
HAL Id: hal-01149777
https://hal.science/hal-01149777

Submitted on 13 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPU Implementation of the Branch and Bound method
for knapsack problems

Didier El Baz, Mohamed Esseghir Lalami

To cite this version:
Didier El Baz, Mohamed Esseghir Lalami. GPU Implementation of the Branch and Bound method
for knapsack problems. 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, May 2012, Shanghai, China. pp.1763 - 1771, �10.1109/IPDPSW.2012.219�.
�hal-01149777�

https://hal.science/hal-01149777
https://hal.archives-ouvertes.fr

GPU Implementation of the Branch and Bound method for knapsack problems

Mohamed Esseghir Lalami, Didier El-Baz

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Université de Toulouse, LAAS, F-31400 Toulouse, France

Email: mlalami@laas.fr elbaz@laas.fr

Abstract—In this paper, we propose an efficient imple-
mentation of the branch and bound method for knapsack
problems on a CPU-GPU system via CUDA. Branch and
bound computations can be carried out either on the CPU
or on a GPU according to the size of the branch and bound
list. A better management of GPUs memories, less GPU-
CPU communications and better synchronization between GPU
threads are proposed in this new implementation in order to
increase efficiency. Indeed, a series of computational results is
displayed and analyzed showing a substantial speedup on a
Tesla C2050 GPU.

Keywords-GPU computing, hybrid computing, CUDA,
branch and bound method, knapsack problems, combinatorial
optimization.

I. INTRODUCTION AND RELATED WORKS

Initially developed for real time and high-definition 3D

graphic applications, Graphics Processing Units (GPUs)

have gained recently attention for High Performance Com-

puting applications. Indeed, the peak computational capa-

bilities of modern GPUs exceeds the one of top-of-the-line

central processing units (CPUs). GPUs are highly parallel,

multithreaded, manycore units.

In November 2006, NVIDIA introduced, Compute Unified

Device Architecture (CUDA), a technology that enables

users to solve many computationally intensive or complex

problems on their GPU cards.

In this paper, we consider an important class of integer

programming problems, i.e. Knapsack Problems (KP). We

propose an efficient approach based on multithreading in

order to implement the branch and bound algorithm on a

CPU-GPU system via CUDA.

Knapsack problems occur in many domains like logistics,

manufacturing, finance and telecommunications; KP occur

also very often as subproblems of hard combinatorial opti-

mization problems like multidimensional knapsack problems

(see for example [1] - [4]). The knapsack problem is among

the most studied discrete optimization problems; it is also

one of the simplest prototypes of integer linear programming

problems.

Many parallel algorithms have been proposed for KP (see

[5] - [7]). In particular, implementations on SIMD machines

have been performed on a 4K processor ICL DAP (see [8]),

a 16K Connection Machine CM-2 (see [9] and [10]) and a

4K MasPar MP-1 machine (see [10]).

We are presently developing a series of parallel codes on

GPUs in order to solve difficult combinatorial optimization

problems like problems of the knapsack family. These codes

will be combined in order to provide efficient parallel hybrid

methods. In [11], we have proposed an implementation of

the dynamic programming method for KP on a CPU/GPU

system via CUDA. Experiments carried out on a CPU with 3

GHz Xeon Quadro Intel processor and GTX 260 GPU have

shown substantial speedup. This work was further extended

in [12], where we have proposed an implementation via

CUDA of the dynamic programming method on multi GPU

architectures. This last solution is well suited to the case

where CPUs are connected to several GPUs; it is also

particularly efficient.

In [13], we have proposed a first parallel implementation

of the branch and bound algorithm on a CPU-GPU system

via CUDA. Experiments carried out on a system with a

3 Ghz Xeon Quadro INTEL processor and a Tesla C2050

GPU have shown a speedup of 9 as compared with results

obtained on a single core of the CPU. In this paper, we

propose a different hybrid implementation of the branch

and bound method via CUDA. A better management of

GPUs memories, less GPU-CPU communications and better

synchronization between GPU threads are presented in this

new implementation. This new implementation permits one

to obtain a speed up twice as much as in our previous work.

We note that we have also proposed parallel Simplex

methods that run on a single GPU or several GPUs (see [14]

and [15]). These codes are particularly interesting when one

wants for example to compute bounds of knapsack problems.

Finally, we refer to [16], for a study on parallel local search

methods for combinatorial optimization problems.

The use of CPU-GPU systems is challenging so as to

reduce drastically the time needed to solve difficult combi-

natorial optimization problems and memory occupancy or to

obtain exact solutions that could not be obtained otherwise.

One of the difficulties with branch and bound methods is

that they often lead to irregular data structure (see [17]).

This last point is particularly challenging for computations

carried out on GPUs.

Section II deals with knapsack problem and branch and

bound method. The implementation of the branch and bound

method on a CPU-GPU system via CUDA is proposed in

Section III. We display and analyze computational results in

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.219

1763

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.219

1763

Figure 1. Branch-decision tree

Section IV. Section V presents some conclusions and future

work.

II. KNAPSACK PROBLEM AND BRANCH AND BOUND

METHOD

A. Problem formulation

Given a set of items i ∈ {1, ..., n}, with profit pi ∈ N
∗
+

and weight wi ∈ N
∗
+ and a knapsack with the capacity c ∈

N
∗
+, problem KP can be defined as follows:

(KP)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
n∑

i=1

pi.xi,

s.t.
n∑

i=1

wi.xi ≤ c,

xi ∈ {0, 1}, i ∈ {1, ..., n}.

(1)

To avoid any trivial solution, we assume that we have:

⎧⎪⎨
⎪⎩
∀i ∈ {1, ..., n}, wi ≤ c,
n∑

i=1

wi > c.

These conditions ensure respectively that each item i should

fit into the knapsack and the overall weight sum of the

different items exceeds the knapsack capacity.

B. Branch and bound method

The branch and bound method is a general method

that permits one to find exact optimal solution of vari-

ous optimization problems like discrete and combinatorial

optimization problems (see [3] and [4]). It is based on

enumeration of all candidate solutions and pruning of large

subsets of candidate solutions via computation of lower and

upper bounds of the criterion to optimize (see Figure 1).

We concentrate here on breadth-first search strategy. We

assume that items are sorted according to decreasing profit

per weight ratio.

1) State notation: At each step of the branch and bound

method, the same branching and bounding tasks are carried

out on a list of states called also nodes. Let k denote the

index of the current item relative to a branching step. We

denote by Nk
e the set of items in the knapsack at step k

for a given node e. A node e is usually characterized by a

tuple (we, pe, Xe, Ue, Le) where we represents the weight

of node e, pe represents the profit of the node, Xe is

the solution subvector associated with node e, Ue and Le,
respectively, are an upper bound and a lower bound of the

node, respectively. We have:

we =
∑
i∈Nk

e

wi, pe =
∑
i∈Nk

e

pi.

The so-called Dantzig bound (see [18]), derived from the

solution of the continuous knapsack problem is a classical

upper bound; it is given as follows:

Ue = pe +

se−1∑
i=k+1

pi +

⌊
c.
pse
wse

⌋
,

where se is the so-called slack variable such that

se−1∑
i=k+1

wi ≤ c− we <

se∑
i=k+1

wi,

(we note that one can compute index se for a node e and item

k+1 via a greedy algorithm applied to knapsack of capacity

c− we) and c is the residual capacity given by

c = c− we −
se−1∑
i=k+1

wi.

Classically, lower bound of a node can be obtained via

a feasible solution of the knapsack problem with {0, 1}
variables. For example, a good lower bound Le can be

computed via a greedy algorithm and selection of all items

after k and before slack variable, se, since we have assumed

that items are sorted according to decreasing price per

weight ratio. Hence, we have:

Le = pe +

se−1∑
i=k+1

pi +
n∑

i=se+1

pi.xi.

where xi = 1 if wi ≤ c−
i−1∑

j=se+1

wj .xj

For the sake of simplicity and efficiency, the following

representation of a given node e will be used in the sequel:

(ŵe, p̂e, se, Ue, Le), where

ŵe = we +

se−1∑
i=k+1

wi,

17641764

p̂e = pe +

se−1∑
i=k+1

pi.

and

Ue = p̂e +

⌊
c.
pse
wse

⌋
.

We note that we have:

Le = p̂e +
n∑

i=se+1

pi.xi.

where xi = 1 if wi ≤ c−
i−1∑

j=se+1

wj .xj

Obtaining this way the bounds Ue and Le is more efficient

since bound computation is time consuming in the branch

and bound method.

2) Branch and bound procedure: If k < se, then a node

generates two sons at step k:

• a node with xk = 0, ŵe = ŵe − wk and p̂e = p̂e −
pk; in this case, one has to compute the new slack

variable; moreover, the upper and lower bounds Ue and

Le, respectively, are updated according to the value of

p̂e.
• a node with xk = 1 (in this case, the son is similar

to its father that is already in the list, in particular, the

upper and lower bounds do not change; thus, no new

node is created).

The case where k = se yields only one son with xk = 0,
ŵe = ŵe−wk, p̂e = p̂e−pk and se = se+1. Indeed clearly,

the k-th item cannot be packed into the knapsack.

Pruning a subset of candidate solutions is then done via

comparison of the best current lower bound with the upper

bound of each node. We denote by L̄ the best lower bound.

If we have Ue ≤ L̄, then node e can be discarded.

III. IMPLEMENTATION ON A CPU-GPU SYSTEM

In this Section, we present our recent contribution to

the implementation of the branch and bound method on

a CPU-GPU system. We shall see in Section IV that the

improvements we propose in this paper have permitted us

to increase substantially speedup as compared with the one

obtained in our previous work (see [13]).

We begin this Section with a brief description of the GPU

architecture.

A. GPU architecture

NVIDIA’s GPUs are SIMT (Single-Instruction, Multiple-

Threads) architectures, i.e. the same instruction is executed

simultaneously on many data elements by the different

threads. They are especially well-suited to address problems

that can be expressed as data-parallel computations.

As shown in Figure 2, a grid is a set of blocks where each

block contains up to 1024 threads. A grid is launched via a

single CUDA program, the so-called kernel. The execution

starts with a host execution, i.e. CPU execution. When a

kernel function is invoked, the execution is moved to the

device, i.e. the GPU. When all threads of a kernel have com-

pleted their execution, the corresponding grid terminates,

the execution continues on the host until another kernel is

invoked. When a kernel is launched, each multiprocessor

processes one block by executing threads in group of 32

parallel threads named warps. Threads composing a warp

start together at the same program address, they are never-

theless free to branch and execute independently. As blocks

terminate, new blocks are launched on idle multiprocessors.

With CUDA 3.0, threads of different blocks cannot commu-

nicate explicitly but can share their results by means of a

global memory.

If threads of a given warp diverge when executing a

data-dependent conditional branch, then the warp serially

executes each branch path. This may lead to poor efficiency.

Threads have access to data from multiple memory spaces

(see Figure 2). We can distinguish two main types of

memory spaces.

• Read-only memories: these memories are the constant
memory for constant data used by the process and

texture memory optimized for 2D spatial locality. These

two memories are accessible by all threads.

• Read and write memories: these memories are the

global memory space accessible by all threads, the

shared memory space accessible only by threads in

the same block with high bandwidth; finally each

thread has access to its own registers and private local
memory space.

In order to have a maximum bandwidth for the global

memory, memory accesses have to be coalesced. Indeed,

global memory access by all threads within a half-warp, i.e.

a group of 16 threads, is done in one or two transactions if

the following conditions are satisfied.

• The size of the words accessed by the threads is 4, 8,

or 16 bytes.

• All 16 words lie

– in the same 64-bytes segment, for words of 4 bytes;

– in the same 128-bytes segment, for words of 8

bytes;

– in the same 128-bytes segment for the first 8 words

and in the following 128-bytes segment for the last

8 words, for words of 16 bytes.

• Threads access the words in sequence, i.e. the k-th

thread in the half-warp has access to the k-th word.

Otherwise, a separate memory transaction is issued for each

thread, which degrades significantly the overall processing

time. For further details on the GPU architectures and how

to optimize the codes, reference is made to [19].

17651765

Figure 2. Thread and memory hierarchy in GPUs

B. Parallel implementation

Principle of the implementation

Bound computation is particularly time consuming

in the branch and bound method. This task can be

efficiently parallelized on the device. Branching can also

be implemented efficiently on the device. The parallel

implementation we propose can be summarized as follows

(see also Figure 3).

Host

• Branch and bound computations when the size of the

list is small.

• Transfer of the current list of nodes to the device if the

number of nodes is greater than a given threshold.

• Launching branching operations on device.

• Launching bound computations on device.

• Launching labeling on device.

• Retrieval of the table of labeled nodes, denoted by

Label.
• Assignment of substitution addresses in the table Label

and transfer to device.

Device

• Branching operations (Kernel 1).

• Bound computations (Kernel 2).

• Computation of the best lower bound L̄.

Figure 3. Branch and bound algorithm on a CPU-GPU system

• Nonpromising nodes labeling.

• Concatenation of the list of nodes via elimination of

nonpromising nodes.

In the sequel, we detail the different tasks carried out on

the host and device, respectively. We begin by the tasks

implemented on the device.

1) Computations on the device: each thread in the grid

of blocks performs computation on only one node of the

branch and bound list, so as to obtain coalesced memory

access.

The table of items that contains weights w and profits

p is stored in the texture memory in order to reduce the

memory latency. As a consequence, these variables will not

be referred to as arguments in the different kernels presented

in the sequel; this will simplify algorithmic notation.

Branching
Kernel 1 corresponds to the branching phase carried out

on the device. The e-th thread branches on the node e and

generates two sons: a son with xk = 0 and son with xk = 1.

In practice, only one node is created in the list of nodes (see

Figure 4); this node corresponds to the son with xk = 0. We

note that it is no need to create son with xk = 1, since a

similar node which corresponds to its father is already in

the list of nodes. We have then to consider two cases.

• In the case where k < se, the e-th thread computes the

value of (ŵe+q, p̂e+q, se+q) of the son with xk = 0. We

recall that the son with xk = 1 is already in the list.

• in the case where k = se, the slack variable of the son

17661766

with xk = 0 is updated as follows:

se+q = se + 1.

Moreover, node e with xk = 1 must be labeled as a

nonpromising node; this is done by assigning

Ue = 0.

In the Kernel 1, we note that the use of conditional

instruction if may lead to branch divergence within a

warp. However, only operations with registers are included

in the conditional part of this new version of our code

unlike operations of writing in global memory that were

used in our previous work. This permits us in particular to

be more efficient than with previous kernel proposed in [13].

Figure 4. List of nodes and memory accesses of GPU threads.

Kernel 1

global void Kernel 1(int *ŵ, int *p̂, int *s, int *U , int k,

int q)

{
int e = blockIdx.x * blockDim.x + threadIdx.x ;

int se = s[e], we = ŵ[e], pe = p̂[e], Ue = U [e];
if (k < se)

{
we = we - w[k];
pe = pe - p[k];
}

else

{

se = se + 1;

Ue = 0;

}
AtomicExch(& ŵ[e+ q], we);

AtomicExch(& p̂[e+ q], pe);

AtomicExch(& s[e+ q], se);

AtomicExch(& U [e], Ue);

}

Bound computation
The parallel bound computation procedure computes

bounds of new nodes, this is made via Kernel 2 which is a

loop of n−h iterations, where h = max {k, s} and s is the

first slack variable computed when the knapsack is empty.

At each new iteration, a new item is considered and the

current value of ŵj , p̂j , the lower bound Lj and the upper

bound Uj are updated. We note that the knapsack capacity

c is stored in the constant memory of the GPU; this permits

one to reduce memory latency.

When Kernel 2 is launched, the j-th thread updates (ŵj ,

p̂j , sj , Uj , Lj) at the i-th iteration if the i-th item has not

yet been considered by this node, i.e. if i ≥ sj . Then, we

can distinguish, in the Kernel 2, three main parts: the first

loop while, the second loop for and finally the third part

starting at the first atomic operation.

The first loop is used in order to update the tuple (ŵj , p̂j ,

sj , Uj) which is stored in the global memory of the GPU.

However, this loop makes use of conditional instructions

if that may lead to branch divergence within a warp.

If this conditional part would include computations and

accesses to global memory, then this could result in poor

efficiency. In order to reduce the effect of branch divergence,

we separate the computation part from the part related to

writing in global memory. This is done by adding new

variables what , phat, sj that are used in order to update

the tuple (ŵj , p̂j , sj) and that are stored in registers.

Also, in order to reduce the number of operations in the

conditional parts, Uj is computed concurrently between

threads in the third part of the kernel 2 (by the operation

phat = phat+(c−what)∗psj/wsj;). However, computing

the upper bound Uj requires weight and profit of the slack

variable sj and in the same warp, the value of sj will differ

between threads. Then, the access to this two data in the

texture memory, is non coalesced which results in a memory

latency. In order to avoid this memory access, two other

variables named wsj and psj, stored in registers, are used

to retrieve weight and profit of the slack variable sj in the

first part of kernel 2 since these two data are already in wi
and pi.
Thus, conditional parts include only computations on regis-

ters; as a result efficiency loss is reduced. The part related

to global memory write, i.e. updates of ŵj , p̂j , sj , Uj and

17671767

Lj is done in the end of Kernel 2 (the third part starting

with atomic functions). In order to ensure also that threads

of the same warp are concurrently run, the first loop while
is synchronized in the end of each iteration and all threads

of the same warp exit the loop at the same time when all

of them have already updated their tuple (ŵj , p̂j , sj) by

using the warp instruction (if(all(phat)) break;), since

phat was initialized to 0. Indeed, instruction all(phat)
evaluates phat for all threads of the warp and returns non-

zero if and only if phat evaluates to non-zero for all of them.

The second loop for is used to compute the lower bound

Lj . In practice this loop is bigger than the first one in terms

of number of iterations. Then unrolling this loop permits

one to improve by 10% the overall computing time of the

parallel branch and bound implementation. This is done by

including three While loops where the first one unrolls 100

times this loop for, the second one unrolls 10 times the

loop for and the last one loops the residual iterations until

i = n. Indeed, it is not possible to unroll directly the loop

for since the number of iterations is not known before the

compilation of the program.

We note that the lower bound Lj is obtained only in the

end of the procedure, i.e. at iteration n.

Kernel 2

global void Kernel 2 (int *ŵ, int *p̂, int *s, int *L, int

*U, int q, int h)

{
int j = blockIdx.x * blockDim.x + threadIdx.x + q;

int wj = ŵ [j], pj = p̂ [j], sj, = s [j];

int i = h, wi, pi, what, phat = 0, psj, wsj;

While (i ≤ n)

{
wi = w [i];
pi = p [i];
/* Compute what, phat, wsj, psj, sj which

are used to get the Upper bound Uj*/

if (i ≥ sj)

{
if (wj + wi ≤ c)
{
w = wj + wi;
p = pj + pi;
}

else if (phat == 0)

{
wsj = wi;
psj = pi;
what = wj;

phat = pj;

sj = i;

}
}
if (all(phat)) {break;}

syncthreads();

i = i+ 1;

}
for(;i ≤ n; i++)

{
wi = w [i];
pi = p [i];
/* Compute of the lower bound Lj*/

if (wj + wi ≤ c)
{
wj = wj + wi;
pj = pj + pi;
}

}
/* Update of the tuple (ŵj , p̂j , sj , Uj , Lj)

in the global memory of the GPU*/

AtomicExch(& ŵ[j], what);
AtomicExch(& p̂[j], phat);
AtomicExch(& s[j], sj);

phat = phat+ (c− what) ∗ psj/wsj;
AtomicExch(& U [j], phat);
AtomicExch(& L[j], pj);

}

Finding the best lower bound
The best lower bound L̄ is obtained in the GPU via

a reduction method making use of the atomic instruction

atomicMax applied to the table of lower bounds (see [20]).

Label of the nonpromising nodes in table Label
At this step, the size of the list of nodes is increased by

the number q of newly created nodes, i.e. q is updated by

taking a value which is twice as much as its previous value.

Then, we use a GPU kernel in order to label nonpromising

nodes. This kernel returns a table named Label. A node e is

considered to be nonpromising (NP) if Ue ≤ L̄ otherwise it

is promising (P). If a node e is nonpromising, then the table

element Label[e] is set to 0, otherwise, it is set to 1. In

the end of this step, the table Label is transfered to the CPU.

Substitution and concatenation in the list of nodes
When the table Label is retrieved, the elements Label[l]

set to zero at the previous step will contain the address

j of promising nodes located in the right part of the the

list of nodes, see Figure 5. Then, the substitution and the

concatenation step is done via a GPU kernel where a thread

l copies data (ŵj , p̂j , sj , Uj) of the promising node j in

tuple (ŵl, p̂l, sl, Ul). In the end of this step, the size of the

list is decreased by the number of nonpromising node. Then

if q < 192, the list is transfered to the CPU, otherwise a

17681768

new item is considered.

The two previous steps are used in order to avoid transfer

at each iteration of the whole list to the CPU. If the

number of nodes remains important (q ≥ 192), then the

GPU carries out the different steps on the list and only a

small size data communication (table Label) between the

GPU and CPU is needed at each iteration of the branch

and bound implementation. Also, since the three previous

steps are simple, the design of their corresponding Kernels

is facilitated.

Figure 5. Structure of the list of nodes and substitution of non promising
nodes

2) Computations on the host:

Branch and bound algorithm
If the size of the list is small, then it is not efficient

to launch the branch and bound computation kernels

on the device since the GPU occupancy would be very

small and computations on the device would not cover

communications between host and device. This is the

reason why the branch and bound algorithm is carried out

on the host in this particular context. We note that for a

given problem, the branch and bound computation phases

can be carried out several times on the host according to

the result of the pruning procedure. In this study, GPU

kernels are launched only when the size of the list, denoted

by q, is greater than 192 nodes (see Figure 3).

Assignment of substitution addresses to the table Label
This procedure starts after the table Label has been

transfered from the device to the host.

The elements of the table which are set to zero, i.e.

elements related to nonpromising nodes are replaced via an

iterative procedure that starts from the beginning of the table

Label. The different steps of the procedure are presented

below (see also Figure 5).

• Search in the table a non zero element Label[j] = 1
(corresponding to a promising node j) starting form the

end of the table.

• Copy the address j in the element Label[l] i.e.

Label[l] = j.

• Update the size of the list as follows :

q = j − 1.

IV. COMPUTATIONAL RESULTS

The CPU-GPU system considered in this study consists

of a DELL Precision T7500 Westmere with processor Quad-

Core Intel Xeon E5640, 2.66 GHz and 12 GB of main mem-

ory and NVIDIA Tesla C2050 GPU. The Tesla C2050 GPU,

which is based on the new-generation CUDA architecture

codenamed Fermi, has 3 GB DDR5 of memory and 448

streaming processor cores (1.15 GHz) that deliver a peak

performance of 515 Gigaflops in double precision floating

point arithmetic. The interconnection between the host and

device is done via a PCI-Express Gen2 interface. We have

used CUDA 3.2 for the parallel code and gcc for the serial

one.

We have carried out computational tests on randomly

generated correlated problems, i.e. difficult problems. The

problems are available at [21]. They present the following

features:

• wi, i ∈ {1, ..., n}, is randomly drawn in [1, 100],
• pi = wi + 10, i ∈ {1, ..., n},
• C = 1

2 .
n∑

i=1

wi.

For each size of problems, we display results we have

obtained for an average of ten instances. We have obtained

our best results with 192 threads per block.

Table I
TIME ON CPU AND CPU-GPU SYSTEM OF BRANCH AND BOUND

ALGORITHM

size n of the prob-
lems

time on CPU
(s)

time on
CPU-GPU
(s)

speedup

100 1.59 0.18 8.48
200 4.85 0.41 11.78
300 9.82 0.65 15.08
400 10.94 0.57 19.04
500 13.39 0.65 20.48

Table I displays computational times of sequential and

parallel branch and bound methods carried out on the

CPU and the CPU-GPU system, respectively. We see that

substantial speedup can be obtained by making use of the

Tesla C2050 GPU.

The proposed parallel implementation permits one to

reduce drastically the processing time. The more streaming

processor cores of the Tesla C2050 GPU are made available

for a given computation, the more threads are executed in

parallel and better is the global performance.

We note that the speedup increases with the size of the

problem and meets a level around 20. The speedup depends

greatly on the size and difficulty of the considered instances.

In particular, the best speedups have been obtained for

17691769

instances with great number of nodes. As a matter of fact,

the GPU occupancy is particularly important in this case

since few nodes are discarded.

The speedup obtained with this implementation is gener-

ally twice as much as the one in [13], where noncoalesced

global memory accesses may occur in conditional part of

codes, leading to poor efficiency.

We have also performed experiments for non correlated

problems that turn out to be easier. In this last case, pruning

is particularly important and thus sequential branch and

bound is very efficient. As a consequence, implementation

on a CPU-GPU system gives no speedup in this case since

most computations are performed on the CPU.

We consider the solution of hard problems of the knapsack

family, like multidimensional knapsack problems or knap-

sack sharing problems, to become possible in reasonable

time with the help of GPU architectures and combination of

parallel branch and bound and dynamic programming (see

[11] and [12]).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an implementation of

the branch and bound method on a CPU-GPU system via

CUDA. Computational results show that our approach is

efficient since we have obtained stable speedups around 20

for difficult knapsack problems. Our approach permits also

one to solve problems with size 500 without exceeding the

memory occupancy of the GPUs.

This work shows in particular the relevance of using CPU-

GPUs systems for solving difficult combinatorial optimiza-

tion problems like problems of the knapsack family.

In future work, we plan to consider the solution of very

large knapsacks problems via several GPUs. Indeed, we

believe that further speedup can be obtained on multi GPU

clusters.

We are currently parallelizing a series of methods for

integer programming problems like dynamic programming

and Branch and Bound. The combination of these parallel

methods will permit us to propose efficient hybrid com-

puting methods for difficult integer programming problems

like multidimensional knapsack problems, multiple knapsack

problems and knapsack sharing problems.

ACKNOWLEDGMENT

Dr Didier El Baz would like to thank NVIDIA for his

support through Academic Partnership.

REFERENCES

[1] V. Boyer, D. El Baz, and M. Elkihel, “Heuristics for the 0-
1 multidimensional knapsack problem,” European Journal of
Operational Research, vol. 199, issue 3, pp. 658–664, 2009.

[2] B. L. Dietrich and L. F. Escudero, “More coefficient reduction
for knapsack-like constraints in 0-1 programs with variable
upper bounds,” IBM T.J. Watson Research Center, vol. RC-
14389,Yorktown Heights (NY), 1989.

[3] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, 2004.

[4] S. Martello and P. Toth, Knapsack Problems - Algorithms and
Computer Implementations. Wiley & Sons, 1990.

[5] D. El Baz and M. Elkihel, “Load balancing methods and
parallel dynamic programming algorithm using dominance
technique applied to the 0-1 knapsack problem,” Journal of
Parallel and Distributed Computing, vol. 65, pp. 74–84, 2005.

[6] D. C. Lou and C. C. Chang, “A parallel two-list algorithm
for the knapsack problem,” Parallel Computing, vol. 22, pp.
1985–1996, 1997.

[7] T. E. Gerash and P. Y. Wang, “A survey of parallel algorithms
for one-dimensional integer knapsack problems,” INFOR, vol.
32(3), pp. 163–186, 1993.

[8] G. A. P. Kindervater and H. W. J. M. Trienekens, “An
introduction to parallelism in combinatorial optimization,”
Parallel Computers and Computations, vol. 33, pp. 65–81,
1988.

[9] J. Lin and J. A. Storer, “Processor-efficient algorithms for
the knapsack problem,” Journal of Parallel and Distributed
Computing, vol. 13(3), pp. 332–337, 1991.

[10] D. Ulm, “Dynamic programming implementations on SIMD
machines - 0/1 knapsack problem,” M.S. Project, George
Mason University, 1991.

[11] V. Boyer, D. El Baz, and M. Elkihel, “Solving knapsack
problems on gpu,” Computers and Operations Research,
vol. 39, pp. 42–47, 2012.

[12] ——, “Dense dynamic programming on multi gpu,” in Pro-
ceedings of the 19th International Conference on Parallel
Distributed and networked-based Processing (PDP 2011),
2011, pp. 545–551, in Ayia Napa (Cyprus).

[13] A. Boukedjar, M. Lalami, and D. El Baz, “Parallel branch
and bound on a cpu-gpu system,” in Proceedings of the
20th International Conference on Parallel, Distributed and
network-based Processing (PDP 2012), 2012, pp. 392–398,
in Garching (Germany).

[14] M. Lalami, V. Boyer, and D. El Baz, “Efficient implemen-
tation of the simplex method on a cpu-gpu system,” in
Proceedings of the 20th IEEE International Parallel and
Distributed Processing Symposium and Workshops (IPDPSW
2011), 2011, in Anchorage (USA).

[15] M. Lalami, D. El Baz, and V. Boyer, “Multi gpu imple-
mentation of the simplex algorithm,” in Proceedings of the
13th IEEE International Conference on High Performance
Computing and Communications (HPCC 2011), 2011, in
Banff (Canada).

[16] T. Van Luong, N. Melab, and E. G. Talbi, “Large neighbor-
hood local search optimization on graphics processing units,”
in Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium and Workshops (IPDPSW
2010), 2010, in Atlanta (USA).

17701770

[17] B. Gendron and C. T. G., “Parallel branch-and-bound algo-
rithms: Survey and synthesis,” Operation Research, vol. 42,
pp. 1042–1066, 1994.

[18] G. B. Dantzig, “Discrete variable extremum problems,” Op-
erations Research, vol. 5, pp. 266–277, 1957.

[19] NVIDIA, “Cuda 3.2 programming guide,”
http://developer.download.nvidia.com/compute/cuda/3 2/tool-
kit/docs/CUDA C Programming Guide.pdf, 2011.

[20] M. Harris, “Optimizing parallel reduction in cuda,” NVIDIA
Developer Technology report, 2007.

[21] http://www.laas.fr/laas09/CDA/23-31300-Knapsack-problems
.php, “Knapsack problems benchmark.”

17711771

