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Recent evolutions of computer-aided product development 

and massive integration of numerical simulations to the design 

process require new methodologies to decrease the 

computational costs. Numerical design of experiments is used to 

improve quality of products by taking into account 

uncertainties in product development. But, this method can be 

time-consuming and involves a high computational cost. This 

paper presents a literature review of design of experiments 

methodology to identify potential improvements for simulation 

process shortening. By means of metamodelling and adaptive 

design of experiments, the computational cost of each 

simulation and the number of required experiment can be 

reduced. However, methods involved are still time-consuming to 

be set up. 

Index Terms— Adaptive Design of Experiment, Numerical 

Model, Robust Design, Product Development Process. 

I. INTRODUCTION 

Nowadays, competitiveness and efficiency of companies 

must be continuously improved to face worldwide 

competitors. Their processes and products must be 

continuously optimised with Quality, Cost and Time (QCT) 

objectives. As simulation is integrated to the product 

development process and is used to reach QCT objectives, the 

simulation process must reach these objectives too. 

 

By means of recent advances in computing, numerical 

simulations are required to: (1) understand the product 

behaviour, (2) optimise the product, (3) explore several 

solutions, and (4) validate the product. Numerical Design of 

Experiments (DoE) is more and more used [1] to fulfil these 4 

objectives by planning several runs of a numerical model for 

different configurations. It can also increase product 

robustness and quality by taking into account product related 

uncertainties.  Nevertheless, DoE can imply numerous runs of 

a costly numerical model. Thus, such a DoE can increase the 

cost and the time of the simulation process. 

 

The paper proposes a research survey which focuses on 

two subjects: (1) reduction of the number of experiments and 

(2) reduction of computational cost of each run. First, Section 

2 presents numerical DoE and methods used to reduce cost 

and time of simulation process. Second, Section 3 focuses on 

adaptive DoE, used to reduce the number of experiments. 

Finally, we conclude with the main advantages and 

drawbacks of the different approaches to find a potential 

solution improving them.  

 

II. NUMERICAL DESIGN OF EXPERIMENTS 

A. Simulation Process 

Numerical simulation is a set of computations representing 

the behaviour of a system subjected to a physical 

phenomenon. It aims predicting the response of a system 

subjected to its environment without any physical experiment. 

It can be sum up to 3 main steps. This representation can be 

found from several sources [2]–[4]. These three steps are, 

most of the time, embedded in Computer-Aided-Engineering 

systems.  

 

The first step is the modelling (pre-processing): the 

physical problem is translated into mathematical equations. 

As an example, the Finite-Element (FE) method is the most 

well-known modelling method used in mechanical 

engineering. This step is critical because modelling 

assumptions are made [5]. The complete model involves a 

modelling of a phenomenon, a system and its environment. 

Then, the problem is discretised with respect to its dimensions 

(spatial, time and other parameters). Finally, solving 

algorithm parameters are set. 

 

The second step is the solving: equations are formulated 

from the previously discretised model and solved by the 

solver software according to chosen algorithms. This step can 

be improved by optimising the used methods [6]. Usually, FE 

models may be solved in several hours or even more. Thus, 

loops on this step (iterations or DoE) may require an 
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extremely high computational cost, without certainty about 

results correctness. 

 

The last step consists in checking results and model 

validity (post-processing), and storing relevant data. 

 

B. Classic design of experiments 

Numerical DoE is a set of numerical experiments defined 

to assess the numerical model for different configurations, 

specifications or solutions. This method consists in exploring 

a design space, to improve product robustness and quality. It 

is used for sensitivity analysis, product optimisation or design 

exploration. A DoE is defined by a number n of factors of 

different types (qualitative, discrete or continuous) and their p 

levels. Thus, a DoE involves generally n*p experiments. 

 

As a numerical DoE is applied to a numerical model, each 

experiment involves an evaluation of the FE model, and thus 

computational cost depends on two parameters. First, a run of 

a FE model may require a huge amount of computational 

resources to be performed. Second, a DoE involving a large 

number of runs (i.e. experiments) will increase drastically the 

needed resources. Thus, an optimal strategy is to choose the 

most efficient DoE and to use a method for reducing the 

computational cost of each run. An efficient DoE should 

minimise the number of runs and optimize the space-covering 

of the runs, according to the objective (exploration, product 

optimisation…).  

 

DoE were initially used for physical experiments. Classic 

DoE were largely studied [7]–[12]. This kind of DOE requires 

repeated experiments to take into account measure 

uncertainty. It includes very expensive Full-Factorial design 

and Fractional-Factorial design, which is a cheaper version as 

some interactions between several parameters are neglected. 

It includes also central-composite and Box-Behnken design, 

limited for 3 or 5 levels, and Doehlert design, involving a 

more uniform distribution of experiments. All of these 

designs are based on a pre-selected regression model: they are 

model-dependent. But, in simulation process, each 

experiment is made by a deterministic solver. Thus, repeated 

experiments involved by these DoE  are useless. Space-filling 

designs are more appropriate. This category is based on 

different criteria, which can be combined, to improve the 

uniformity of experiment distribution in the design-space. 

Distance criteria, as maximin and minimax criteria, aim to 

avoid too closed samples. They are easy to set up but limited 

for low dimensionality. Other criteria are based on the 

minimisation discrepancy, i.e. the difference between a 

uniform sampling and the sampling of interest. Low-

discrepancy-sequences-based-designs includes, amongst 

others, uniform design, Halton, Faure or Sobol’ sequences 

designs. However, the distribution uniformity decreases with 

problem dimensionality. Low-discrepancy designs are based 

on these DoE and on stochastic algorithms, which minimise 

the discrepancy. These algorithms improve the distribution 

uniformity of low-discrepancy-sequences-based-designs, but 

are largely more costly. Maximal entropy design exists also. It 

maximises the amount of information in the distribution of 

experiments. A repulsion criterion is used for Strauss DoE, to 

maximise the uniformity. Latin Hypercube Sampling (LHS) 

and orthogonal arrays are built on constraints on projection of 

experiments on design-space axis. They are largely used as 

they are simple to build and to be used. The adaptive WSP 

algorithm [9] was developed to build a space-filling design 

able to deal with high-dimensional problems (number of 

parameters >20) and experimental constraints. It is also able 

to increase the density of experiments in particular zones of 

interest.  

 

Model-oriented designs can be used to obtain an optimal 

design [13], [14]. Several optimal designs exist, depending on 

the optimised criterion used to define each assessment: D-

optimal, A-optimal, I and M-optimal [13], etc. If the model is 

linear in its parameters, these optimal designs are model-

independent, otherwise not. However, the choice of the 

criterion is objective-dependent. A criterion for optimal 

design is proposed [1], as combination of a criterion to 

“identify the design region in which system performance is 

optimised” and design criteria “on the prediction error of the 

true output”. Others criteria for this kind of DoE exist [15]. 

The authors give an assessment of these criteria for sensitivity 

analysis.  

 

The selection of a DoE method for a specific problem 

depends on the uniformity of the distribution, and the filling 

of design space. Moreover, it is also linked on the objectives 

and the constraints of DOE. DoE types are numerous, related 

to different applications and properties (see  [1] for additional 

details on DoE properties). Thus, selection of DoE method 

may be a very time-consuming process. A design comparison 

chart was developed to help designers in their choices, but it 

is non-exhaustive[16]. Thus, there still exists a need for 

classification and comparison of DoE methods, in order to 

support designers’ decisions. In order to decrease the 

computational cost, by reducing the number of runs, several 

methods have been developed, such as adaptive DoE and 

surrogate modelling. Moreover, the choice of a specific DoE 

method will depend on the selected metamodel. 

 

C.  Metamodels 

Metamodeling, or Surrogate modelling, consists in 

replacing the costly FE model by a simpler model, as an 

analytical function, to approximate a specific response with a 

lower computational cost. Metamodels are used in many 

fields and a large amount of works was found related to this 

method. Applications for structural mechanics [17] 

,Computed Fluid dynamics [18], electromagnetics [19], [20], 

or forming process [21], [22] can be mentioned. Furthermore, 

metamodels are used to faster fulfil FE models objectives 

faster, as model approximation, design space exploration, 

sensitivity analysis [23] and optimisation [7]. 

 



 

Three steps are required to define a metamodel: (1) the 

metamodel type selection, (2) the training and (3) the 

validation.  

 

1) The metamodel type selection step 

 

With the variety of existing metamodels, the selection of 

the best one may be difficult. A classification of these 

methods has been made by [24] and is presented here. First, 

statistical learning methods include Response Surface 

Methods (RSM) [25], and other polynomial approximations. 

These methods consist of an approximation of the model 

response by a polynomial function and to take into account 

relevant interactions between parameters. Polynomial Chaos 

is an evolution of these methods. The model response is 

defined as a stochastic vector and approximated by a linear 

combination of orthogonal polynomials [26]. Kriging [27], 

[28], is a linear estimation method, originally designed for 

geostatistics. It assumes a spatial-correlation between 

experimental points to interpolate the response, which is 

assumed to be a stochastic Gaussian process, between them. 

This method aims to minimize the variance of the estimation. 

Details on this method and its variants can be found in [29]. 

Multivariate Adaptive Regression Splines (MARS) method 

[30] is an upgrade of linear regression methods. It is defined 

as a linear combination of B-splines instead of linear 

functions, with algorithms to select relevant terms of the 

metamodel. Support Vector Regression can also be 

mentioned [29].  

Fig. 1. The metamodel (2nd order polynomial) aims to predict the true 

function. [31] 

 

The machine learning methods cover, amongst others, 

Artificial Neural Networks (ANN) and clustering techniques. 

Clustering techniques involve the clustering of the 

population of evaluation, generated by a DoE. For instance, 

for each cluster, only one assessment is executed and the 

others are done by another local metamodel, specific to each 

cluster. Artificial Neural Networks (ANN) such as Multilayer 

Perceptron Neural Networks (MLPNN), are nonlinear 

models. It can be represented by a series of nodes (activation 

functions), with weighted links between them, organized in 

different layers (input/activation functions/output). Thus, the 

response is approximated as a linear combination of these 

weighted non-linear activation functions. An activation 

function is active if its input is higher than a pre-defined 

threshold. 

 

Finally, instance-based learning methods cover Radial 

Basis Functions (RBF) method, fitness inheritance methods 

and decision trees. RBF methods consist of a linear 

combination of functions approximation. This method can be 

represented as an ANN. More details on all of these methods 

can be found in [1], [7], [24], [29], [32], [33]. Table 1 

summarize main properties of these metamodels. 

 

TABLE I. MAIN PROPERTIES OF DIFFERENT METAMODELS 

 

 

Metamodels are built on some assumptions as function 

continuities, shape and smoothness. If these assumptions are 

not valid, (e.g. in non-linear problems), multiple metamodels 

can be used together to deal with function discontinuities 

[29]. Different couples of DoE and metamodels were 

compared by [1] and authors highlight the strong dependency 

between both of them. Furthermore, they showed a need for a 

DoE and metamodel classification to help the user, regarding 

the objectives (e.g. optimisation, exploration, etc.). 

Metamodel selection is problem dependent and a universal 

method does not yet exist [24], [29], [34]. However, the 

SUMO Toolbox platform [35] integrates mathematical 

methods to select automatically the best metamodel. This 

solution replaces time lost in metamodel selection and tuning 

by increasing computational cost. An "automatic metamodel 

type selection framework" is proposed by [36] and explored 

the use of Evolutionary Model Selection (EMS) algorithm. 

EMS dynamically selects the best metamodel type and 

parameters. The same kind of algorithm is developed in [34]. 

However, as it is detailed further, it involves evolutionary 

algorithms drawbacks. Thus, as the selection is based on 

stochastic variables, the algorithm convergence is not 

guaranteed. 

 

Metamodels Advantages Drawbacks 

Polynomial 

regression 

Simple 

Fast and cheap 

Not adapted for highly 
non-linear response and 

high dimensional problems 

Polynomial 

Chaos 

More accurate 

Fast and cheap 

Not adapted for highly 

non-linear response 

Kriging 

Exact interpolation 

Integrated variance 

estimation 

Costly for high dimension 

ANN 
Non-linear response 

supported 
Very expensive 

Hard tuning 

SVR 

Fast and accurate 

Adapted to high-
dimensional problems 

Long training time 



 

2) The training step 

 

The training step is managed by assessing the FE model 

with a DoE (as efficient as possible, see section 4.2) to 

determine metamodel parameters. Each metamodel is used 

with its fitting method, as, for instance, the least-square 

methods, which link the model and results obtained from FE 

model assessment. Some examples are described in [11]. The 

training step strongly depends on the number of assessments: 

not enough implies a low accuracy, but too much may lead to 

an overfitted model (learning by heart). This phenomenon 

means an inability to predict the behaviour beyond these first 

assessments. The analyst time, spent to tune metamodels 

parameters (and also optimisation algorithms), is also 

important [37]. This time may not be negligible for some of 

the considered metamodels, and must be taken into account 

with metamodeling time (DoE selection and training step) to 

obtain a more accurate computational cost.  

 

3) The validation step 

 

The validation is done by using another DoE to assess its 

predictive performance. The mostly used method consists in 

defining a DoE, using a partition (e.g. 20%) for the training 

and using the remaining partition (e.g. 80%) for validation. 

Several error measurements can be provided by statistical 

methods (e.g. RMSE, Leave-One-Out and Bootstrap methods 

[14]).  

 

Metamodel usefulness for optimisation problems was 

discussed by [37]. They compared several metamodel-based 

optimisation and optimisation process without metamodels. 

They concluded that metamodeling does not always improve 

the optimisation efficiency. Metamodelling performance 

decreases with the complexity of the approximated function 

and depends also on allocated computational budget. 

However, the functions used during this test were perfectly 

known (analytical). It will not be the case for a real case 

study. Thus, the metamodel choice may be more difficult 

since its performance could be unpredictable. 

 

The choice of the right metamodel is strongly linked to the 

function to approximate and to the available computational 

budget. It also depends on the DoE chosen.  

Recommendations about selection of some DoE and 

metamodels were given in [11], but are not complete.  Also, a 

metamodel considering multiple parameters can be hard and 

long to be tuned. However, some algorithms were developed 

to automatically select and tune the metamodel. 

Metamodeling is not always the most efficient strategy, the 

choice of using or not metamodels is also important.  

 

III. ADAPTIVE DESIGN OF EXPERIMENT 

Adaptive DoE can be found in the literature with several 

names: metamodelling adaptive-recursive approach [37], 

sequential design [1], variable fidelity modelling [38] or 

active learning [35]. Adaptive DoE is used to create 

iteratively a dedicated DoE for a specific problem, in order to 

maximise DoE efficiency. This method may fulfil several 

objectives as metamodel fitting, optimisation or design-space 

exploration. This method is based on 2 main steps: (1) 

searching for new experiments from an initial DoE and (2) 

selecting the best experiment to add to the initial DoE. A 

general view of this strategy is represented in figure 2. 

Definition of best experiment depends on the chosen infill 

criterion used for selection, which is linked to the study 

objective. Then, these steps are repeated until a convergence 

criterion is reached or until a maximum number of 

experiments is reached.  

 
Fig.2. Adaptive DoE strategy for metamodelling. This process involves 

DoE, metamodels and metaheuristics to add new experiments (n.exp.)  

iteratively. 
 

The main issue concerning the development of 

dynamically adaptive DoE is the choice of an infill criterion 

[29]. Many developments were made for optimisation 

problems. A typical framework for Surrogate Based 

Optimisation (SBO) involves an infill criterion chosen to 

intensify model assessment in order to find faster the global 

optimum of the objective function [18]. The authors used a 

combination of an adaptive updating method and a real-time 

updating performed by an evolutionary algorithm, to refine 

the DoE around optima. This method aims both to optimise 

the metamodel for fitting well with the objective function, and 

to obtain the optimum of the objective function. The SBO 



framework is detailed and discussed in [29]. In the same 

approach, a particular SBO framework, the Efficient Global 

Optimisation (EGO), based on Kriging metamodel and 

Genetic Algorithm (GA) was used [39]. The infill criterion is 

the Expected Improvement (EI) criterion, which involves a 

measure of possible improvement. This criterion is largely 

used [12], [40]–[44]. The Particle Swarm Optimisation 

Intelligent Sampling (PSOIS) method, which combines a 

Particle Swarm Optimisation (PSO) method, used to add new 

experiments, and Adaptive RSM metamodel, can also be 

mentioned [22]. An algorithm (SOAKEA) combining Kriging 

metamodel and PSO algorithm for optimisation was also 

developed [45]. Another application can be found in [46], 

with a very specific metamodel and an elitist GA for forming 

applications. A taxonomy was presented to select the infill 

criteria related to the metamodel used, but only for 

polynomial metamodels and kriging [40]. 

 

For metamodel fitting, a simple criterion consists in 

selecting the experiment related to the estimation which 

maximizes an error measurement between the FE model and 

the metamodel, such as variance of estimation provided by a 

Kriging metamodel [13], [14]. However, kriging metamodel 

is the only one to provide such a local information about the 

results accuracy, which is very convenient for adaptive 

methods. A class of infill criteria is related to contour 

approximation, which is close to metamodel fitting. Several 

criteria of this class were listed [12], based on the uncertainty 

of each experiment (margin uncertainty for a given trust-

region or confidence intervals [47]). A margin indicator 

function can be defined to set a trust-region around the 

function (contour) to approximate. The goal is to select the 

closest experiment from the function. There exist also the 

margin probability function, and the expected feasibility 

function. A sub-class, called One-step-look-ahead criteria, 

includes the Weighted-IMSE [13]  and Stepwise Uncertainty 

Reduction (SUR) [48] criteria. An EI-based criteria for 

contour estimation was developed [49].  

 

TABLE II. SYNTHESIS OF COVERED ADAPTIVE METHODS 

Metamodels Criteria Search method 

Kriging 

EI, T-IMSE[13], SUR [48], Expected 
Feasibility Function [12], [50] , 

Augmented EI [41], bootstrapped EI 

[53], Maximal Variance 

Metaheuristics, 

DoE 

RSM Re-sampling methods [51] 
Metaheuristics, 

DoE 

Polynomial 

Chaos 
Trust-interval[52] DoE 

ANN 
Maximal variance by Bootstrapp or 

Leave-One-Out methods [14] 
DoE 

 

 

These methods are summarized in Table II. A lot of papers 

aim to improve adaptive methods based on EI criterion and 

Kriging metamodel. Others criteria, which were not 

mentioned previously, were also developed [13], [41], [48], 

[50]. Concerning other kind of metamodels, just a few 

criteria were reviewed [51], [52]. However, some of these 

criteria could be applied to other metamodels. 

 

Many adaptive methods are based on metaheuristics, in 

order to search for a new experiment. Metaheuristics are 

algorithms used to solve complex optimisation problems. A 

recent survey of these methods was published [54]. They are 

nature-inspired and based on stochastic components. These 

methods are largely used to create an adaptive DoE algorithm 

[18], [22], [39], [45], [46]. These methods were divided into 

two groups [54]: single-solution based metaheuristics (e.g. 

simulated annealing, Variable Neighbourhood Search, Tabu 

Search, etc.) and population-based metaheuristics. 

Population-based methods can be split up into two other sub-

classes: evolutionary computation methods (e.g. GA, cultural 

and coevolutionary methods, etc.) and Swarm intelligence 

methods (e.g. Ant colony, particle swarm, artificial immune 

systems, etc.) [54]–[57]. The first one covers genetic and 

evolution strategies, using selection, mutation, reproduction 

and recombination processes over a population of solution. 

The common stopping criterion is a maximum number of 

generations without significant improvement of the best 

individual. Several techniques to improve this algorithm 

exist (e.g. elitism and niching, local search). As an example 

of the second sub-class, particle swarm metaheuristics 

consists in a population of particles which explore the design 

space. To summarize, the swarm will follow best particles to 

optimal solutions. Thus, many optimal solutions can be 

found, as local optima as global optimum. Another 

assessment of several metaheuristics exists [58]. As for DoE 

and metamodels, selection and tuning are difficult. Methods 

were developed, as Adaptive metaheuristics and hyper-

heuristics to select and tune automatically metaheuristics [54]. 

Adaptive metaheuristics deal with time-consuming tuning 

task. The authors highlight a real need to develop a 

framework able to help users to compare, develop, combine 

and parallelize all of these metaheuristics algorithms. Hyper-

heuristics are designed to overcome the problem-dependent 

property of metaheuristics. It consists of a method to select 

automatically most appropriate metaheuristics to solve a 

specific problem, by using metaheuristics. It aims to be 

problem independent and used easily. Finally, hybrid 

optimisation methods are mentioned. They are based on a 

hybridization of different metaheuristics, different 

optimisation algorithms and techniques. However, several 

adaptive methods use a local search method (based on 

function derivatives) or a pre-defined sampling [14]. A 

combination of metaheuristics and local search methods is 

also possible [34]. 

 

To be successful, all of these methods used to search for 

and select new experiments have to balance design-space 

exploration as exploitation (intensification) [29], [54]. The 

goal is to give accurate results without missing any optimum 

or falling into a local optimum. Each algorithm has a 

particular manner to achieve this equilibrium. 

 



Adaptive DoE methods may involve metamodelling to 

reduce the computational cost and metaheuristics to search for 

new experiments. Many infill criteria exist to select the most 

efficient experiment and to sequentially add it to the DoE. 

This section has not covered all of these criteria, since they 

are very numerous. Although the EI criterion seems to be the 

most used, a clear assessment would be valuable to choose 

the most efficient criterion. The efficiency of adaptive DoE 

method strongly depends on metamodel, metaheuristics and 

criteria used. While hyper-heuristics and adaptive 

metaheuristics are being developed to shorten the simulation 

process, none of these methods are based on best-practices re-

using. It could shorten the process by supporting decision by 

already known results, instead of run new computations. 

There exists a real need to develop methods able to compare, 

classify and select the right methods according to a specific 

problem. Thus, a capitalisation of successful combination of 

these elements could help designers to shorten especially pre-

processing step of numerical simulation.  

 

IV. SYNTHESIS 

In this paper, we have presented two strategies used for 

reducing the computational cost of the simulation process. 

First, metamodelling methods reduce the computational cost 

of simulation. The main difficulty is the choice of the right 

DoE with the right metamodel. DoE and metamodels have to 

be chosen regarding to the objective of the case study and the 

type of response. A DoE has to be chosen regarding to its 

properties (uniformity, orthogonality, etc.). Concerning 

metamodels, some of them are able to deal with non-linear 

functions (e.g. ANN) but they are more costly, while others 

metamodels are lighter but only able to deal with polynomial 

functions (e.g. polynomial approximation). Since DoE and 

metamodels types are numerous, the selection of a specific 

couple DoE-metamodels can be hard. Moreover, tuning 

operation, consisting in selecting parameters for DoE (number 

of experiment) and metamodels can be a very time-

consuming task. Second, adaptive DOE for metamodelling 

reduce the number of experiments, by using metaheuristics to 

search for a new experiment and an infill criterion to select 

the best experiment found by the metaheuristics. As 

metamodelling, the selection of a specific set of methods 

(DoE, metamodel, metaheuristic, infill criterion) is also time-

consuming. Metaheuristics involves also some drawbacks 

such as computational cost (although they can parallelized) 

and some difficulty to predict its convergence. 

 

These methods used to shorten the solving step need a 

long time to be selected and tuned. Metamodels, 

metaheuristics, infill criteria and DoE types are numerous, 

and a clear classification is needed to take into account the 

objective of the case study (optimisation, exploration, etc.) 

and the compatibility between all of these methods. Some 

methods are being developed for automatic choice and tuning, 

as optimisation methods (EMS, EGO) and hyper-heuristics. 

There is also a trend to hybridize different methods to obtain 

more efficient algorithms. But, these methods may also 

increase the computational cost to shorten the process. 

 

V. CONCLUSION 

Design of Experiments (DoE) methodology is commonly 

used to improve the product performances, quality and 

robustness. Numerical DoE are applied to simulation which 

may involve a huge computational cost. Thus, it is important 

to improve the method in order to decrease the DoE cost. 

 

In this paper, two approaches were presented. First, 

metamodelling can shorten the solving step of the simulation 

process by replacing a FE model by a simple analytical 

function. Second, adaptive DoE can increase the efficiency of 

a DoE by choosing iteratively experiments during the solving 

process, based on previous results. This method involves an 

infill criterion to select and add the new experiment. This 

criterion depends on the objective of the case study 

(optimisation, metamodel fitting, etc.). It involves also 

specific methods to search for potentially added experiments. 

Metaheuristics were presented since they are able to propose 

multiple candidates at each iteration. But, metaheuristics are 

also difficult to be chosen and tuned. 

 

Finally, these methods initially designed to shorten 

simulation process would increase it. Computational cost can 

also be increased. Selection and tuning of these algorithms 

can be long. Thus, a capitalization of simulation data, such as 

results and best practices could decrease simulation time by 

re-using previous results and assessments. By capitalizing 

results of simulation using these methods, a clear benchmark 

could be produced. Specific methods and parameters could be 

automatically proposed to support designers’ decisions. 
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