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ABSTRACT- Journal fluid bearings are widely used in industry 
due to their static and dynamic behavior and their very low 
coefficient of friction. The technical requirements to improve the 
new technologies design are increasingly focused on the 
indicators of dependability of systems and machines. Then, it is 
necessary to develop a methodology to study the reliability of 
bearings in order to improve and to evaluate their design quality. 
Few works are referenced in literature concerning the estimation 
of the reliability of journal fluid bearings. This paper deals with a 
methodology to study the failure probability of a hydrodynamic 
journal bearing. An analytical approach is proposed to calculate 
static characteristics in using the Reynolds equation. The 
commonly methods used in structural reliability such as FORM 
(First Order Reliability Method), SORM (Second Order 
Reliability Method) and Monte Carlo are developed to estimate 
the failure probability. The function of performance bounding 
two domains (domain of safety and domain of failure) is 
estimated for several geometrical configurations of a 
hydrodynamic journal bearing (long journal bearings with the 
hypotheses of Sommerfeld, Gumbel and Reynolds, and a short 
journal bearing with the hypothesis of Gumbel). 

Keywords: Hydrodynamic Journal Bearing, FORM, SORM, 
Monte Carlo, Function of performance, Probability of Failure, 
Reliability. 

I. INTRODUCTION  

Fluid bearings are sensitive components for machines and 
systems. The design of a fluid bearing is usually based on 
deterministic static characteristics. However, it is subjected to 
load and pressure fluctuations or to fluid film gap perturbations 
induced for instance by defects of the slide ways surfaces 
geometry [1, 2 and 3]. These factors induce excitations in the 
bearing dynamic response; which may eventually lead to 
bearing instability. The prediction of the reliability of a fluid 
bearing under operating conditions is then necessary for 
applications requiring high accuracy movements or positioning 
[1]. Charki and al. [1, 2 and 4] developed a methodology to 
estimate the failure probability of a thrust fluid bearing and a 
hemispherical fluid bearing. 
The influence of geometrical parameters on the characteristics 
of bearings such load capacity and stiffness is often studied 
with a deterministic approach. 

Frêne and al. [5] developed an analytical approach with the 
assumptions of Sommerfeld, Gumbel and Reynolds.  Nathi 
Ram and al. [6] analyzed the behavior of a hybrid journal 
bearing. An experimental assessment of hydrostatic thrust 
bearing performance was done by Osman and al. [7].  
In reliability analysis, the principle consists in the 
approximation of a limit-state function bounding two domains 
(domain of safety and domain of failure).  This approach is 
based on an explicit or implicit performance function evaluated 
by the solving of the Reynolds equation.  
Lemaire and al. [8], detailed the various evaluation methods of 
the probability of failure. Madsen [9] and Melchers [10] 
proposed several examples of the estimation of the failure 
probability. Austin [11] studied the cause of the bearings 
failures in engines. 
This paper presents an adapted method to evaluate the failure 
probability of a journal fluid bearing (see Fig. 1). The 
methodology is applied to various geometrical configurations 
of a hydrodynamic journal bearing. 
 

 
Fig.1. Failure of circular cylindrical bearing 
 

II. JOURNAL BEARING MODELING 

The expressions of Navier-Stockes equations are 
considerably simplified. The Reynolds equation [5] is obtained 
as follows, 
Equation of conservation of mass:  
 ∇���. V��� = 0																																																																																												(1) 
 

Equation of momentum conservation: 



 

∂V���∂t + �V���. ∇����. V��� = −1ρ ∇���P + μρ ∇�V���																																															(2) 
 

Where V	����the velocity vector of the fluid with components is u, v, w	; 	t represents the time; P is the pressure of the fluid. 

Boundary conditions [5]: y = 0																u = u�	; 					v = 0	; 									w = w� y = h																u = u�	; 					v = v�	; 									w = w� 
 
The equation of Reynolds is expressed as: 
 ∂∂x !h"μ ∂P∂x# + ∂∂z !h"μ ∂P∂z#= 6(u� −	u�) ∂h∂x + 	6(w� −	w�) ∂h∂z + 6h ∂∂x (u� +	u�)
+ 	6h ∂∂z (w� + w�)+ 12v�																																																																																													(3) 

 

The hypotheses relative to the equation of Reynolds which 
allows to write the laminar flow of a fluid between two walls 
very close and being able to be in movement are given by [5]. 

 

Fig.2. Movement between shaft and bearing 
 
By geometrical considerations (see Fig. 2), we have: u� = ωRcosδ																																																																																		(4) v� = ωRsinδ																																																																																			(5) 
 

For an angle 1 very small, the components of speeds become: u� = ωR																																																																																											(6) v� = ωR∂h∂x 																																																																																					(7) 
Replacing components of speed u� and v� by their 
expressions, the equation (3) becomes then: ∂∂x !h"μ ∂P∂x# + ∂∂z !h"μ ∂P∂z# = 6ωR ∂h∂x 																																											(8) 

 

Expression of the film thickness  

 We consider a point M belong the surface of the bearing and 

located by the angle (MO����������, MO�)����������� with O� et O� respectively 
the centers of the pivot shaft and the bearing (see Fig. 3). The 
point M’ is the orthogonal projection of O� on the line(	O�M). 

 

Fig.3. Film thickness between shaft and bearing 
 

Taking into account the relative eccentricity ε = 78 varying 

from 0 to 1, the expression the film thickness h(θ) becomes 
then: h(θ) = C(1 + ε	cosθ	)																																																															(10) 
 

For the calculation, we are going to consider that the load 
supported by the cylindrical bearing is constant in intensity 
and in direction. 

III.  LONG BEARING WITH SOMMERFELD CONDITIONS 

Boundary conditions of Sommerfeld [5] are defined as: 
 ;P	(	θ = 0,			z	) = 	P<P	(θ = 2π, z	) = 	P<  

 
Equation Reynolds for a long cylindrical bearing with 
Sommerfeld conditions becomes: 
 ∂∂x !h"μ ∂P∂x# = 6ωR ∂h∂x 																																																																	(10) 
 

With,	x = Rθ  replacing h(θ) = C(1 + ε	cosθ	) in the 
equation and according to an integration of 2π we obtain: 

 

P> = 6μω(1 − ε�)" �? @RCA� Bψ − ε	sinψ
− ψ(2 + ε�) − 4εsinψ + ε�sinψcosψ2 + ε� D
+ P<																																																											(11) 



 

With ψ such as: 

 

cosψ = cosθ − ε1 + εcosθ																																																																	(12) 
 
The load capacity with Sommerfeld conditions is expressed 
as: 
 

W> = 12πμωR"LεC�(2 + ε�)(1 − ε�)� �? 																																																			(13) 
IV.  LONG BEARING WITH GUMBEL CONDITIONS 

Boundary conditions of Gumbel [5] are defined as: 
 

G P	(θ = 0, z	) = 0P	(θ = π, z	) = 	0P	(θ, z	) = 	0						si		π < I < 2J 

 

PK = 6μω(1 − ε�)" �? @RCA� Bψ − ε	sinψ
− ψ(2 + ε�) − 4εsinψ + ε�sinψcosψ(1 − ε�) D
+ P<																																																																(14) 

 
The integration of the pressure on the surface of the journal 
bearing gives the following expression of load capacity with 
Gumbel conditions: 
 

LM = 6NOP		 Q"R� S	(4S� + J�(	1 − S�))� �?(2 + S�)	(1 − S�) 																											(15) 
 

V. LONG BEARING WITH REYNOLDS CONDITIONS 

Boundary conditions of Reynolds [5] are defined as: 
 
 

TUV
UW X(I = 0,			Y) = X<X(IZ = 0,			Y) = 0[X[I (	I = IZ, Y) = 	[X[Y (	I = IZ , Y) = 0X	(I, Y	) = 	0						\]		IZ < I < 2J

 

 

XZ= 6NO(1 − S�)" �? @QRA� !^ − S\]_^
− ^(2 + S�) − 4S\]_^ − S�\]_^`a\^2(1 − S`a\^Z) #																												(16) 
 
The equation of the fluid break is given: 
 S(\]_^Z`a\^Z −^Z) + 2(\]_^Z − ^Z`a\^Z) = 0									(17) 
 
The load capacity with Reynolds conditions is expressed as: 
 

LZ = 3NOQP(1 − S`a\^Z)(1 − S�)� �? @QRA� !S� (1 − `a\^Z)b1 − S�+ 4(\]_^Z
− ^Z`a\^Z)�#� �? 																																							(18) 

 

VI.  SHORT JOURNAL BEARING 

Two main hypotheses allowing the justification of a short 
journal bearing are.  

• The ratio of the length on the diameter of the bearing 

is low	cde ≤ �gh.  

• The gradient of pressure at the circumference is 
negligible in front of the axial pressure [5]. 

Taking into account these hypotheses, the equation of 
Reynolds for a short journal bearing becomes as follows: 
 [[Y !iℎ"N [X[Y# = 6O kℎkI																																																															(19) 
 [X[Y = 0																																																																																											(20) 
 
We obtain finally for short bearing conditions, the expression 
of the pressure and the load capacity: 
 

X(I, Y) = −3NOR� mY� − P�4 n S\]_I(1 + S`a\I)� 																											(21) 
 

W8 = μRωL"4C� ε(1 − ε�)� (π�(1 − ε�) + 16ε�)� �? 																	(22) 
 

VII.  PRINCIPLE OF RELIABILITY  

• Causes and failure modes of journal bearings 

The causes of the failure of a fluid journal bearing are 
numerous and varied. We distinguish from it essentially: loads 
excessive (axial and radial), vibrations and shocks, bad 
alignment, etc. 



Failure modes are generally a combination of constraints 
which act on the bearing until cause a damage or a failure. 
Failure modes represent the result or the way the problem 
shows itself and not the cause of the problem of the bearing. 
We distinguish essentially failure modes due to corrosion or 
fatigue, or misalignment of the shaft in the bearing [11]. 

• Function of performance  
The reliability of a journal bearing is defined by the 
knowledge of a function state limit	G(Xq), variables of design Xq chosen as random variables. The considered variables of 
design are the viscosity, the angular speed, the length and 
diameter of the bearing, the radial clearance. The domains of 
the performance function [8, 9] are defined as: G(Xi) > 0 is the domain of safety; G(Xi) 	< 0 is the domain of failure; G(Xi) = 0 is the limit state; 

Hasofer and Lind [12] show that the index of reliability is the 
minimum of the distance between the origin and the space of 
variables normalized with the constraint H(Uq) where H the 
function of performance in the reduced centered standardized 
space (see Fig. 4). The calculation of the index of reliability 
requires the research for the most likely point of failure P∗called design point when it is considered as reference point 
for a sizing. The evaluation of this point of failure is a matter 
of a not linear optimization adapted to the nature of the 
problem.  

 

 

Fig. 4. Transformation into standard normal space 

 vw� and vw� are respectively the average of variables x� and x� in the physical space. y is the transformation of the passage 
of the physical space in the standardized space. 
In the case of our study, we are going to consider that the 
random variables are Gaussian and independents. The 
transformation T of the physical space is immediate and builds 
itself variable by variable. 
 Uq = Tq(x{) 
 x{ 									|										}~~~~~� Uq = xq −m��σ�� 																																																									(23) 
 x{: Random variable in the physical space 

�{: Random variable in the gaussian standardized space vw{: Mean of the random variable x{ σ��: Standard deviation of the random variable x{ � Index of reliability estimated in the centered standardized 
space. 

• Algorithm of Rackwitz-Fiessler  
The algorithm developed by Rackwitz and Fiessler is based on 
the calculation of the gradients of every variable. Knowing the 
gradients, we can then estimate linearly the design point, and 
take the same strategy around this new point P* until 
convergence. 
By taking place in the point �� corresponding to the design 
point of the iteration �, we can write the development of 
Taylor around this point of the function �(�) [8]: 
 H(U) = H�U∗�� + ∇H(U)�∗�| �U − U∗��																																												(24) 
 
By this formula, we can estimate the design of the following 
iteration: 
 H�U∗���� = H�U∗�� + ∇H(U)�∗�| �U∗��� − U∗�� = 0																				(25) 
 
We introduce the vector of the cosine director �: 
 α = ∇H(U)‖∇H(U)‖																																																																																											(26) 
 
The limit state takes the following shape: 
 ∇H(U∗�)‖∇H(U)‖�∗� + �U∗��� − U∗��|α� = 0																																															(27) 
 
Or 
 

�U∗����|α� = �U∗��|α� − ∇H�U∗��‖∇H(U)‖�∗� 																																											(28) 
 
By introducing the index of reliability into the last equation, it 
is transformed by: 
 

β��� = �U∗��|α� − ∇H�U∗��‖∇H(U)‖�∗� 																																																								(29) 
 
We can then estimate the new design point: 
 U∗��� = −β���α�																																																																																				(30) 
 
The algorithm stops when: 
 �β��� − β�� < ε>																																																																																				(31) 
 
Where S� is the desired condition of stop. In the cases of the 
mechanical calculations, the evaluation of the gradients by 
finished differences appeals to a numeral calculation. We 
define a point to be calculated for every variable: 
 U�� = �U�∗�, U�∗�, , ……… . , U�∗�� 



 
Variable U��  written in the standardized space is transformed 

at first into variables X�� in the physical space. Then, we make 

the numeral calculation associated in every point U�� to 

estimed	�(U��). The calculation of the function of 

performance � for the design point U∗� is also led. The 
gradient H(U∗�)	is then given as: 
 

∇H�U∗��� = H�U�∗�� − H�U∗���U�∗� − U∗�� 																																																												(32) 
 
The use of this plan implies _ + 1 calculations by iteration of 
the algorithm. 

• FORM  
   FORM (First Order Reliability Method) approximates the 
domain of failure by a half-space bounded by hyper one 
tangent plan on the surface in the design point. Of the fact of 
symmetry of revolution of the standardized normal multi-
distribution, the probability of failure is simply approached 
by: 
 P� = φ(−β)																																																																																															(33) 
 
The design point is determined by looking for the point of 
limit state the closest to the origin of the standardized space. 
The design point is the solution of the problem of 
optimization: 
 

Bβ = min c�U�UhH(U) = 0 																																																																																					(34) 
The result of this problem of minimization under constraint 
will be solved by the algorithm of Rackwitz-Fiessler and the 
design point estimated as: 
 U∗ = −α�β																																																																																				(35) 
 
The normalized gradient � to the function at the limit state, 
estimated at the point of design U∗ is determined by (26): 
The index of reliability �	is determined by (29): 
The equation of the tangent hyperplan in the design point U∗ 
is: 
 

H�(U) = β +��{�{
�

q�� 																																																																	(36) 
 
This method supplies an exact result when the state-limit is 
linear in the standard space. it becomes indistinct when the 
function of performance is strongly not linear in the 
neighborhood of the point of design point or when there are 
secondary significant minimums. 

• SORM  
The SORM (Second Order Reliability Method) consists in 
approaching the surface of state-limit by a quadratic surface. 
For that purpose, we make a Taylor development of the 

performance function in order two at the design point U∗. This 
method consists to determine an approximation of the function 
performance	H(U), noted Ĥ(�) by a development of Taylor 
around a given point	�<. 
 H�(U) = H(U<) + a�(U − U<) + 12 (U − U<)�ℍ(U<)(U − U<)+ O(‖U − U<‖�)																																						(37) 
 
The matrix Hessian	ℍ owes to be determined then 
diagonalized so that the main curvatures	kq	can be calculated. 
The approximation of these curvatures allows having a 
quadratic approximation SORM which thus takes the shape of 
hyper tangent paraboloid in the design point and which can be 
expressed: 
 

H�(U) = U� − β − 12�kqUq�
�¢�
q�� 																																																														(38) 

 
The probability of failure can be so estimed by the following 
relation: 
 

P� = φ(−β)£(1 + kqβ)¤¥¦
�¢�
q�� 																																																					(39) 

 
Surrounding areas of second order were envisaged by making 
the hypothesis that a development of the state limit in the 
second order was better than a development in the first order.  

• Monte Carlo method 
   Methods by simulation allow estimating the probability of 
failure in the case of complex laws of probability, correlations 
between variables or function of not linear limit states. 
However these methods require calculation time which can be 
prohibitive. The principle of the simulations of Monte Carlo is 
to do, according to the law of joint probability of the random 
vector and to count the number of times when the system is in 
the domain of failure. The probability of failure can be 
expressed by the relation: 
 

P� ≈ 1N�IªG(Xq) ≤ 0«¬
q�� 																																																													(40) 

 
Where Xq the vector of random variables, and the indicator 
function 	is equal 1 if the condition G(Xq) ≤ 0 is true and 0 if 
not. The evaluation of the probability of failure is exact if the 
number of samples is sufficiently high. One of the major 
inconveniences of the methods of Monte Carlo is the large 
number of simulations required in certain cases. Indeed, for a 
low probability of failure, an inadequate number of 
simulations could lead to a significant degree of error. 

VIII.  APPLICATIONS  

We consider five random variables as shown in table 1.  
 



Table.1. Random variables 
 

Variables 
Xi 

Mean vw{ 
Standard 
deviation σ�� 

Distribution 

N(Pa.s) 12E-4 12E-5 Normal O(radian.s-1) 157 15.7 Normal P(m) 0.5 1E-5 Normal Q(m) R(m) 
5E-2 
40E-6 

1E-4 
40E-7 

Normal 
Normal 

 
For long journal bearing with conditions of Sommerfeld, the 
function of performance G is defined as a difference between 
a critical load capacity and an operating load capacity [1, 2, 3 
and 4]. ®(P, Q, R, O, N) = L�̄ −L� 
The critical load capacity with conditions of Sommerfeld is 
taken for a value of relative eccentricity:  
ε= 0.95 L�̄ = 2.9E5	N. 
 

 
Fig. 5 Load capacity versus relative eccentricity with Sommerfeld 

conditions 
 

 
Fig. 6 Failure probability according versus eccentricity with 

conditions of Sommerfeld 
 

For the long journal bearing on conditions of Gumbel, the 
function of performance is the difference between a critical 
load capacity and an operating load capacity. 
ε=0.95 WK± = 2.1E5	N 

It writes then: ®(P, Q, R, O, N) = LM̄ −LM  
 

 
Fig. 7 Load capacity versus relative eccentricity with Gumbel 

conditions 
 

 
Fig. 8 Failure probability according versus eccentricity with 

conditions of Gumbel 
 
For the long journal bearing on conditions of Reynolds, the 
function of performance is also given as the difference 
between the critical load capacity and an operating load 
capacity. ®(P, Q, R, O, N) = LZ̄ −LZ 
 

 
Fig.9 Load capacity versus relative eccentricity with Reynolds 

conditions 



 
Fig.10 Failure probability according versus eccentricity with 

conditions of Reynolds 
For the fluid break, we choose ^Z = 4.21346 rad. 
The load capacity becomes rather important with the increase 
of the length of the journal bearing that is the ratio of the 
length for the diameter upper to 4 (P/³	 > 	4). For the 
approximation 
of Sommerfeld, the probability of failure is estimated 
according to a critical load capacity Ĺµ = 2.9E5	N 
corresponding in a relative eccentricity	S = 0.95. The 
probability of failure is lower than 10¢"  for lower 
eccentricities than 0.6 according to the results given by FORM 
and SORM. The results of Monte Carlo for the higher 
eccentricities than 0.6 give values of probability of failure in 
agreement with FORM results. However, the results of three 
methods (FORM, SORM and Monte Carlo) are almost similar 
for eccentricities higher than 0.6. The probability of failure 
increases for a decrease of the index of reliability which 
represents the distance of the origin to the point design. The 
values of index of reliability are acceptable only for 
eccentricities higher than 0.6. Otherwise the result would not 
be in agreement with the probability of failure calculated with 
the three methods.  
For the approximation of Gumbel, the probability of failure 
remains acceptable for values of eccentricities higher than 0.7. 
Beyond these values, the probability of failure for the three 
methods are in agreement. The probability of failure increases 
with the relative eccentricity and decreases in an exponential 
way with the index of reliability.  
For the approximation of Reynolds, the probability of failure 
remains practically constant for lower eccentricities than 0.5. 
The probability of failure decreases exponentially with the 
increase of the values of index of reliability in the case of the 
three methods (FORM, SORM and Monte Carlo). The results 
of the probability of failure according to the index reliability 
for these three methods are perfectly similar.  
In the case of short journal bearings, the best adapted 
conditions are the ones of Gumbel according to Dubois and al. 
[13] .This hypothesis of short journal bearing justifies itself 
for a ratio of the length in the lower diameter	1/8. The 
function of performance is given by: G(L, R, C, ω, μ) = W8̄ −W8 

 
Fig. Load capacity versus relative eccentricity with conditions of 

short bearing 
 

 
Fig.12 10 Failure probability according versus eccentricity with 

conditions of short bearing 
 

For the short journal bearing, the load capacity increases 
slightly with the eccentricity. The results obtained from the 
probability of failure are estimated according to the hypothesis 
of a short bearing. The significant values of the probability of 
failure are obtained for eccentricities higher than 0.15 
corresponding to index of reliability lower than 3. However, 
for each method, the evolution of the probability of failure 
according to the eccentricity are nearby beyond S = 0.25 
corresponding to a probability of failure higher than	10¢�.  
 
Conclusion 
We proposed in this paper a suitable methodology to estimate 
the reliability of a journal bearing. An analytical approach for 
the calculation of load capacity of a journal bearing is 
developed with a combination of the principle of reliability. 
FORM, SORM and Monte Carlo simulation are used to 
estimate the failure probability of a journal bearing. 
Among these three methods, only FORM and Monte Carlo are 
more nearby to compare with SORM. As FORM and SORM 
are approximations, the calculation of the derivative becomes 
difficult and particularly with SORM. The used method of 
Monte Carlo is the important sampling. This technique of 



simulation consists in making drawings for the neighborhood 
of the design point where the density of probability is more 
important. These studies of reliability of the cylindrical 
bearing allow us to make a decision from the point of view of 
the design point and a better choice for the customer. 
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