We prove that any algorithm has a
query ratio of at least 1 + 4

n −
8
n2 and propose an algorithm whose query

ratio is upper bounded by 2− 1
n−1 .

The paper is organized as follows. In Section 2 we introduce some defini-
tions and present the mathematical formulation of the OPD problem as well
as some assumptions used throughout the paper. In Section 3 we put our
work in the context of the existing literature. We prove our lower bounds on
the number of queries in Section 4, and in Section 5 we establish lower and
upper bounds on the query ratio. Section 6 is devoted to the comparison of
the proposed algorithm with other methods from the literature, both from
a theoretical point of view and from an experimental point of view. Finally,
in Section 7, some conclusions are drawn and future research directions are
proposed.

3

2 Problem Statement

Before formulating the OPD problem in Section 2.2, we first introduce some
definitions in Section 2.1. In order to keep the discussion as general as pos-
sible, we present a mathematical formulation of the OPD problem with as
few as possible assumptions on the routing metrics to be optimized. Nev-
ertheless, our results require certain assumptions on how the cost of a path
is defined from the costs of the edges it is comprised of. These assumptions
are stated in Section 2.3. Finally, Section 2.4 is devoted to a discussion on
the initial knowledge available prior to decision making, regarding both the
knowledge on the values of the edges and the knowledge on the structure of
the graph.

2.1 Definitions

Let G = (V,E) be a complete undirected graph with n nodes. We define
a path in G as a finite ordered set of nodes in which all nodes are distinct.
A path that connects nodes s and t is a path whose first node is s and last
node is t. An edge belongs to a path if and only if the edge is formed by
two consecutive nodes in the path. We denote by Ps,t a path that connects
nodes s and t, and by Ps,t the set of all such paths. We recall that a cut
is a partition of the set V of nodes into two disjoint subsets. The cut-set
of a cut is the set of edges whose endpoints are in different subsets of the
partition.

It is assumed that each edge of G has an unknown positive value. We
denote by f(e) > 0 the unknown value of edge e ∈ E. We assume that a
function F : 2E → [0,∞) determines the value of a set of edges. That is, for
any set of edges H ⊆ E, F (H) is the value of H. According to the above
definition, F (Ps,t) is the value associated to a path Ps,t ∈ Ps,t. Depending
on the context, an optimal path between nodes s, t ∈ V is either a path
P ∗s,t minimizing F (Ps,t) over all paths Ps,t ∈ Ps,t, or a path P ∗s,t maximizing
F (Ps,t) over all paths Ps,t ∈ Ps,t. In the following, we denote by δ∗s,t the
value of an optimal path in G between nodes s and t.

In some situations, rather than requiring an optimal path between nodes
s and t, we might be less ambitious and be satisfied with a path providing
some performance guarantee. To account for such situations, we introduce
the concept of an α-approximation of an optimal path, which is formally
defined as follows.

Definition 1. Given α ≥ 1, a path Ps,t provides an α-approximation of an
optimal path between nodes s and t if and only if it holds that:

4

• F (Ps,t)/δ∗s,t ≤ α, when the goal is to minimize F (·), or

• δ∗s,t/F (Ps,t) ≤ α when the goal is to maximize F (·).

Given α ≥ 1 and two nodes s and t in V , in order to discover an α-
approximation of an optimal path between these nodes, and to be able to
guarantee that the discovered path is indeed an α-approximation, an algo-
rithm has to uncover the unknown values of some of the edges. We use the
abstraction of an oracle for that purpose. Let O be an oracle that can be
accessed by an algorithm to uncover the value of an edge or a set of edges.
When an algorithm queries the oracle for the values of a set of edges H ⊆ E,
the oracle reveals to the algorithm the value f(e) of all the requested edges
e ∈ H. We assume that the algorithm knows the function F (·) and can
therefore compute the value F (H ′) of any subset H ′ ⊆ H. For short, we say
that an algorithm uncovers a set of edges when we refer to all this process.

We emphasize that for an algorithm to certify that an α-approximation
between s and t has been discovered, the set of uncovered edges has to
provide enough information for a bound on δ∗s,t to be inferred (a lower bound
in the minimization case, and an upper bound in the maximization case).
Indeed, as long as nothing is known on δ∗s,t (except for the fact that it is
positive and finite), there is absolutely no guarantee on the values of each
path Ps,t ∈ Ps,t with respect to that of an optimal path (in which case we
say that Ps,t is an ∞-approximation). In the following, a set of uncovered
edges allowing to certify that an α-approximation between s and t has been
discovered will be called an α-certificate of a (s, t)-path. More precisely, an
α-certificate of a (s, t)-path is defined as follows.

Definition 2. A set of edges C ⊆ E is an α-certificate of a (s, t)-path in G
if and only if

- the value of the edges in C is known, whereas edges in E \ C have
unknown values,

- C contains a path from s to t, the so-called proposed path, and

- there are enough uncovered edges in C to guarantee that the proposed
path is an α-approximation.

When the nodes s and t are clear from the context, we will simply say
an α-certificate. We remark that every edge in the proposed path belongs
to the α-certificate, implying that its value is fully known. Note also that
for any value of α ≥ 1, there always exists at least one α-certificate since
the set E that contains all the edges of the graph is an α-certificate.

5

2.2 The OPD problem

With the above definitions in mind, we now present the OPD problem. We
first define what is an instance of the problem, that is, the information that
is known prior to solving the problem. We then define what is a feasible
solution as well as the objective function to be optimized and formally for-
mulate the OPD problem. Finally, we present the performance measures
that we will use to compare algorithms solving the OPD problem.

Instance An instance I of the OPD problem is defined by a complete
undirected graph G = (V,E) with n nodes, two special nodes s and t in V , a
targeted approximation factor α ≥ 1, a function F : 2E → [0,∞) that defines
the value of any set of edges, an optimization goal either maximization or
minimization, and an oracle O that can be accessed by an algorithm to
uncover an edge or a set of edges. We say that the size of an instance I is
the number of nodes n of the complete graph G, and it is denoted by |I|.

Feasible Solution We define a feasible solution of the OPD problem as
an α-certificate of a (s, t)-path. In other words, a feasible solution is a set
of fully uncovered edges allowing to guarantee that an α-approximation of
an optimal path between nodes s and t has been discovered.

Objective Function The objective function to be minimized associates
to each subset of edges H ⊆ E its cardinality |H|. The goal is therefore to
minimize the number of queries made to the oracle in order to obtain an
α-certificate of a (s, t)-path.

Mathematical Formulation Formally, we can define the OPD problem
as follows

minimize |C| (OPD)
subject to

C is an α-certificate of a (s, t)-path. (1)

Performance Measures Since the OPD problem aims at minimizing the
number of queries made to the oracle for discovering an α-approximation of
an optimal path, a natural performance measure for the efficiency of an
algorithm solving the OPD problem is the worst-case number of queries it
does for instances of size n. Let us denote by U(A(I)) the set of edges whose

6

value has been uncovered by an algorithm A when solving the OPD problem
on the instance I. In other words, the set U(A(I)) is the α-certificate given
by algorithm A as a solution for the instance I. We define the number of
queries of an algorithm that solves the OPD problem as follows.

Definition 3. The number of queries for instances of size n of an algorithm
A that solves the OPD problem is βn if and only if |U(A(I))| ≤ βn for all
instances I of size n.

In Section 4, we shall use the number of queries to prove that there
is no efficient algorithm for the OPD problem, in the sense that for any
algorithm there always exists a bad instance for which the algorithm will do
a number of queries which is of the same order of magnitude than the total
number of links. Interestingly, any algorithm may still have to do a number
of queries of order n2 even if we are ready to accept a significant performance
degradation by requiring only an α-approximation of an optimal path for
some large value of α. In that respect, the number of queries does not
allow to correctly differentiate algorithms according to their performance.
Therefore, we introduce a new measure of the performance of an algorithm,
the query ratio, which is defined as follows.

Definition 4. The query ratio of an algorithm A that solves the OPD
problem is defined by the following ratio.

max
I

|U(A(I))|
|Cαmin(I)|

,

where the maximum is taken over all instances of size n, and |Cαmin(I)| is
the size of a smallest (in cardinality) α-certificate for instance I.

2.3 Assumptions on the function F (·) and two examples

Even though the OPD problem has been defined without any specific as-
sumption on the function F (·), in this section we set conditions on that
function. We explain below in detail our assumptions with respect to F (·).

We recall that F : 2E → [0,∞) is applied to sets and it depends on the
values of each edge f(e) in the set. W.l.o.g., we also assume that F (e) =
f(e), for all e ∈ E. We assume that the function F (·) satisfies the following
conditions:

(i) Given H ⊂ E, it holds that:

F (H) = 0 ⇐⇒ H = {∅}, for the minimization problem, and

7

F (H) =∞ ⇐⇒ H = {∅}, for the maximization problem.

(ii) Given H,H ′, H ′′ ⊆ E such that H ∩H ′ = ∅ and H ∩H ′′ = ∅, it holds
that:

F (H ′) ≤ F (H ′′) ⇐⇒ F (H ∪H ′) ≤ F (H ∪H ′′).

(iii) Given H ⊂ H ′ ⊆ E (where H is a proper subset of H ′), it holds that:

F (H ′) < F (H), for the minimization problem, and

F (H ′) > F (H), for the maximization problem.

The role of these three conditions, or the intuition behind them, is the
following. Condition (i) imposes that at least one edge of a path is required
to have a lower or upper bound on the value of that path, depending on
whether the problem has minimization or maximization as optimization goal
respectively. Therefore, paths with no edge queried yet have totally unknown
value. Secondly, conditions (ii) and (iii) guarantee the monotonicity of the
function F (·). Particularly, we require that F (·) is a strictly decreasing
function when the optimization goal is minimization, and that it is a strictly
increasing function when the optimization goal is maximization. Besides,
Condition (iii) establishes that the value of any strict subpath (H ′) of a
path (H) is a lower-bound on the value of H for the minimization case, and
an upper-bound for the maximization case.

We assume as well that the optimal value of F (·) can be computed in
polynomial time when all the values f(·) of the edges are known. Therefore,
the OPD problem arises in a context in which obtaining the value f(·) of
the edges dominates the total cost of computing the optimal path according
to F (·).

We now briefly describe two interesting problems arising in communi-
cation networks for which the above conditions (i), (ii), and (iii) on the
function F (·) are satisfied.

The sum Consider the case when F (H) =
∑

e∈H f(e). It is easy
to see that this function satisfies conditions (i), (ii), and (iii) for the
minimization problem when f(e) ∈ (0,∞) ∀e ∈ E. Assume that f(e)
represents the length of the edge e ∈ E. Therefore, the function F (·)
applied to a path computes the length of that path. In that case, the
OPD problem seeks a shortest path between two nodes uncovering the
least possible amount of edges. This problem is known in the literature

8

as the Shortest Path Discovery Problem and was introduced by Csaba
Szepesvári in [18].

The product On the other hand, consider the case when F (H) =∏
e∈H f(e). It is easy to see that this function satisfies conditions (i),

(ii), and (iii) for the maximization problem when f(e) ∈ [0, 1] ∀e ∈ E.
Assume that f(e) represents the probability of successful transmission
of a packet over the edge e ∈ E. In that case, assuming indepen-
dence among probabilities, the OPD problem seeks a path with the
highest probability of successful transmission from the source to the
destination.

In order to fully exemplify the impact of conditions (i), (ii), and (iii),
we also present a problem where these assumptions on the function F (·) are
not satisfied.

The minimum Consider the case when F (H) = mine∈H f(e). We
observe that Condition (iii) is not verified by this function for the
maximization problem when f(e) ∈ (0,∞). Indeed, if e∗ is the edge
with minimum value of H, we have the following equality F (e∗) =
F (H) and Condition (iii) requires a strict inequality for any set of
edges of H. Besides, we need to know the value of all e ∈ H in order
to obtain the value of F (H). Hence, none sub path of a path provides
a lower-bound of the value of that path.

For clarity of the presentation, in the rest of the paper we consider
only the case where the goal is the minimization of F (·). However, all the
techniques used for the minimization apply directly to the maximization of
F (·). Hence, the results that we obtain apply to both cases, maximization
and minimization of F (·).

2.4 Homogeneous knowledge versus complete graph

In our analysis, we assume homogeneous initial knowledge for the value of
the edges, in the sense that it is only known at the beginning that this value
is finite and that f(e) > 0∀e ∈ E. Therefore, an algorithm is not able to give
priority to one edge over another when it picks the next edge to uncover.
We also assume that the graph is complete. Hence, again, the algorithm is
not able a priori to discard any edge to be uncovered and eventually all of
them can be queried.

We remark that the problem can be studied assuming heterogeneous
knowledge on the value of the edges or a different topology. Both situations

9

are in fact strongly related since any topology can be modeled as a complete
graph with heterogeneous knowledge on the value of the edges. Indeed,
it is enough to assume that edges not present in the original graph have
values such that they can be directly discarded from any possible solution.
Therefore, an algorithm would be able to decide not to query an edge that
is not present in the graph. For instance, in the case of the sum, this value
might be ∞ or any large enough number so that the algorithm considers
impossible the presence of that edge in any solution. In the case of the
product, as it was presented earlier, the value would be zero.

Hence, our assumption of an homogeneous knowledge can also model
situations in which there is no previous knowledge of the topology of the
graph, or in other words, a priori all edges are equally likely to be part of
a solution because the network is totally unknown. Thus, we focus on the
case of complete graphs with homogeneous knowledge while we leave the
study of the problem with heterogeneous knowledge as future work.

3 Related Work

Shortest path problems appear as subproblems in a variety of applications,
e.g., for planning a route to a destination that avoids obstacles or for routing
flows in communication networks. These problems have been extensively
studied in a setting where the decision-maker has full information about
the graph. Under this assumption, they can be solved using well-known
algorithms, such as Bellman-Ford and Dijkstra’s algorithms [3, 9, 7] for
the single-source shortest path problem, or FloydWarshall and Johnson’s
algorithms [8, 12] for the all pairs shortest path problem (see also [4] for
additional algorithms and associated evaluations). Researches have also
considered the use of additionnal knowledge on the graph in order to speedup
the search [13]. For instance, the A∗ algorithm [11] reduces the amount of
time required to find a shortest path between two given nodes by using an
heuristic evaluation function providing a lower bound on the distance from
each node to the destination.

In contrast, relatively few works have considered the setting in which
the decision-maker initially has incomplete information about the graph
and acquires this information as the search for an optimal path progresses.
In the OPD problem, we assume that the weights of the edges are initially
totally unknown and our goal is to uncover as few edges as possible in order
to discover a path providing a certain performance guarantee.

As already mentioned, a particular case of the OPD problem, known as

10

the Shortest Path Discovery Problem [18], occurs for additive cost functions,
that is, when the cost of a path is the sum of the cost of the edges it is
comprised of. In [18], the authors present a greedy algorithm that solves
this problem. The algorithm is greedy because it increments the search
following the shortest path known at each step. We extend the Shortest Path
Discovery Problem in several directions. First, we consider a broader class
of cost functions, and we relax the constraint that an optimal path has to be
discovered, allowing the discovered path to be an α-approximation. Second,
whereas in [18] the performance of algorithms was measured with the number
of queries, we show that this performance measure is not appropriate and
propose rather to compare algorithms through their query ratios. We also
propose an algorithm for solving the OPD problem. Although this algorithm
has performances similar to the greedy algorithm of [18] in the case of an
additive cost function, its main interest is that the analysis of its query ratio
is far much simpler. Our algorithm searches from the source and the sink
node at the same time. This type of algorithms are known in the literature
as bidirectional search algorithms and their study for the shortest path case
has a long history, see [17, 15, 14]. For example, in [6] the authors suggest the
Birectional Heuristic Front-to-Front algorithm (see also [10, 5] for improved
versions of this algorithm).

It is worth noticing that standard algorithms, such as A∗ or Dijkstra’s
algorithm, perform poorly for solving the Shortest Path Discovery Problem
problem. Indeed, we can give an instance with n nodes where the query
ratio of these algorithms is as bad as n/2. Consider an input in which the
direct edge has value 1/2, any other edge that is incident to the destination
node has value 1, and the rest of the edges have value ε ≈ 0. Without loss of
generality, we assume that the search algorithm starts its search in the source
node. The algorithm will query all the edges incident to the source node.
Then, it will pick any node different from the source and the destination,
and will query all the edges incident to that node. The algorithm will repeat
that process until it has queried all the edges incident to any node that is
not the source nor the destination node. Hence, in total, such an algorithm
will perform n(n − 1)/2 queries. Nevertheless, the certificate of minimum
size for this instance has size (n− 1).

Apart from [18], another closely related work is [2], where the authors
investigate the problem of learning a shortest path in a network with un-
known link delays thanks to end-to-end measurements (that is, by transmit-
ting probe packets along the different paths and observing their trip times).
In their model, a weighted graph with known topology but unknown edge
weights is given, along with designated source and destination nodes, and

11

the goal is to devise a discovery protocol that identifies the shortest path.
The discovery process is operated through agents that traverse the network
and report back their total cost. The process proceeds in multiple rounds,
where multiple agents can be sent in each round. The objective is to devise
such protocols of minimum complexity, where the complexity of a protocol
is measured according to the number of rounds of transmissions, and the
number of participating agents. Although this problem is similar to the
Shortest Path Discovery Problem, the main difference is that only the total
cost of a path can be queried.

Another situation in which the information about the graph is revealed
progressively to the decision-maker is considered in [16]. The authors study
shortest-path problems when the graph is not known in advance, but is
specified dynamically. For instance, they consider layered graphs, assuming
that the graph is given to the decision-maker one stage at a time (i.e., layer
by layer). They seek dynamic decision rules that optimize the worst-case
ratio of the distance covered to the length of the (statically) optimal path.
They describe optimal decision rules for two cases: layered graphs of width
two, and two-dimensional scenes with unit square obstacles. Although the
problem introduced in [16] and the OPD problem share the assumption that
the weights of the edges are initially unknown, they correspond to different
models and do not have the same objective.

4 Lower Bounds on the Number of Queries βn

In this section, we present lower bounds on the number of queries required
by any algorithm providing a finite α-approximation.

Lemma 1. For any instance of the OPD problem with α ≥ 1, all α-
certificates contain a cut-set in G such that the corresponding cut places
s in one set of the partition and t in the other.

Proof. First, we remark that an α-certificate contains a proposed path by
definition. Therefore, the value F (Ps,t) of the proposed path Ps,t is fully
determined. Second, we remark that, in order to provide any finite approxi-
mation guarantee α, the α-certificate needs to provide a bound for the value
of an optimal path between s and t.

Now, consider an instance I of the OPD problem and an α-certificate C.
Let us assume that the α-certificate does not contain a cut-set that separates
s from t. Hence, there exists a path P ∗s,t between s and t such that P ∗s,t∩C =
∅. Since only edges in C have a known value, the value of P ∗s,t is totally

12

unknown for the α-certificate C. Hence, according to Condition (i), the
value of P ∗s,t can be estimated by 0 if the problem is a minimization problem,
or by ∞ if the problem is a maximization problem. Therefore, C can not
guarantee any bound on the value of an optimal path, neither an upper
bound for when the optimization goal is maximization nor a lower bound
when the optimization goal is minimization. Thus, there is a contradiction
with the fact that C is an α-certificate, since C cannot guarantee any finite
approximation for its proposed solution.

Lemma 2. For any instance of the OPD problem, let C be any set of edges
that contains a path between s and t and a cut-set in G such that the cor-
responding cut places s in one part and t in the other. Hence, C is an
α-certificate for some finite α ≥ 1.

Proof. Consider a set of edges C as in the statement of the Lemma. Let us
denote by P Cs,t the path in C between s and t. It holds that Ps,t ∩ C 6= ∅ for
any path Ps,t ∈ Ps,t. If the instance has minimization as its optimization
goal, set

α = min{F (Ps,t ∩ C) : Ps,t ∈ Ps,t}.

Since min{F (Ps,t ∩ C) : Ps,t ∈ Ps,t} ≤ δ∗s,t, it holds that

F (P Cs,t) ≤
F (P Cs,t)

min{F (Ps,t ∩ C) : Ps,t ∈ Ps,t}
δ∗s,t := α δ∗s,t.

If the instance has maximization as its optimization goal, set

α = max{F (Ps,t ∩ C) : Ps,t ∈ Ps,t}.

Since max{F (Ps,t ∩ C) : Ps,t ∈ Ps,t} ≥ δ∗s,t, we can obtain the corresponding
equivalent conclusion.

This implies that C is an α−certificate for the above finite value of α,
respectively defined for the minimization and maximization case.

Lemma 1 allows us to present lower bounds on the number of queries βn
required so that an algorithm can guarantee a finite α-approximation.

Corollary 1. For any algorithm that solves the OPD problem for a finite
approximation α ≥ 1, it holds that βn ≥ n− 1.

13

This is a direct consequence of Lemma 1 and the fact that the smallest
cut-set in the complete graph has size n− 1.

Nevertheless, the previous lower bound for βn is optimistic since there
exist cases in which any algorithm needs to uncover strictly more than n−1
edges in order to provide a finite approximation.

Lemma 3. For any α ≥ 1 and any integer 1 ≤ p ≤ n/2, there exists an
instance of the OPD problem with approximation factor α and minimiza-
tion as optimization goal so that any algorithm requires at least p · (n − p)
uncovered edges in order to provide an α-approximation.

Proof. We prove this Lemma via the construction of an instance that certifies
the conditions stated in the Lemma. Consider the complete graph with n
nodes. Let us split the set of nodes in one set of size p and one set of size
n−p. We set the values f(·) of the edges as follows: each edge e with its two
endpoints in the same set has value f(e) = ε. The direct edge (s, t) has value
f(s, t) = b, where b > ε. Each edge e with its endpoints in different sets
(except for the direct edge) has value f(e) > αb. In such a graph, we have
that δ∗s,t = f(s, t). Besides, using that F (e) = f(e)∀e ∈ E, and the condition
(iii) on the function F (·), for any Ps,t, it holds that F (Ps,t)/δ∗s,t > α, except
for the direct path that verifies that F (s, t)/δ∗s,t = 1. Therefore, the only
α-approximation is indeed the direct path (s, t).

Nevertheless, in order to guarantee that the only α-approximation is the
direct path (s, t), any algorithm needs to uncover at least the cut-set of size
p·(n−p) that contains all the edges of value αb. Thus, any algorithm requires
at least p · (n− p) uncovered edges in order to provide an α-approximation.

From this result, considering p = n/2, it follows the following corollary.

Corollary 2. For any algorithm A that solves the OPD problem for a finite
approximation factor α ≥ 1, there exists an instance with minimization as
optimization goal so that A requires at least n2/4 uncovered edges in order
to provide an α-approximation.

According to Corollary 2, for any algorithm and any the value of α ≥ 1,
it is always possible to find a bad instance such that the number of edges
uncovered by the algorithm will be of the same order of magnitude than
the total number of edges. Therefore we change our aim. In the rest of
the document, we focus on the study of the query ratio of algorithms that
solve the OPD problem. We believe that the query ratio is a fair measure to
evaluate the performance of algorithms for this problem since it expresses

14

how far is the number of queries asked by an algorithm with respect to the
best possible that any algorithm can perform in that instance.

5 Lower and Upper Bounds on the Query Ratio

In this section, we concentrate on the study of the query ratio. We present
a lower bound and an upper bound on the query ratio. The first bound is
obtained via the design of a malicious adversary constructed for any algo-
rithm that plays the role of the oracle. For the second bound, we present
an algorithm and analyze its query ratio.

5.1 An Adversary for Any Algorithm

Lemma 4. For any α ≥ 1 and for any algorithm A that solves the OPD
problem, there exists an instance I with approximation factor α and with
minimization as optimization goal such that the following inequality holds:

|U(A(I))|
|Cαmin(I)|

≥ 1 +
4
n
− 8
n2
.

Proof. In order to prove the Theorem, we construct a bad instance I for
each algorithm. The construction is made adversarially. We give a malicious
adversary that acts as the oracle and, each time that an algorithm uncovers
an edge, the adversary gives the value of that edge to the algorithm so that
the performance of the algorithm is as bad as possible. The adversary is
precisely described in Algorithm 1.

The adversary constructs an instance similar to the instance of Lemma
3, but ad-hoc to each algorithm. The adversary is deciding the values of
each edge online at the same time as the algorithm is uncovering each edge.
In the instance constructed by the adversary, the optimal path between s
and t is always the direct edge (s, t). Furthermore, the direct path is the
only α-approximation (for the α determined in the statement). The instance
has a partition of the set of vertices with s in one set of the partition and t
in the other set.

The exact partition and the size of each set of the partition depends
on the algorithm. Nevertheless, the adversary always gives the following
values to the edges. Each edge e with its two endpoints in the same set has
value f(e) = ε. The direct edge (s, t) has value f(s, t) = b, where b > ε.
Each edge e with its endpoints in different sets (except for the direct edge)

15

Algorithm 1 Adversary that construct a bad instance for any algorithm
that solves the OPD problem, where e1, e2 . . . , el are the edges queried by
the algorithm, i. e., ei is the edge queried at the i-th step.
1: INITIALIZE sets Gs = {s} and Gt = {t};

functions g(u) = 0, ∀u ∈ V/{s, t}, g(s) = s, and g(t) = t.
2: for i = 1, . . . , l do
3: if ei = (s, t) then
4: REPLAY f(ei) = bγ.
5: end if
6: if ei = (s, u) such that g(u) = 0 then
7: REPLAY f(ei) = ε and update g(u) := s and Gs := Gs ∪ {u}.
8: end if
9: if ei = (s, u) such that g(u) = t then

10: REPLAY f(ei) = γ > αb.
11: end if
12: if ei = (u, t) such that g(u) = 0 then
13: REPLAY f(ei) = ε and update g(u) := t and Gt := Gt ∪ {u}.
14: end if
15: if ei = (u, t) such that g(u) = s then
16: REPLAY f(ei) = γ > αb.
17: end if
18: if ei = (u, v) such that g(u) = g(v) = 0 then
19: REPLAY f(ei) = ε.
20: end if
21: if ei = (u, v) such that g(u) = 0 and g(v) ∈ {s, t} then
22: REPLAY f(ei) = ε.
23: UPDATE g(u) := g(v).
24: UPDATE g(u′) := g(v) ∀ u′ such that there exists a path from u to

u′ composed by uncovered edges each with value equal to ε.
25: UPDATE Gg(v) := Gg(v) ∪ {u} ∪ {u′ : u′ →ε u}, where u′ →ε u

means that u and u′ are connected by a path of uncovered edges
each with value equal to ε.

26: end if
27: if ei = (u, v) such that g(u) ∈ {s, t} and g(v) ∈ {s, t}/g(u) then
28: REPLAY f(ei) = γ > αb.
29: end if
30: if ei = (u, v) such that g(u) ∈ {s, t} and g(v) = g(u) then
31: REPLAY f(ei) = ε.
32: end if
33: end for

16

has value f(e) > αb. In any graph with this characteristics, the path with
minimum value is the direct path whose value is δ∗s,t = b. Due to the fact
that F (e) = f(e) ∀e ∈ E, and due to condition (iii) on the function F (·), it
holds for any path Ps,t that F (Ps,t)/δ∗s,t > α, except for the direct path that
verifies that F (s, t)/δ∗s,t = 1. Therefore, the only α-approximation is indeed
the direct path (s, t).

Now we describe how the adversary proceeds. Each algorithm can be
seen as a sequence of edges to be uncovered. An algorithm queries to the
oracle an edge to be uncovered. The oracle answers each query providing the
value of that edge. In this particular construction, the adversary plays the
role of the oracle. Edges to be uncovered by an algorithm can be grouped
in four groups:

i) {(s, t)},

ii) {(s, u) : u ∈ V/{t}},

iii) {(u, t) : u ∈ V/{s}} and,

iv) {(u, v) : u ∧ v ∈ V/{s, t}}.

The way in which the adversary determines the partition is described
in the following lines. Nodes s and t are initially placed one in each set
of the partition. Let us denote these sets by Gs and Gt, respectively (see
the initialization of function g(s) and g(t) in line 1 of Algorithm 1). If the
algorithm queries the edge (s, t) to be uncovered, the adversary answers to
the algorithm f(s, t) = b (see lines 3 and 4 in Algorithm 1). If the algorithm
queries an edge of the second group (ii) to be uncovered and the node u has
not been placed in any set of the partition, the adversary answers f(s, u) = ε
and places u in the set Gs (see lines 6 and 7 in Algorithm 1). Otherwise,
when u has been placed in a set of the partition (it can be only the set Gt),
the adversary answers f(s, u) > αb (see lines 9 and 10 in Algorithm 1). The
adversary acts equivalently when the algorithm queries an edge of the third
group (iii). That is, if u has not been placed in any set of the partition,
the adversary answers f(u, t) = ε and places u in the set Gt (see lines 12
and 13 in Algorithm 1). Otherwise, when u has been placed in a set of the
partition (it can be only the set Gs), the adversary answers f(u, t) > αb (see
lines 15 and 16 in Algorithm 1). Finally, if the algorithm queries an edge of
the fourth group (iv), there exist four different cases: u and v have not been
placed in any set of the partition, then the adversary answers f(u, v) = ε and
none is placed in any set of the partition (see lines 18 and 19 in Algorithm
1). When one of them has been placed in a set of the partition, say u,

17

and the other one has not, the adversary answers f(u, v) = ε and node v is
placed in the same set than u. In this case, node v might have neighbors not
yet assigned to a set of the partition as well. In that case, all the nodes in
the same connected component than v are placed in the same set as nodes
u and v (see lines 21 to 25 in Algorithm 1). Finally, if the two nodes have
been placed in a set of the partition, the adversary answers f(u, v) = ε if the
two nodes belong to the same set of the partition, or f(u, v) > αb if they
belong to different sets (see lines 27 to 31 in Algorithm 1).

We observe that the optimal path from s to t in any instance constructed
by the adversary, regardless the algorithm, is the edge (s, t). Moreover,
the only α-approximation is the direct path. On the other hand, for any
algorithm, we obtain two sets Gs and Gt, that form a partition of V , i.e.,
Gs ∩ Gt = ∅ and Gs ∪ Gt = V . The sets Gs and Gt form a partition since
every node is added either to the set Gs or to the set Gt. Moreover, since
any algorithm needs to present an α-certificate and such certificate must
contain a partition of V , every node is added to one set.

The smallest α-certificate consists in all the edges that connect the nodes
of both sets of the partition Gs and Gt. Hence, it holds that |Cαmin(I)| =
|Gs| · |Gt|. Moreover, we see that the number of uncovered edges by the
algorithm is the sum of |Cαmin(I)| and the number of uncovered edges in each
set of the partition. The graph formed by the uncovered edges in each set of
the partition is connected, since by construction there exists a path from s
(resp, t) to any node in Gs (resp, Gt). Therefore, the number of uncovered
edges in each set of the partition is at least |Gs|−1 and |Gt|−1, respectively.
Thus, it holds that:

|U(A(I))|
|Cαmin(I)|

≥ |Cαmin(I)|+ |Gs| − 1 + |Gt| − 1
|Cαmin(I)|

= 1 +
|Gs|+ |Gt| − 2
|Gs| · |Gt|

.

Since, it also holds that |Gs| + |Gt| = n, the fraction |Gs|+|Gt|−2
|Gs|·|Gt| yields its

minimum value when |Gs| = |Gt| = n
2 . Hence, we obtain

|U(A(I))|
|Cαmin(I)|

≥ 1 +
4
n
− 8
n2

A direct consequence of Lemma 4 is the following Theorem.

18

Theorem 1. For any α ≥ 1 and for any algorithm A that solves the OPD
problem, it holds the following inequality for the query ratio,

max
I

|U(A(I))|
|Cαmin(I)|

≥ 1 +
4
n
− 8
n2
.

5.2 An Algorithm that Searches from the Source and the
Sink

In this Subsection, we present an algorithm that solves the OPD problem
for any approximation factor α ≥ 1. We consider only instances with min-
imization as optimization goal. Nevertheless, all the results also apply for
instances with maximization as optimization goal. We remark that in the
proposed algorithm α ≥ 1 is a parameter of the instance, and it can be set
arbitrarily. Therefore, the proposed algorithm is a parametrized algorithm
that guarantees the approximation factor that we arbitrarily decide to ob-
tain. We compute the query ratio of such an algorithm for the particular
case when α = 1 proving that it never queries more than two times the
size of the smallest certificate of an instance. A precise description of the
algorithm is presented in Algorithm 2.

We now explain how the algorithm works. First, it initializes the values
s∗ and t∗ to s and t respectively (see line 1 in Algorithm 2). The algorithm
works in rounds. At each round, the algorithm advances one step further in
a double search that starts from nodes s and t. First, Algorithm 2 adds s∗

(resp. t∗) to the set ms (resp. mt). Then, it queries the edge (s∗, t∗) as well
as all the edges of the form (s∗, u) and (u, t∗) where u are all the nodes not
belonging to ms or mt (see lines 5 to 7 in Algorithm 2). The algorithm then
computes the optimal path between s and t that contains only uncovered
edges which is denoted PATHprop (see lines 8 and 9 in Algorithm 2). Then,
the algorithm picks the closest nodes to s and t among the nodes that have
not been previously picked. The closest node to s (resp. t) is denoted by
s∗ (resp. t∗) (see lines 14 and 15 in Algorithm 2). Finally, the algorithm
computes whether PATHprop is an α-approximation in line 16. If that is
the case, Algorithm 2 stops and returns PATHprop, otherwise, it iterates
one more round.

The correctness of the algorithm follows directly from the following two
facts. First, the algorithm proposes a fully uncovered path. Second, the
proposed path is an α-approximation since in the last round it holds that

F (PATHprop)
F (PATHs,s∗∪PATHt∗,t)

≤ α and F (PATHs,s∗ ∪ PATHt∗,t) is a lower bound
on δ∗s,t.

19

Algorithm 2 Algorithm for Optimal Path Discovery Problem
1: INITIALIZE sets ms = {∅}, mt = {∅};

paths PATHprop = ∅;
paths PATHs,u = ∅, and PATHu,t = ∅ ∀u ∈ V/{s, t};
variable approx =∞;
variables s∗ = s and t∗ = t;

2: while approx > α do
3: UPDATE ms := ms ∪ s∗.
4: UPDATE mt := mt ∪ t∗.
5: QUERY {(s∗, t∗)}.
6: QUERY {(s∗, u) : ∀u ∈ V/{ms ∪mt}}.
7: QUERY {(u, t∗) : ∀v ∈ V/{ms ∪mt}}.
8: COMPUTE the optimal path from s to t containing only uncovered

edges.
9: UPDATE PATHprop to the optimal path from s to t containing only

uncovered edges.
10: COMPUTE the optimal su-path containing only uncovered edges

∀ u ∈ V/{ms ∪mt}.
11: UPDATE PATHs,u to the optimal su-path containing only uncovered

edges ∀ u ∈ V/{ms ∪mt}.
12: COMPUTE the optimal ut-path containing only uncovered edges

∀ u ∈ V/{ms ∪mt}.
13: UPDATE PATHt,u to the optimal ut-path containing only uncovered

edges ∀ u ∈ V/{ms ∪mt}.
14: COMPUTE s∗ := argminu∈V/{ms∪mt} F (PATHs,u).
15: COMPUTE t∗ := argminu∈V/{ms∪mt} F (PATHu,t).

16: UPDATE approx := F (PATHprop)
F (PATHs,s∗∪PATHt∗,t)

.
17: end while
18: RETURN Ps,t := PATHprop.

We now analyze the query ratio of Algorithm 2. To do so, we first
compute the number of queries performed by the algorithm up to a generic
round i.

Lemma 5. For any instance I of size n with α ≥ 1, the number of queried
edges by Algorithm 2 up to the i-th round is equal to i(2n− 2i− 1).

Proof. At each round, the algorithm queries 2|V/{ms ∪mt}| + 1 edges ac-
cording to lines 5 to 7 of Algorithm 2. At each round, the sizes of ms and mt

20

increases by one. Note that s∗ and t∗ are different at each round. Otherwise,
if at some round s∗ = t∗, in the previous round the algorithm would have
stopped since the union of the optimal path from s to s∗ and the optimal
path from t∗ to t would have been the optimal path from s to t. Hence,
approx would have been equal to 1. Therefore, at the j-th round, the size
of V/{ms ∪mt} is equal to (n− 2j).

Thus, the number of edges queried by the algorithm up to round i is the
sum of the queries at all the previous rounds, i.e.,

i∑
j=1

(2(n− 2j) + 1) = i(2n− 2i− 1).

On the other hand, if Algorithm 2 stops after i rounds, we are able to
give a lower bound on the size of the smallest certificate of the instance. We
give such a lower bound in the following lemma.

Lemma 6. If Algorithm 2 stops after i rounds in an instance I of size n
with α = 1, the size of the smallest 1-certificate of that instance is at least
i(n− i), i.e.,

|C1
min(I)| ≥ i(n− i).

Proof. In this proof we use the following notation. We denote by ms,j (re-
spectively, mt,j) the set ms (respectively mt) at the end of the j-th round
of the algorithm. We also denote by s∗j (respectively t∗j) the node that was
added to ms (respectively to mt) at the j-th round of the algorithm. Ac-
cording to these definitions, we have that in round j,

ms,j = ms,j−1 ∪ {s∗j}, mt,j = mt,j−1 ∪ {t∗j},

where ms,0 = mt,0 = {∅} and s∗1 = s and t∗1 = t. We use ms = ms,i and
mt = mt,i to denote the sets ms and mt after Algorithm 2 has finished.
Moreover, for any two nodes u, v and a set of nodes U ⊆ V , we denote by
P ∗u,v|U the optimal path between u and v in the graph induced by the set of
nodes U .

First we show that the following inequality hold for all 1 ≤ j ≤ i.

F (P ∗s,s∗j−1
|ms,j−1 ∪ P ∗t∗j−1,t

|mt,j−1) ≤ F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j) (2)

21

We first consider that the path P ∗s,s∗j
visits s∗j−1 and P ∗t∗j ,t

visits t∗j−1. In
this case, we observe that

P ∗s,s∗j−1
|ms,j−1 ⊂ P ∗s,s∗j |ms,j ,

which implies that

P ∗s,s∗j−1
|ms,j−1 ∪ P ∗t∗j−1,t

|mt,j−1 ⊂ P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j ,

and it follows that

F (P ∗s,s∗j−1
|ms,j−1 ∪ P ∗t∗j−1,t

|mt,j−1) < F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j).

We now consider that the path P ∗s,s∗j
|ms,j does not visit the node s∗j−1,

due to the order in which Algorithm 2 chooses nodes s∗j−1 and s∗j , it holds:

F (P ∗s,s∗j−1
|ms,j−1) ≤ F (P ∗s,s∗j |ms,j−1−{s∗j−1}).

which implies that

F (P ∗s,s∗j−1
|ms,j−1 ∪P ∗t∗j−1,t

|mt,j−1) ≤ F (P ∗s,s∗j |ms,j−1−{s∗j−1}∪{s∗j} ∪P
∗
t∗j−1,t

|mt,j−1).

Otherwise, the algorithm would have picked s∗j before s∗j−1. Since the
path P ∗s,s∗j

|ms,j does not visit the node s∗j−1, it also holds that

P ∗s,s∗j |ms,j = P ∗s,s∗j |ms,j−1−{s∗j−1}∪{s∗j}.

Therefore, it holds:

F (P ∗s,s∗j−1
|ms,j−1 ∪ P ∗t∗j−1,t

|mt,j−1) ≤ F (P ∗s,s∗j |ms,j−1−{s∗j−1}∪{s∗j} ∪ P
∗
t∗j−1,t

|mt,j−1)

= F (P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t
|mt,j−1).

Now, if P ∗t∗j ,t|mt,j visits t∗j−1 then with the same argument as before we
state that

P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t
|mt,j−1 ⊂ P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j

and thus Equation (2) holds since

F (P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t
|mt,j−1) < F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j)

22

On the contrary, if P ∗t∗j ,t|mt,j does not visit t∗j−1, we use the previous
reasoning to derive that

F (P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t
|mt,j−1) ≤ F (P ∗s,s∗j |ms,j ∪ P ∗t∗j−1,t

|mt−1,j−{t∗j−1}∪{t∗j})

= F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j).

In conclusion, Equation (2) holds for all 1 ≤ j ≤ i.
Second, we show that

F (Ps,t)
F (P ∗s,s∗i |ms ∪ P ∗t∗i ,t|mt)

> 1. (3)

The optimal path proposed by the algorithm might be fully uncovered
either at the very last round of the algorithm or it was uncovered in an
earlier round. When the proposed path was uncovered in the last round of
the algorithm, Equation (3) holds because in this case the proposed path
must visit s∗i and t∗i and thus Ps,t = P ∗s,s∗i

|ms∪P ∗s∗i ,t∗i ∪P
∗
t∗i ,t
|mt , where P ∗s∗i ,t∗i is

the optimal path from s∗i to t∗i . Hence P ∗s,s∗i |ms ∪P ∗t∗i ,t|mt ⊆ Ps,t which means
that the ratio F (P ∗s,s∗i |ms ∪ P ∗t∗i ,t|mt) < F (Ps,t), i.e, the ratio of equation (3)
is strictly higher than one.

In the case when the proposed path was uncovered in a round earlier
than the last round of the algorithm, Equation (3) holds because in the
round i − 1, the algorithm computes F (Ps,t)

F (P ∗
s,s∗

i
|ms∪P ∗t,t∗

i
|mt)

and the result has

to be larger than 1 since the algorithm does not stop. Therefore it holds:

F (Ps,t)
F (P ∗s,s∗i |ms ∪ P ∗t∗i ,t|mt)

> 1.

Now, using Equations (2) to (3), we are able to show that, for all 1 ≤
j ≤ i,

F (Ps,t)
F (P ∗s,s∗j |ms,j ∪ P ∗t∗j ,t|mt,j)

> 1.

Therefore, for any 1 ≤ j ≤ i and any path that intersects P ∗s,s∗j |ms,j and
P ∗t∗j ,t
|mt,j , any 1-certificate needs at least one edge not in P ∗s,s∗j |ms,j ∪P ∗t∗j ,t|mt,j

to show that the proposed path is the optimal path. Now, for any pair of
nodes s∗j , t

∗
j , consider the paths of the form P ∗s,s∗j

|ms,j ∪ Ps∗j ,t∗j |V/{ms,j∪mt,j} ∪
P ∗t∗j ,t
|mt,j , where Ps∗j ,t∗j |V/{ms,j∪mt,j} denotes a path between s∗j and t∗j in

V/{ms,j ∪mt,j}. There exists at least n− 2j + 1 disjoint paths of the form

23

previously described, one per each node in V/{ms,j ∪ mt,j} plus the path
that connects directly s∗j and t∗j . Hence, at least n− 2j+ 1 edges need to be
present in any 1-certificate for each pair of nodes s∗j , t

∗
j .

Therefore, if we sum up all these edges, we obtain that any 1-certificate
needs to contain at least the following number of edges:

i∑
j=1

n− 2j + 1 = in− i(i+ 1) + i = i(n− i).

We are now in position to present the query ratio of Algorithm 2.

Theorem 2. Let AOPD denote Algorithm 2. Therefore, for any instance I
of size n such that α = 1, it holds that:

max
I

|U(AOPD(I))|
|C1

min(I)|
≤ 2− 1

n− 1
.

Hence, the query ratio of AOPD is at most 2− 1
n−1 in these instances.

Proof. From Lemmas 5 and 6, it holds:

|U(AOPD(I))|
|C1

min(I)|
≤ i(2n− 2i− 1)

i(n− i)
= 2− 1

n− i
≤ 2− 1

n− 1
.

6 Comparison with Previous Algorithms

In this section we compare the query ratio of Algorithm 2 with the query
ratio of two algorithms already presented in the literature. We first analyze
the query ratio of a greedy algorithm presented in [18] that aims to solve the
SPD problem, a particular case of the OPD problem (nevertheless, it can be
easily extended to solve the general OPD problem). Then, we experimentally
compare the query ratio of Algorithm 2 with two algorithms also mentioned
in [18].

24

6.1 Analytical Comparison

We first note that our upper-bound on the query ratio of Algorithm 2 is
strictly less than 2. On the other hand, as mentioned in Section 3, the
query ratio of the well known search algorithm A∗ (cf. [11]) is n/2 which is
much higher than the upper bound obtained for the query ratio of Algorithm
2.

We now compare the performance of Algorithm 2 with an extension of
the algorithm presented in [18] to solve the SPD problem. In the SPD
problem the function F (·) is the sum of the values f(·) of each edge in the
set. The SPD problem aims to find the shortest path with a minimum
number of queries.

In the OPD problem there is a general function F (·) that applies to set
of edges. We denote by AGrehom the greedy algorithm of [18] that computes
optimal paths according to the function F (·) instead of shortest paths. In
this algorithm the values of each edge has to be estimated. I We consider
in AGrehom that all the edges are initially estimated to 0, i.e., the knowledge of
the real values of the edges is homogeneous and set to the minimum value.

In its original version for the SPD problem, the AGrehom algorithm works
as follows. This algorithm works in rounds. In each round, it computes the
shortest path between s and t with the current knowledge (all the queried
edges up to the current round) and the initial estimations. If all the edges
of the shortest path had been previously queried, it stops and returns that
path as the shortest path. Otherwise, it queries all the edges not queried
yet on the shortest path and continues. Ties are broken according to the
number of edges of the path, where the priority is given to a path with
the least amount of edges. Besides, there is a policy θGre that establishes
priorities given to the paths with the same number of edges.

For this analysis we consider that in each step of Algorithm 2 there are
several rounds. In the first round of each step, the algorithm queries the
edge (s∗, t∗). In each of the following rounds, the algorithm selects a two-hop
path formed by (s∗, u) and (u, t∗) according to a given policy θOPD, and it
queries the edges (s∗, u) and (u, t∗). We also consider that, at each step,
the algorithm computes its current approximation factor and it stops if this
value is less than the desired α.

Lemma 7. For any instance I of size n of the OPD problem, it holds that:

- If θGre and θOPD provide the same ordering in the selection of paths

⇒ U(AOPD(I)) = U(AGrehom(I)).

25

- Otherwise,

|U(AOPD(I))− U(AGrehom(I))| ≤ 2(n− 2).

Proof. In this proof we use a similar notation than in the proof of Lemma
6, that is, we say that in round j Algorithm 2 uncovers the edge (s∗j , t

∗
j) and

all the edges (s∗j , u) and (u, t∗j) for all u that do not belong to ms,j ∪mt,j .
The proof proceeds by an induction in the steps. Therefore, we define

a common notion of step for both algorithms. We consider that, at step j,
algorithm AGrehom does n − 2j + 1 rounds where, in each round, it computes
the optimal path with the current information and uncovers all the edges of
this path. A step for AOPD is the set of instructions from line 2 to line 16
of Algorithm 2.

We first show that, at the end of each step, the set of edges that both
algorithms uncover is the same. To do that, we show that, at each step j,
both algorithms uncover the same set of edges by induction on the number
of steps.

We now check that in the first step both algorithms uncover the same set
of edges. Since all the edges are initially estimated to a ≥ 0, the algorithm
AGrehom finds that the optimal path is the direct path (s, t). In the next 2(n−1)
rounds, AGrehom finds that the optimal paths are all the two-hop paths. Hence,
algorithm AGrehom uncovers the edge (s, t) and the edges (s, u) and (u, t) for all
u ∈ V/{s, t}. On the other hand, Algorithm 2 also uncovers the mentioned
set of edges in its first step.

We then suppose that until step j both algorithms have uncovered the
same set of edges and they have not stopped yet. We aim to prove that the
set of uncovered edges after step j also coincide. At step j algorithm AGrehom

does n−2j+1 rounds and in each round it computes the optimal path with
the known information and uncovers all the edges of this path. We know
that the optimal paths computed by AGrehom at step j must contain unknown
edges since the algorithm has not stopped. Furthermore, at step j, the only
edges that are unknown are those that connect nodes that do not belong to
ms,j−1 ∪mt,j−1. Hence, we have that

s∗j = argmin
v∈V/{ms,j−1∪mt,j−1}

F (Ps,v),

and
t∗j = argmin

v∈V/{ms,j−1∪mt,j−1}
F (Pv,t)

26

and the unknown edges are estimated to a which is the minimum possible
value. This means that the optimal paths computed by AGrehom at step j are of
the form PATHs,s∗j

∪Ps∗j ,t∗j∪PATHt∗j ,t
, where Ps∗j ,t∗j is either (s∗j , t

∗
j) or a path

from s∗ to t∗ that traverses only one node that does not belong to ms,j∪mt,j .
Furthermore, in these paths the unique unknown edges are (s∗j , t

∗
j) and the

edges (s∗j , u) and (u, t∗j) where u does not belong to ms,j ∪mt,j , which are
the edges that uncovers Algorithm 2 at step j. Therefore, AGrehom uncovers
the same set of edges than Algorithm 2 at the end of step j. Thus, if both
algorithms provide an α−approximation at the end of a step, then we have
shown that both algorithms uncover the same set of edges.

We now focus on the case where, at least, one algorithm finds an α-
approximation before an step is finished. In the first round of a step, the
optimal path that algorithm AGrehom finds is P ∗s,s∗ ∪ (s∗, t∗) ∪ P ∗t∗,t and thus it
queries the edge (s∗, t∗), which is the edge that Algorithm 2 queries. In the
following rounds of this step, we observe that if θGre and θOPD provide the
same of ordering of paths selection, then both algorithms at each round will
uncover the same edges and thus they will stop in the same round. On the
other hand, if these policies do not provide the same order of paths selection,
then an algorithm can stop in the second round of this step and the other
can stop in the last round of the same step. The algorithm that stops in
the second round uncovers 1 + 2 edges in that step and the algorithm that
stops in the last round uncovers 1 + 2(n− i) edges. Thus, the difference in
the number of uncovered edges by both algorithms is 2(2− i− 1). Finally,
we conclude that the larger value of this difference is given in the fist step,
which is 2(n− 2).

Using this result we state that the query ratio of algorithm AGrehom and
Algorithm 2 is the same for any instance of the OPD problem.

Theorem 3. For any instance I of size n of the OPD problem, it holds
that:

max
I

|U(AGrehom(I))|
|C1

min(I)|
= max

I

|U(AGrehom(I))|
|C1

min(I)|
.

In Theorem 2 we prove an upper-bound on the query ratio of Algorithm
2 for instances of the OPD problem with α = 1 and in Theorem 3 we show
that the query ratio of algorithm AGrehom and Algorithm 2 coincide for any
instance. We remark that the upper-bounds given in these theorems are
tight for these algorithms, and it is achieved when the size of the smallest
certificate is n− 1. In this case the algorithms uncover 2n− 3 edges.

27

It is also important to note that, for the OPD problem with α = 1,
Algorithm 2 and AGrehom have the same query ratio. However, the query ratio
of Algorithm 2 is easier to analyze.

6.2 Numerical Comparison

In this section, we experimentally analyze the algorithm presented in Sub-
section 5.2. We focus on the particular case of the SPD problem and thus
we consider f(e) ∈ (0,∞) ∀e ∈ E and that F (·) is the sum of the values of
the edges, i.e., F (H) =

∑
e∈H f(e).

We first analyze the query ratio of Algorithm 2 for the OPD problem with
α = 1 to compare it with upper-bound presented in Section 5.2. In order to
do that, we first need to compute the size of the minimum certificate for a
given graph. We denote by f(e) the value of an edge e ∈ E and δ∗(s,t) denotes
the length of a shortest path between s and t. The minimum certificate can
be obtained as a solution of the following 0-1 integer linear program:

min
∑
e∈E

u(e)

s.t. δ∗s,t ≤
∑
e∈Ps,t

u(e)f(e), ∀Ps,t ∈ Ps,t

u(e) ∈ {0, 1},

where the {u(e)}e∈E is the set of variables. According to this formulation,
the minimum certificate is formed by the set of edges such that u(e) = 1.

Query Ratio Distribution We have used 100 graphs with 8 nodes where
the values of the edges are random numbers uniformly distributed between
zero and one. We execute Algorithm 2 and we calculate the size of the
minimum certificate. In Table 1 we show the distribution of the values of
the query ratio that we obtained. For clarity, in Table 1 we only represent
the values of the query ratio with frequency larger than 5%. We observe that
in the 23% of the cases the query ratio is 1, which means that Algorithm
2 have solved the OPD problem optimally for 23 graphs out of the 100
graphs. On the other hand, the upper-bound given in Theorem 2, that is
7 − 1/7 = 1.8571, is attained 20 times. The mean of the query ratio over
the 100 cases is 1.437.

Comparison of the Query Ratio In the second set of experiments, we
compare the performance of Algorithm 2 (Algorithm “algo” in Figure 1)
with two modifications of the greedy algorithm presented in [18].

28

Query Ratio of Algorithm 2 Frequency
1 23%

1.22 23%
1.2941 7%
1.6923 12%
1.8571 20%

Table 1: Distribution of the query ratio of the presented algorithm for 100
random graphs of 8 nodes

(a) The first algorithm computes at each step the shortest path according
to the value of the uncovered edges and the value of the unknown
edges set to 0, and uncovers the edge of this path that is closest to the
source. We refer to this algorithm as deterministic and in Figure 1 it
is represented as “determ”.

(b) The second algorithm computes at each step the shortest path accord-
ing to the value of the uncovered edges and the value of the unknown
edges set to 0, and uncovers an edge of this path picked uniformly
at random. We refer to algorithm as random and in figure 1 it is
represented as “rand”.

We consider an instance with 50 nodes where the values of the edges
are uniformly distributed random numbers between zero and one. We ex-
ecute Algorithm 2, the deterministic algorithm and the random algorithm
for all the origin-destination pairs of this graph. In each execution of all
the algorithms, we compute the evolution of the approximation factor with
respect to the number of uncovered edges. We recall that the approximation
factor is given by the ratio F (PATHprop)

F (PATH(s,s∗)∪PATH(t∗,t))
, where PATHprop is the

proposed path and PATH(s,s∗) ∪PATH(t∗,t) is a lower bound on the short-
est path. In Figure 1 we plot the average of the approximation factor over
all the possible source-destination pairs to show the average performance of
different algorithms. The y-axis of this figure is in logarithmic scale.

Figure 1 shows that the mean approximation factor of the deterministic
algorithm decreases fast during the first 50 queries. However, this algorithm
needs to uncover almost 1000 edges to achieve an approximation factor equal
to one which is much higher than for the other algorithms. Moreover, we see
that the average approximation factor of Algorithm 2 achieves the value 1 for
a lower number of uncovered edges comparing with the random algorithm.

29

0 100 200 300 400 500 600 700 800 900 1000
100

102

Number of uncovered edges

A
pp

ro
x

fa
ct

or
Uniform distribution in (0,1)

algo

determ

random

Figure 1: Approximation factor evolution comparison. Uniformly dis-
tributed edges and 50 nodes. Y axis in logarithmic scale.

Furthermore, the average approximation factor of Algorithm 2 is smaller
than the deterministic algorithm when the number of uncovered edges is
higher than 100 and always less than the random algorithm.

7 Conclusions and Future Work

In this document we present and study the OPD problem. For a given
function F (·) that is applied to set of edges, an algorithm that solves the
OPD problem aims to find the path that optimizes the value of F (·) when it
is applied to a path, while at the same time it has to minimize the number
of queries it uses to find such path. We observed that interesting functions
F (·) arise as particular cases of the OPD problem. For example, when F (·)
is the sum of the values of each edge in the evaluated set, the OPD problem
becomes the SPD problem. Equivalently, when the function F (·) is the
product of tthe values of each edge in the evaluated set, and the value of
each edge represents a probability of success, then the OPD problem aims
to find the path with maximum probability of successful arrival of packets
to the destination.

We show that the number of queries as an absolute measure in order to
compare algorithms that solve the OPD problem does not provide insight-
ful information with respect to algorithms that solve the OPD problem.
However, we introduce the query ratio, a new measure which provides an
important insight into the real quality of an algorithm solving this prob-
lem. That is because it compares the number of queries performed by the
algorithm with the least amount of queries required to solve the problem.

30

Therefore, we consider that the query ratio is the correct measure to take
into account in the design of algorithms that solve the OPD problem. In
this document we presented lower and upper bounds on the query ratio.

Under our consideration, the most appealing problem that this docu-
ment leaves open is the gap between the lower and upper bounds. The
question is whether there exists an algorithm, or on the contrary an ad-
versary that produces a bad instance for any algorithm, so that the gap is
closed. We also consider interesting the comprehension of the trade-off be-
tween the approximation factor α for the proposed path and the query ratio
of an algorithm. The question is whether when we relax the approximation
factor α we obtain better results for the query ratio. Another open problem
is to extend the results presented in this document to instances with hetero-
geneous knowledge, i.e., when previous knowledge regarding the values of
the edges is not necessarily the same for all edges. In the same line, we also
consider interesting to study this problem in graphs that are not necessarily
complete. Nevertheless, we believe that these two mentioned extensions are
closely related and that they can be treated as one single case.

Acknowledgments

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme [FP7/2007-2013] under the
PANACEA Project (www.panacea-cloud.eu), grant agreement n 610764.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1st edition, February 1993.

[2] Noga Alon, Yuval Emek, Michal Feldman, and Moshe Tennenholtz.
Economical graph discovery. In ICS, pages 476–486, 2011.

[3] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16:87–90, 1958.

[4] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths
algorithms: theory and experimental evaluation. Mathematical Pro-
gramming, 73(2):129–174, 1996.

[5] Henry W. Davis, Randy B. Pollack, and Thomas Sudkamp. Towards a
better understanding of bidirectioanl search. In AAAI, 1984.

31

[6] Dennis de Champeaux. Bidirectional heuristic search again. J. ACM,
30(1):22–32, January 1983.

[7] Edsger. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[8] R.W. Floyd. Algorithm 97: Shortest path. Communications of the
ACM, 5(6):345, 1962.

[9] L.R. Ford. Network flow theory. Technical Report Paper P-923, RAND
Corporation, Santa Monica, California, August 1956.

[10] Subrata Ghosh and Ambuj Mahanti. Bidirectional heuristic search
with limited resources. Information Processing Letters, 40(6):335 – 340,
1991.

[11] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, pages 100–107, 1968.

[12] D. B. Johnson. Efficient algorithms for shortest paths in sparse net-
works. Journal of the ACM, 24(1):1–13, 1977.

[13] Richard E. Korf. Optimal path-finding algorithms. In Laveen Kanal
and Vipin Kumar, editors, Search in Artificial Intelligence, Symbolic
Computation, pages 223–267. Springer New York, 1988.

[14] Marco Lippi, Marco Ernandes, and Ariel Felner. Efficient single frontier
bidirectional search. In Proceeding of the Forth International Sympo-
sium on Combinatorial Search, 2012.

[15] Michael Luby and Prabhakar Ragde. A bidirectional shortest-path algo-
rithm with good average-case behavior. Algorithmica, 4(1-4):551–567,
1989.

[16] Christos H Papadimitriou and Mihalis Yannakakis. Shortest paths with-
out a map. Theoretical Computer Science, 84(1):127–150, 1991.

[17] Ira Pohl. Bi-directional and Heuristics Search in Path Problems. PhD
thesis, Standford University, 1969.

[18] Csaba Szepesvári. Shortest path discovery problems: A framework,
algorithms and experimental results. In AAAI, pages 550–555, 2004.

32

	Introduction
	Problem Statement
	Definitions
	The OPD problem
	Assumptions on the function F() and two examples
	Homogeneous knowledge versus complete graph

	Related Work
	Lower Bounds on the Number of Queries n
	Lower and Upper Bounds on the Query Ratio
	An Adversary for Any Algorithm
	An Algorithm that Searches from the Source and the Sink

	Comparison with Previous Algorithms
	Analytical Comparison
	Numerical Comparison

	Conclusions and Future Work

