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Université de Technologie de Compiègne, France
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Abstract—This paper presents an experimental protocol which
aims to study human reliability in railway systems. The experi-
ment is conducted on a railway traffic management system that
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involving failures. Some classical HRA (Human Reliability Anal-
ysis) models are used to interpret the experimental results and
to evaluate the probability of human error.
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I. INTRODUCTION

According to the statistics of the Federal Railroad Admin-
istration Office of Safety Analysis [1], human factors are the
most significant cause of train accidents. In 2011, 36.35%
of train accidents in the US were caused by human factors,
33.58% by track defects, 11.60% by equipment defects, 1.71%
by signal defects, and 16.77% are ascribed to miscellaneous
causes. These figures underline the need for human factors to
be studied, with the aim of preventing or reducing the number
of train accidents.

Human reliability refers to the reliability of humans in
many fields, including the transport systems. Human reliability
can be affected by many factors, especially the human errors.
According to Spurgin [2], human errors are sometimes thought
of as spontaneous errors made by individuals and crews;
however, most errors are induced by the situation under which
persons operator. Swain and Guttman [3] defined human error
as any member of a set of human actions that exceeds some
limit of acceptability.

In railway systems, human error has been defined as a
behavior of the human operator which leads to accidents in
railroad systems [4]. The normal operation of the railroad
system depends on the activities of human beings and ma-
chines. Advances in science and technology have meant that
mechanical reliability has been significantly improved. Human
error is an increasingly significant factor in train accidents.
Humans can deal with accidents and unusual situations, but
they also make mistakes. Therefore, in order to evaluate the
performance of a railway system, it is necessary to model
human operators involved in the railway system.

In the literature, there exist a variety of HRA models. HRA
models are used to evaluate the Human error probability (HEP)
throughout the completion of a task. Spurgin [2] summarized
three categories of existed HRA models according to their
characteristics: task-related models, time-related models, and

context-related models. A model is not developed to handle
all the issues addressed in human reliability. Each model is
developed only for certain issues. Thus, an appropriate HRA
model should be chosen according to the characteristics of the
research subject.

In this paper, an experimental protocol is developed to
conduct an experiment on a railway platform, Route Control
Centre System (RCCS), provided by Ansaldo STS. The main
objective of the experiment is to assess the HEP of human
operators. Several experimental subjects are invited to conduct
the experiment under different conditions. The obtained ex-
perimental result is later analyzed by some classical Human
Reliability Analysis (HRA) methods which estimate the HEP
of each subject. Finally, we propose a discussion on the
analytic results.

The reminder of the paper is organized as follows. Section
II presents three used classical HRA models. Section III
details the experimental protocol and evaluate the HEPs using
presented HRA models. Section IV gives some conclusions
and perspectives.

II. CLASSICAL HRA MODELS

A. THERP
Technique for Human Error Rate Prediction (THERP) is

a task-related HRA model. THERP (Swain and Guttman [3])
decomposes a task down into a number of subtasks. Swain and
Guttman make this subtask array into an assembly of discrete
HRA subtasks, forming an HRA event tree. The appropriate
HEPs are selected to represent the failure probabilities of the
subtasks in the HRA event tree. The failure probabilities can
be found in relative THERP tables according to the patterns
of the subtasks. The HEPs in the tree are summed to give an
overall HEP. Fig. 1 depicts an example of the HRA event tree.
The task is broken into three subtasks: A, B, and C. Upper
case letters represent errors, while lower case letters represent
successes.

Figure 1: An HRA event tree.



B. HCR
The Human Cognitive Reliability (HCR) model developed

by Hannaman [5] is based on Rasmussen’s human behavior
model [6] and the simulation studies of Oak Ridge and General
Physics [7]. There are two hypotheses for this model: all
the behavior types of human actions can be classified into
skill-based, rule-based, and knowledge-based according to the
Rasmussen’s human behavior model; the probability of every
behavior error is only related to the proportion of permitted
time to execution time t/T1/2 and is approximated with
Weibull distribution [8], [9]

p = e−{
t/T1/2−γ

α }
β

(1)

T1/2 = T1/2, n× (1 + k1)× (1 + k2)× (1 + k3) (2)

where t is the time window. It represents the allowable time
in which the operator must take action to correctly resolve
the situation. T1/2 is the median response time. T1/2, n is the
nominal response time. k1, k2, k3 are Performance Shaping
Factor (PSF) coefficients. A PSF is an aspect of the human’s in-
dividual characteristics, environment, organization, or task that
specifically decrements or improves human performance, thus
respectively increasing or decreasing the likelihood of human
error [10]. k1 represents the operator experience, k2 represents
the stress level, k3 represents the quality of operator/plant
interface. α, β, γ are coefficients associated with the type of
predominant cognitive process. Values of parameters k1, k2, k3
and α, β, γ are given in Table I and Table II respectively.

k1: Operator experience
Advanced -0.22
Good 0
Insufficient 0.44
k2: Stress level
Serious emergency 0.44
Heavy workload/potential emergency 0.28
Excellent/normal conditions 0
Vigilance problem (very low stress) 0.28
k3: Quality of operator/plant interface
Excellent -0.22
Good 0
Sufficient 0.44
Poor 0.78
Extremely poor 0.92

Table I: PSF coefficients and their values.

Type of cognitive process α β γ
Skill 0.407 1.2 0.7
Rule 0.601 0.9 0.6
Knowledge 0.791 0.8 0.5

Table II: Behavior type parameters α, β, γ.

C. SPAR-H
Context-related HRA models are different from task-related

and time-related models. In task-related and time-related mod-
els, task and time are important in evaluating HEP value.
However, for context-related models, the context under which
the action takes place is important. For example, when an
accident occurs, the crews should response to the accident and
take some actions. The response of crews and their actions
depend on some context elements such as the training of crews,
the communication among crews, and the quality of man-
machine interface. Thus, the HEP in context-related models
is determined by influential context elements.

The Standardized Plant Analysis Risk-Human reliability
(SPAR-H) can be considered as a task-related or context-
related model because of the strong contextual influence of
PSFs involved in deriving the crew HEP. The SPAR-H model
will be presented here as a context-related model.

In SPAR-H [11], there is a diagnosis and action model
for crew and personnel responses to accident conditions. The
model consists of probabilities associated with diagnosis and
action. The HEP values are usually set to be 0.01 and 0.001
for diagnosis and actions. The effective HEP is made up of
these elements along with modifiers from the context.

For the case when the number of PSFs is less than 3, the
base HEP equals the diagnosis HEP or action HEP multiplied
by weighting factors defined in eight categories: available time,
stress/stressors, complexity, experience/training, procedures,
fitness for duty, and work processes. Table III shows these
PSFs, levels and multipliers for each PSF. Each category has
several levels. For example, in the case of experience/training,
there are 3 levels: low, nominal, and high. A weighting value
is allocated to each level. The final HEP is calculated by
multiplying the nominal HEP by the weighting factors. The
diagnosis HEP and action HEP are calculated in this manner.
The overall HEP is the sum of diagnosis HEP and action HEP.

HEP = NHEP × PSFcomposite (3)

For the case when the number of PSFs, for which the
weighting factor is greater than 1, is not less than 3, the base
HEP is given by the following formula

HEP =
NHEP × PSFcomposite

NHEP × (PSFcomposite − 1) + 1
(4)

where HEP is the effective error for either diagnostic or
action error; NHEP is the nominal HEP (0.01 for diagnosis
and 0.001 for action); PSFcomposite is the product of all PSFs.

PSF PSF level Multiplier
Available time Expansive time 0.01

Extra time 0.1
Nominal time 1
Barely adequate time 10
Inadequate time HEP=1.0

Stressors Nominal 1
High 2
Extreme 5

Complexity Nominal 1
Moderately complex 2
Highly complex 5

Experience/training High 0.5
Nominal 1
Low 3

Procedures Nominal 1
Available, but poor 5
Incomplete 20
Not available 50

Ergonomics/HMI Good 0.5
Nominal 1
Poor 10
Missing/misleading 50

Fitness for duty Nominal 1
Degraded fitness 5
Unfit HEP=1.0

Work processes Good 0.8
Nominal 1
Poor 2

Table III: SPAR-H PSFs, levels and multipliers for each PSF.



To take dependence into account, SPAR-H uses a defined
decision tree with the following headings: crew (same or differ-
ent), time (close or not close), location (same or different), and
cues (additional or no additional). The results of all pathways
are complete, high, moderate, low or zero dependency. A
dependency condition table equivalent to the decision tree has
been constructed. The user can follow the choices on the four
headings through the dependency condition table to arrive at
a level of dependency (zero to complete).

III. EXPERIMENT

In this section, the railway platform, the experimental
protocol, and the analysis of the experimental results are
detailed successively.

A. RCCS platform
RCCS is a Centralised Traffic Management System used

to manage the traffic. It is currently used on important lines
such as the Cambrian lines in United Kingdom and the high
speed train connection between Figueras (Spain) and Perpig-
nan (France). It provides complete railways traffic solutions
including expert functions like automatic conflict resolution,
automatic possession setting. It is used on complex networks
including mixed traffic, big stations and terminals.

Figure 2: RCCS Platform.
Fig. 2 shows the RCCS platform in Heudiasyc Laboratory.

The RCCS platform is composed of one server and four work-
stations, including two signaller workstations, a supervisor
workstation and a maintenance workstation. Fig. 3 shows the
complete server/client architecture on PC via Ethernet. There
are five servers in this architecture. The railway platform in
Fig. 2 is a simplification of the architecture in Fig. 3.

The RCCS provides the central control function of the
Channel Tunnel Rail Link (CTRL) rail traffic. It enables to
manage: the CTRL rail traffic, the route settings based on a
timetable, the delays and other incidents to be identified, the
reports linked to the rail traffic management to be edited.

Signaller tasks include train running monitoring and con-
trol, route setting (automatic and manual) management, pos-
sessions/isolations monitoring and control, emergency control
of the CTRL, alarm monitoring, incident and daily reporting.
Supervisor tasks include CTRL monitoring, signaller support
and assistance. Maintainer tasks include system monitoring,
parameter maintenance, system maintenance and configura-
tion.

B. Experimental protocol
The protocol was defined in order to evaluate the perfor-

mance of human operators, especially movement inspectors
and pointsmen, in railway systems.

Figure 3: Architecture of RCCS Platform.

Five experimental subjects participated in the experiments.
Because of the considerable amount of time spent by each
subject, it is not practical to perform experiments by more
subjects. Significant parameters were evaluated by the exper-
iments. Before the experiments, each subject was trained to
detect six representative types of failures:
• Points end detection is out of correspondence. Out

of correspondence means that a piece of equipment
was required to do a task, but the indication coming
back shows that it did not perform the task. When
this term is used to refer to a point, it means that the
point was required to be controlled normal but was
detected to be reverse, or was required to be controlled
reverse but was detected to be normal. Fig. 4 illustrates
the scenario where the point 2055 is detected to be
out of correspondence. The yellow circle indicates the
position of point 2055. When a point is detected to be
out of correspondence, it twinkles. This kind of failure

Figure 4: Points end detection is out of correspondence.

can be detected by the maintenance workstation. The
corresponding message is shown as follows:

It means the failure is located at STRA (Stratford).
The failed equipment is the point 2055. The type of
failure is that points end detection is out of correspon-
dence. For those points which have swing noses, the
second message will also appear on the maintenance
workstation. For those points which have fixed noses,
only the first message appears on the maintenance
workstation.

• Interval track circuit fails. Track circuits can fail due
to many reasons, for example, a short circuit caused
by water. Fig. 5 illustrates the scenario where the
interval track circuit PAM fails. This kind of failure



Figure 5: Interval track circuit failure.

can be detected by the maintenance workstation. The
corresponding message is shown as follows:

It means the maintainer detects a track circuit equip-
ment defect. However, this message may appear not
only due to the track circuit failure but also due to the
departure of a train. Thus, the experimental subject is
always demanded to locate the involved track circuit
on the detailed view of the signaller workstation and
confirm the reason of the appearance of the message.
The shown message means the failure is located at ST
PA (St Pancras). The failed equipment is the interval
track circuit PAM. The type of failure is track circuit
equipment defect.

• Diamond Crossing Track circuit fails. Fig. 6 illustrates
the scenario where the diamond crossing track circuit
2022 2023 fails. This kind of failure can be detected

Figure 6: Diamond Crossing Track circuit failure.

by the maintenance workstation. The corresponding
message is shown as follows:

It means the failure is located at ST PA (St Pancras).
The failed equipment is the diamond crossing track
circuit 2022 2023 (the position is expressed by the
two points included in the diamond crossing track).
The type of failure is track circuit equipment defect.

• Overhead elementary section (OES) is powered off.
Electrical zones transmit electrical energy to trains by
overhead lines. Fig. 7 illustrates the scenario where
the overhead elementary section 1704B is powered
off. This kind of failure can be detected by the
maintenance workstation. The corresponding message
is shown as follows:

It means the failure is located at ST PA (St Pancras).
The failed equipment is the overhead elementary sec-

Figure 7: Overhead elementary section is powered off.

tion 1704B. The type of failure is that overhead ele-
mentary section status is off. However, the information
in red is updated so quickly that it’s hard to be detected
by eyes.

• Absolute Stop Marker Route Failure Control forces a
traffic light to be red when a traffic light fails or the
following track is occupied or broken. Fig. 8 illustrates
the scenario where the traffic light AF121 is turned red
due to the Absolute Stop Marker Route Failure. This

Figure 8: Absolute Stop Marker Route Failure.

kind of failure can be detected by the maintenance
workstation. The corresponding message is shown as
follows:

It means the failure is located at EBBS (Ebbsfleet).
The traffic light AF121 is forced to be red. The
message is that marker status is closed. However, the
message in red is updated so quickly that it’s hard to
be detected by eyes.

• Emergency Replacement Switch is on. When an emer-
gency replacement is required, a switch positioned
in the zone of emergency replacement forces a row
of traffic lights to be red, so that no train can pass.
Fig. 9 illustrates the scenario where the emergency
replacement switch DSR is on. This switch controls
the traffic lights AF721, AF723, AF725, AF727, and
AF729. This kind of failure can be detected by the
maintenance workstation. The corresponding message
is shown as follows:



Figure 9: Emergency Replacement Switch is on.

It means the failure is located at STRA (Stratford).
The emergency replacement switch DSR is turned
on. DSR switch forces traffic lights AF721, AF723,
AF725, AF727, and AF729 to be red. The message is
that switch status is on. However, the message in red
is updated so quickly that it’s hard to be detected by
eyes.

Four variables were included in the protocol in order
to evaluate the performance of the experimental subjects in
different traffic supervision configurations.

• The first variable is the knowledge level of a subject.
The frame of Knowledge is {0,1,2}. Three levels are
set to express the knowledge level of experimental
subjects: inadequate (0), medium (1), adequate (2).
The knowledge level is decided by the training before
the experiments and the knowledge acquired from
other ways. In our research, the knowledge level is
set for the subjects involved in our experiment, not
for real experts in railway systems.

• The second variable is the fatigue. The frame of
Fatigue is {0,1}. A subject may be in tired (1) or
not tired (0) state.

• The third variable is the workload. When the number
of trains increases, some kinds of failures are more
difficult to be detected. In this case, the workload
increases. The frame of Workload is {0,1}. ‘0’
means there is less workload, ‘1’ means there is more
workload.

• The fourth variable is the experience. Each time when
a subject finishes a test, his/her experience about the
platform increases. This may improve his/her per-
formance. The frame of Experience is {0,1,2,3}. 4
levels are set to express that each subject performances

four tests in total.
The performance of a subject is evaluated by four param-

eters: the detection time, the rate of correct detection, the rate
of false detection, and the rate of non-detection. The detection
time of an operator is defined as the difference of the time
when a failure occurs and the time when the operator detects
and interprets that failure. For each failure, the detect result
may be correct, false or non-detected. Correct detection means
that the operator detects a failure and interprets it correctly.
False detection means that the operator detects a failure but
interprets it incorrectly, or the operator detects a nonexistent
failure. Non detection means that the operator misses a failure.
When we calculate the rates for each subject, because a subject
may detect nonexistent failures, the total number of recorded
failures may exceed the predefined number of failures.

4 scenarios were developed to implement all the six kinds
of failures. The differences among scenarios lie in the number
of each kind of failures and the time when failures occur. Each
scenario lasts 30 minutes. Each subject has to perform the
experiments in all the 4 scenarios.

Training which presents all types of failures will be given
to subjects before the experiments. Experimental subjects do
not know how many failures there are and the time when
they occur. Each failure will be repaired automatically after 2
minutes. Experimental subjects should detect failures, locate
failures in the detailed view of signaller workstation and
distinguish which kind of failures they are. The corresponding
time when subjects detect failures will be recorded.

C. Experimental results
As said before, each subject has to perform the experiments

in all the 4 scenarios. Thus, each subject has four performance
results. Because each failure will be repaired after 2 minutes,
for those non-detected or falsely detected failures, the detection



Scenario Detection
time (sec)

Rate of correct
detection

Rate of false
detection

Rate of non-
detection

Subject1 1 Knowledge = {1}, Fatigue={0}, Workload={0}, Experience={0} 76.7 0.6 0.2 0.2
Subject1 2 Knowledge = {1}, Fatigue={0}, Workload={0}, Experience={1} 62.4 1 0 0
Subject1 3 Knowledge = {1}, Fatigue={0}, Workload={1}, Experience={2} 64.4 0.8 0 0.2
Subject1 4 Knowledge = {1}, Fatigue={0}, Workload={1}, Experience={3} 63.3 0.8 0.1 0.1
Subject2 1 Knowledge = {0}, Fatigue={0}, Workload={0}, Experience={0} 101.1 0.455 0.09 0.455
Subject2 2 Knowledge = {0}, Fatigue={0}, Workload={0}, Experience={1} 102.3 0.364 0.091 0.545
Subject2 3 Knowledge = {0}, Fatigue={0}, Workload={1}, Experience={2} 66.7 0.7 0 0.3
Subject2 4 Knowledge = {0}, Fatigue={0}, Workload={1}, Experience={3} 71.2 0.8 0 0.2
Subject3 1 Knowledge = {2}, Fatigue={0}, Workload={0}, Experience={0} 58.1 0.727 0.091 0.182
Subject3 2 Knowledge = {2}, Fatigue={0}, Workload={0}, Experience={1} 63.9 0.727 0.091 0.182
Subject3 3 Knowledge = {2}, Fatigue={0}, Workload={1}, Experience={2} 62.6 0.9 0 0.1
Subject3 4 Knowledge = {2}, Fatigue={1}, Workload={1}, Experience={3} 79.4 0.636 0.091 0.273
Subject4 1 Knowledge = {1}, Fatigue={1}, Workload={0}, Experience={0} 76.5 0.636 0.091 0.273
Subject4 2 Knowledge = {1}, Fatigue={1}, Workload={0}, Experience={1} 73.9 0.7 0 0.3
Subject4 3 Knowledge = {1}, Fatigue={0}, Workload={1}, Experience={2} 55.5 0.8 0 0.2
Subject4 4 Knowledge = {1}, Fatigue={0}, Workload={1}, Experience={3} 66.8 0.9 0 0.1
Subject5 1 Knowledge = {0}, Fatigue={0}, Workload={0}, Experience={0} 83.8 0.6 0 0.4
Subject5 2 Knowledge = {0}, Fatigue={0}, Workload={0}, Experience={1} 85.2 0.6 0 0.4
Subject5 3 Knowledge = {0}, Fatigue={0}, Workload={1}, Experience={2} 77.4 0.7 0 0.3
Subject5 4 Knowledge = {0}, Fatigue={0}, Workload={1}, Experience={3} 59.3 0.8 0.1 0.2

Table IV: Experimental results of 5 subjects.

time is set to be 2 minutes. The average of detection times of
a subject in a scenario is regarded as the detection time of the
subject in that scenario. Table IV shows the simulation results
of the five subjects.

Compared to the real environment, the detection times
are relatively unrealistic in our experiments because of the
following reasons:

• Subjects know that failures will occur in each scenario.
In real world, the occurrence of failures is unknown.

• Each scenario lasts only 30 minutes. In real world, the
operators work more than 30 minutes.

• The number of kinds of failures is limited to 6. In real
world, there are much more kinds of failures.

• Subjects are only required to detect failures. In real
world, some corresponding actions need to be taken
simultaneously.

Some conclusions can be yielded from the experimental
result:

• From the results of the five subjects, we find that the
training influences really the performance of subjects.

• As the experience of each subject increases, the per-
formance increases at a certain extent.

• According to the performance of subject 3, fatigue
may strongly influence the performance of subjects.

• The workload related to the number of trains does not
have a significant impact on the performance of the
majority of experimental subjects. The reason may be
that the difference between the two levels of workload
is not large enough to influence the performance of
subjects.

D. Analysis of the result by the THERP + HCR model
Facing a failure, the reaction procedure of a subject con-

tains three steps: detection, diagnosis, and action. Therefore,
the whole task of this experiment is broken into three subtasks:
detection, diagnosis, and action. There are many HRA models
in the literature. In this work, we choose the THERP model
which is used to analyze the task-related experiment. Fig. 10
shows the HRA event tree of the experiment. The overall HEP

is the sum of the HEPs of the three subtasks in the event tree:

HEP = p1 + p2 + p3 (5)

where p1 is the HEP of detection, p2 is the HEP of diagnosis,
and p3 is the HEP of action.

Figure 10: HRA event tree of the experiment.
Because the detection procedure is time-related, the HEP

of detection is assessed by the HCR model. In the HCR model,
we find the following formula to evaluate the HEP of detection:

p1 = e−{
t/T1/2−γ

α }
β

(6)

The HEPs of diagnosis and action are

p2 =
pF

pC + pF
p3 = pN

(7)

where pC is the rate of correct detection, pF is the rate of
false detection, and pN is the rate of non-detection.

In the experiment, t = 120s (each failure lasts 2 minutes),
T1/2, n = 30s (we suppose that the average time that an
expert detects failures is 30 seconds). Because our experiment
is based particularly on the skill and the knowledge, we use
the average values from the second and fourth rows in Table
II as the values of α, β, γ in our model: α = 0.599, β = 1,
and γ = 0.6.

Table V lists the parameters k1, k2, k3 and the response
time T1/2 calculated by Equation 2 for each subject. Table
VI gives the HEP of each subject obtained by the THERP +
HCR model. Because all the subjects are not experts in railway
systems, their HEPs are relatively high in this experiment. As
the HEPs are too high for railway systems, a real expert will
be invited to do the experiment.



Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
k1 = 0 k1 = 0.44 k1 = −0.22 k1 = 0 k1 = 0.44
k2 = 0.28 k2 = 0.28 k2 = 0.28 k2 = 0.28 k2 = 0.28
k3 = 0 k3 = 0 k3 = 0 k3 = 0 k3 = 0
T1/2 = 38.4s T1/2 = 55.3s T1/2 = 30.0s T1/2 = 38.4s T1/2 = 55.3s

Table V: Parameters and execution time of each subject.
Subject Nb Scenario Mean HEP
S1 1 p1=0.0148 p2=0.25 p3=0.2 HEP=0.4648

2 p1=0.0148 p2=0 p3=0 HEP=0.0148
3 p1=0.0148 p2=0 p3=0.2 HEP=0.2148
4 p1=0.0148 p2=0.1111 p3=0.1 HEP=0.2259 HEPS1=0.2301

S2 1 p1=0.0727 p2=0.165 p3=0.455 HEP=0.6927
2 p1=0.0727 p2=0.2 p3=0.545 HEP=0.8177
3 p1=0.0727 p2=0 p3=0.3 HEP=0.3727
4 p1=0.0727 p2=0 p3=0.2 HEP=0.2727 HEPS2=0.5390

S3 1 p1=0.0034 p2=0.1112 p3=0.182 HEP=0.2966
2 p1=0.0034 p2=0.1112 p3=0.182 HEP=0.2966
3 p1=0.0034 p2=0 p3=0.1 HEP=0.1034
4 p1=0.0034 p2=0.1252 p3=0.273 HEP=0.4016 HEPS3=0.2746

S4 1 p1=0.0148 p2=0.1252 p3=0.273 HEP=0.413
2 p1=0.0148 p2=0 p3=0.3 HEP=0.3148
3 p1=0.0148 p2=0 p3=0.2 HEP=0.2148
4 p1=0.0148 p2=0 p3=0.1 HEP=0.1148 HEPS4=0.2644

S5 1 p1=0.0727 p2=0 p3=0.4 HEP=0.4727
2 p1=0.0727 p2=0 p3=0.4 HEP=0.4727
3 p1=0.0727 p2=0 p3=0.3 HEP=0.3727
4 p1=0.0727 p2=0.1111 p3=0.2 HEP=0.3838 HEPS5=0.4255

Table VI: HEP of each subject obtained by the THERP + HCR model.

E. Analysis of the result by the THERP + SPAR-H model
In this subsection, we use another classical HRA model to

analyze the experimental result. The whole task is also broken
into three subtasks: detection, diagnosis, and action. The same
as the THERP + HCR model, the overall HEP in THERP +
SPAR-H model is

HEP = p1 + p2 + p3 (8)

where p1 is the HEP of detection, p2 is the HEP of diagnosis,
and p3 is the HEP of action.

In this model, the HEP of detection reflects the probability
that an operator does not detect a failure. Thus, it is computed
by

p1 = pN (9)

where pN is the rate of non-detection.
The SPAR-H model is used to evaluate the HEPs of diag-

nosis and action influenced by contextual elements. According
to Eq. 3, we have

p2 = NHEPdiag × PSFcomposite (10)
p3 = NHEPaction × PSFcomposite (11)

where NHEPdiag = 0.01, NHEPaction = 0.001. Table
VII shows all the PSFs and their levels of each subject in 4
scenarios. For certain PSFs, a subject may have different levels
in the 4 scenarios. The corresponding number of scenario is
given in the parentheses after the level. Table VIII gives the
HEP of each subject obtained by the THERP + SPAR-H model.
Because all the subjects are not experts in railway systems,
their HEPs are relatively high in this experiment.

F. Comparison
Table IX lists the HEPs of each experimental subject

calculated by the above two methods. Though the results of
the two methods are different, we find some similarities. The

THERP + HCR THERP + SPAR-H
HEPS1 0.2301 0.1415
HEPS2 0.5390 0.4245
HEPS3 0.2746 0.1862
HEPS4 0.2644 0.2568
HEPS5 0.4255 0.3745

Table IX: HEP of each subject obtained by the two methods.

HEPs of subject 2 and subject 5 are much larger than the
HEPs of other subjects. The HEPs of the other three subjects
do not have large difference. This is because that the subject
2 and the subject 5 are those who have inadequate knowledge,
while the other three subjects are those who have medium
or adequate knowledge. In fact, the subject 3 is the one
who has adequate knowledge. The other two are those who
have medium knowledge. However, from the results of the
two methods, the HEPs of these three subjects have no big
difference. This proves that when the subjects have medium or
adequate knowledge, knowledge is no longer the factor who
has the biggest influence on HEP, and other factors become
also important.

IV. CONCLUSION

As shown by the statistics of the Federal Railroad Ad-
ministration Office of Safety Analysis [1], a large amount of
accidents in railway transport are caused by human errors.
Although human factors are not taken into account in railway
standards defining RAMS requirements such as EN50126 [12],
the necessity of taking human errors into account in railway
accidents analysis is an idea widely accepted by all the experts.

The railway standards provide nevertheless a non-
exhaustive list of human factors that may have an impact
on RAMS parameters of systems. In this paper, an experi-
ment was designed to evaluate the HEP of human operators,
especially movement inspectors and pointsmen, in railway
systems. Currently, the three subtasks of human operation are



Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Available time Nominal Nominal Extra Nominal Nominal
Stressors Nominal Nominal Nominal Nominal Nominal
Complexity Nominal(1,2) Nominal(1,2) Nominal(1,2) Nominal(1,2) Nominal(1,2)

Moderately(3,4) Moderately(3,4) Moderately(3,4) Moderately(3,4) Moderately(3,4)
Experience/training Nominal Low High Nominal Low
Procedures Nominal Nominal Nominal Nominal Nominal
Ergonomics/HMI Nominal Nominal Nominal Nominal Nominal
Fitness for duty Nominal Nominal Nominal(1,2,3) Nominal(3,4) Nominal

Degraded(4) Degraded(1,2)
Work processes Nominal Nominal Nominal Nominal Nominal

Table VII: PSFs of each subject.
Subject Nb Scenario Mean HEP
S1 1 p1=0.2 p2=0.01 p3=0.001 HEP=0.211

2 p1=0 p2=0.01 p3=0.001 HEP=0.011
3 p1=0.2 p2=0.02 p3=0.002 HEP=0.222
4 p1=0.1 p2=0.02 p3=0.002 HEP=0.122 HEPS1=0.1415

S2 1 p1=0.455 p2=0.03 p3=0.003 HEP=0.488
2 p1=0.545 p2=0.03 p3=0.003 HEP=0.578
3 p1=0.3 p2=0.06 p3=0.006 HEP=0.366
4 p1=0.2 p2=0.06 p3=0.006 HEP=0.266 HEPS2=0.4245

S3 1 p1=0.182 p2=0.0005 p3=0.00005 HEP=0.18255
2 p1=0.182 p2=0.0005 p3=0.00005 HEP=0.18255
3 p1=0.1 p2=0.001 p3=0.0001 HEP=0.1011
4 p1=0.273 p2=0.005 p3=0.0005 HEP=0.2785 HEPS3=0.1862

S4 1 p1=0.273 p2=0.05 p3=0.005 HEP=0.328
2 p1=0.3 p2=0.05 p3=0.005 HEP=0.355
3 p1=0.2 p2=0.02 p3=0.002 HEP=0.222
4 p1=0.1 p2=0.02 p3=0.002 HEP=0.122 HEPS4=0.2568

S5 1 p1=0.4 p2=0.03 p3=0.003 HEP=0.433
2 p1=0.4 p2=0.03 p3=0.003 HEP=0.433
3 p1=0.3 p2=0.06 p3=0.006 HEP=0.366
4 p1=0.2 p2=0.06 p3=0.006 HEP=0.266 HEPS5=0.3745

Table VIII: HEP of each subject obtained by the THERP + SPAR-H model.

dependent. In the future, we will deal with the independence
and mutual exclusion of these subtasks. A possible perspective
is to propose a formal quantitative model of human factors
using importance measures in order to integrate it into a global
model of the accident risk analysis.
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