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Introduction

This paper investigates the link between some population dynamics models and a class of Hawkes processes. We are interested in processes whose behavior is modified by past events, which are self-excited and externally excited. The introduction of a self-excited process with shot noise intensity is due to [START_REF] Hawkes | Spectra of some self-exciting and mutually exciting point processes[END_REF] and the famous Hawkes process has been used until now for a variety of applications, including seismology, neuroscience, epidemiology, insurance and finance, to name but a few. The shot noise intensity of the Hawkes process (N t ) is expressed as λ t = µ + Tn<t φ(t -T n ), where the T n are the times of jump of the Hawkes process N itself, µ > 0 and φ is a non-negative function. In the Hawkes model, when an event occurs at time T n , the intensity grows by an amount φ(t -T n ): this models the self-exciting property. Also, for many modeling purposes, φ returns to zero as t increases, so that the self-excitation vanishes after a long time. On the whole, each event excites the system as it increases its intensity, but this increase vanishes with time as it is natural to model the fact that very old events have a negligible impact on the current behavior of the process. In the literature, several contributions focused on processes with self-exciting behavior and also some externally exciting component. To our knowledge, the Hawkes process with general immigrants has been introduced in Brémaud and [START_REF] Brémaud | Power spectra of general shot noises and hawkes point processes with a random excitation[END_REF], and specific forms can also be found in recent studies motivated by financial applications, such as [START_REF] Dassios | A dynamic contagion process[END_REF], [START_REF] Wheatley | Estimation of the hawkes process with renewal immigration using the em algorithm[END_REF] and [START_REF] Rambaldi | Modeling fx market activity around macroeconomic news: a hawkes process approach[END_REF], where external shocks, news arrivals and contagion are crucial to model. In this paper, we are interested in a class of Hawkes processes with general immigrants (see [START_REF] Brémaud | Power spectra of general shot noises and hawkes point processes with a random excitation[END_REF]), whose intensity is of the form

λ t = µ(t) + Tn<t Φ t (t -T n , X n ) + S k <t Ψ t (t -S k , Y k ).
In this model, the T n are the times of jump of N : if an event occurs for the system at time T n , the intensity grows by an amount Φ t (t -T n , X n ), where X n is some mark. This part models the self-exciting property. In parallel, external events occur at times S k and excites the system of interest with some amount Ψ t (t -S k , Y k ): this is the externally excited component.

Among the appealing properties of such models, one of them comes from the shotnoise form of the intensity. This is called the cluster (or branching) representation of the Hawkes process, and it is based on the following remark: if an event occured at time T n , then t -T n is nothing but the "age" of this event at time t. Few years later after the seminal work of [START_REF] Hawkes | Spectra of some self-exciting and mutually exciting point processes[END_REF], [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF] proposed the cluster representation of the self-exciting process. They interpreted it as an immigration-birth process with age: they proved that under some stationarity conditions, it can be described as a branching Poisson process (also called Poisson cluster). Also, in [START_REF] Dassios | A dynamic contagion process[END_REF], a definition of a dynamic contagion process is given through its cluster representation. Until now, most studies on the Hawkes process recalled the immigration-birth representation as follows: immigrants arrive at times given by a Poisson process with intensity µ. Then each immigrant starts a new generation: it gives birth to new individuals with fertility function φ, each one giving birth with same fertility function φ. This is often used as a definition for the Hawkes process, providing a good intuition on its behavior. The cluster representation of [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF] requires that the mean number of children per individual which is nothing but φ = ∞ 0 φ(a)da satisfies φ < 1. In our paper, we exhibit the immigration-birth dynamics underlying Hawkes processes with general immigrants which does not require the stationary assumption. The virtue if this approach that combines an intensity process definition and a branching representation is that the population age pyramid keeps track of all past events. This is used to compute new distribution properties for a class of linear Hawkes process with general immigrants.

In the literature, the distribution properties of the Hawkes process have first been studied under stationary conditions. [START_REF] Hawkes | Spectra of some self-exciting and mutually exciting point processes[END_REF] addressed second order stationary properties, whereas [START_REF] Adamopoulos | Some counting and interval properties of the mutually-exciting processes[END_REF] derived the probability generating functional under stationarity, by using the cluster representation of [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF]. In this work, [START_REF] Adamopoulos | Some counting and interval properties of the mutually-exciting processes[END_REF] expressed the probability generating function as a solution to some functional equation. Furthermore, [START_REF] Brémaud | Power spectra of general shot noises and hawkes point processes with a random excitation[END_REF] introduced the framework for studying moments of the stationary Hawkes process by means of the Bartlett spectrum. Let us also mention two recent studies of the distribution properties under stationarity. The moment generating function has been expressed in [START_REF] Saichev | Generating functions and stability study of multivariate self-excited epidemic processes[END_REF] as a solution to some transcendental equation. In addition, [START_REF] Jovanović | Cumulants of hawkes point processes[END_REF] proposed a graphical way to derive closed forms for cumulant densities, leading to the moments of the stationary Hawkes process. It is interesting to note that such recent contributions rely the stationary branching representation of [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF]. Recently, the computation of statistical properties has gained attention under non-stationarity, both for mathematical analysis and statistical estimation techniques. However, the recent studies in this framework only focus on exponential fertility rates φ(t) = αe βt . The tool they rely on is the infinitesimal generator of the intensity process (λ t ) which is Markovian for such exponential fertility rate (see [START_REF] Oakes | The markovian self-exciting process[END_REF]). This includes the work of [START_REF] Errais | Affine point processes and portfolio credit risk[END_REF], Aït-Sahalia et al. (2010), [START_REF] Dassios | A dynamic contagion process[END_REF], and Da Fonseca and Zaatour (2014). Our paper generalizes these studies in a natural direction for a wider class of Hawkes processes.

Scope of this paper

The aim of this paper is (i) to introduce the concept of age pyramid for Hawkes processes with general immigrants, (ii) to use this concept to compute new distribution properties for a class of fertility functions which generalize the popular exponential case, and (iii) to give a pathwise representation of the general Hawkes processes and its underlying immigration-birth dynamics. We represent the population as a multi-type dynamics with ages, including immigration and births with mutations. Our population point of view is inspired by [START_REF] Bensusan | Impact of heterogeneity in human population dynamics[END_REF][START_REF] Bensusan | Impact of heterogeneity in human population dynamics[END_REF] (see also [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF]) and seems to reconcile the two definitions of Hawkes processes, through an intensity process or a branching dynamics. The paper is organized as follows. Section 2 introduces the population point of view for Hawkes processes with general immigrants and studies the dynamics of the age pyramid over time. In Section 3, we use this concept to compute the dynamics and Laplace transform of a class of Hawkes processes with general immigrants whose fertility functions generalize the popular exponential case. Section 4 presents the pathwise construction of Hawkes processes with general immigrants and its underlying population. Finally, Section 5 details some results on the special case of standard Hawkes processes, including its Laplace transform and two first order moments.

Population point of view

This paper focuses on a class of counting processes named as Hawkes processes with general immigrants (see [START_REF] Brémaud | Power spectra of general shot noises and hawkes point processes with a random excitation[END_REF]), which is defined below through its intensity process. Existence and uniqueness issues will be discussed in Section 4. Let (Ω, A, P) be a probability space satisfying the usual conditions. Recall that the intensity process (λ t ) of a counting process (N t ) is the (F N t )-predictable process such that N t -t 0 λ s ds is an (F N t )-local martingale, where (F N t ) denotes the canonical filtration of (N t ). Definition 1. A Hawkes process with general immigrants is a counting process (N t ) whose intensity is given by

λ t = µ(t) + Tn<t Φ t (t -T n , X n ) + S k <t Ψ t (t -S k , Y k ), (1) 
where the T n are the times of jump of N , the S k are those of a counting process with deterministic intensity ρ(t) and the X n (resp. Y k ) are real positive iid with distribution G (resp. H). The (S k ), (Y k ) and (X n ) are assumed to be independent of each other.

In this model, the T n are the times of jump of N : if an event occurs for the system at time T n , the intensity grows by an amount Φ t (t-T n , X n ), where X n is some mark. This part models the self-exciting property. In parallel, external events occur at times S k and excites the system of interest with some amount Ψ t (t -S k , Y k ): this is the externally excited component. The Hawkes process with general immigrants has been introduced and studied under stationary conditions by [START_REF] Brémaud | Power spectra of general shot noises and hawkes point processes with a random excitation[END_REF]. Due to their flexibility and natural interpretation, such models have gained recent attention for financial applications e.g. by [START_REF] Dassios | A dynamic contagion process[END_REF], [START_REF] Wheatley | Estimation of the hawkes process with renewal immigration using the em algorithm[END_REF] and [START_REF] Rambaldi | Modeling fx market activity around macroeconomic news: a hawkes process approach[END_REF]. In particular, distribution properties of such process have been investigated by [START_REF] Dassios | A dynamic contagion process[END_REF] in the case Φ t (a, x) = Ψ t (a, x) = xe -δa , in which framework the intensity process is Markovian. Our aim is to study the dynamics and characterize the distribution of the nonstationary Hawkes process with general immigrants for a larger class of fertility functions, possibly time-dependent, which extends the previous work of [START_REF] Dassios | A dynamic contagion process[END_REF] in this direction. To do this, we first represent it as a two-population immigration-birth dynamics with ages and characteristics.

Thanks to Definition 1, we obtain a representation of the intensity process. But in fact, the whole information on the dynamics is lost. Indeed, it is interesting to go back to the branching representation of [START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF] to have in mind the underlying population dynamics. For the standard Hawkes process with intensity λ t = µ+ Tn<t φ(t-T n ), we have the following interpretation: first, immigrants arrive according to a Poisson process with parameter µ, then each immigrant generates a cluster of descendants with the following rule: if an individual arrived or was born at some time T n , it gives birth to new individuals with rate φ(t -T n ) at time t, where in fact, t -T n is nothing but the age at time t of the individual. In the case of the Hawkes process with general immigrants (see Definition 1), the description of the dynamics is very similar, except that we have two populations: population (1) represents external shocks that occur at times S k , whereas population (2) represents internal shocks that occurred at time T n . If an individual is born at time S k (resp. T n ), we call the mark Y k (resp. X n ) its characteristic. Then the immigration-birth dynamics can be described as follows: (i) Let us first describe the population (1) of external shocks. It is made with immigrants that arrive in population (1) with rate ρ(t); at arrival, they have age 0 and some characteristic x drawn with distribution H. Any individual, denoted (a, x), with age a and characteristic x at time t that belongs to population (1) gives birth with rate Ψ t (a, x). The newborn belongs to population (2); it has age 0, and some characteristic drawn with distribution G. (ii) Let us now complete the description of population (2). In addition to births from population (1), the population (2) evolves according to two other kind of events: immigration and internal birth. Immigrants arrive in population (2) with rate µ(t) with age 0 and a characteristic drawn with distribution G. Any individual (a, x) at time t that belongs to population (2) gives birth with rate Φ t (a, x). The newborn also belongs to population (2); it has age 0, and some characteristic drawn with distribution G. In the end, the Hawkes process with general immigrants can be recovered as the size of population (2), therefore this construction can be seen as another definition of such process. This dynamics is illustrated in Figure 1.

Since the immigration-birth mechanism is crucial to understand the behavior of the Hawkes dynamics, our aim now is to keep track of all ages and characteristics in each population (i), i =1 or 2. One way to address this issue is to count the number of individuals with age below ā > 0 and a characteristic in some set [0, x] ⊂ X at time t, denoted

Z (i) t ([0, ā], [0, x]
). This can be computed for example for population (2) in the following way:

Z (2) t ([0, ā], [0, x]) = Tn≤t 1 [0,ā] (t -T n )1 [0,x] (X n
). This way, each population (i), i = 1 or 2, is represented at time t as a measure which puts a Definition 2. We call age pyramids at time t the two following measures:

Z (1) t (da, dx) = S k ≤t δ (t-S k ,Y k ) (da, dx) and Z (2) t (da, dx) = Tn≤t δ (t-Tn,Xn) (da, dx). (2)
The virtue of the measure representation is that one can compute time-dependent functions of the population age pyramid. Consider a function f t (a, x) depending on time, and also on ages and characteristics of individuals. This can be computed on the overall population with the following notation:

Z (i) t , f t = R + ×R + f t (a, x)Z (i) t (da, dx), (3) 
for i = 1 or 2. For example, the Hawkes process is N

(2) t = Z

(2)

t , 1 , whereas the number of external shocks is N

(1) t = Z (1)
t , 1 . Also, the intensity λ t of the Hawkes process N

(2) t given in Equation (1) can be rewritten as

λ t = µ(t) + Z (2) t-, Φ t + Z (1) t-, Ψ t . (4) 
Viewed as a stochastic process, Z

t (da, dx), Z

(2)

t (da, dx) t≥0 is a (two-dimensional)
measure-valued process. In fact, this age pyramid process is a Markov process (see [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF]). Note however that its differentiation in time is not straightforward (see [START_REF] Bensusan | Impact of heterogeneity in human population dynamics[END_REF][START_REF] Bensusan | Impact of heterogeneity in human population dynamics[END_REF] and Lemma 1 below). The Markov property of the age pyramid process shows that all the information needed is contained in the population age structure. Let us mention the seminal point of view of [START_REF] Harris | The theory of branching processes[END_REF], for who "it does seem intuitively plausible that we obtain a Markov process, in an extended sense, if we describe the state of the population at time t not simply by the number of objects present but by a list of the ages of all objects." However, in practice this information is "too large" to perform tractable computations. In the next section, we illustrate how to identify some minimal components to add to the Hawkes process in order to make the dynamics Markovian. To do this, we first need to address the dynamics of the age pyramid. This is stated in the following lemma.

Lemma 1. For each function f : (t, x, a) → f t (a, x) differentiable in t and a, the dynamics of the process

Z (i) t , f t for i = 1 or 2 is given by d Z (i) t , f t = R + f t (0, x)N (i) (dt, dx) + Z (i) t , ( ∂ a + ∂ t )f t dt, (5) 
where the point measures N (1) and N (2) are given by

N (1) (dt, dx) = k≥1 δ (S k ,Y k ) (dt, dx) and N (2) (dt, dx) = n≥1 δ (Tn,Xn) (dt, dx).
Proof of Lemma 1 Let us first remark that by Equation (3),

Z (i) t , f t = (0,t]×R + f t (t -s, x)N (i) (ds, dx). (6) 
Then write between s and t, f

t (t -s, x) = f s (0, x) + t s ( ∂ a + ∂ u )f u (u -s, x)du and use it into Equation (6) to get Z (i) t , f t = (0,t]×R + f s (0, x)N (i) (ds, dx)+ (0,t]×R + t s ( ∂ a + ∂ u )f u (u -s, x)du N (i) (ds, dx).
By Fubini's theorem, the last term of the sum is equal to

t 0 (0,u]×R + ( ∂ a + ∂ u )f u (u -s, x)N (i) (
ds, dx) du, and by Equation ( 6), this is equal to

t 0 Z u , ( ∂ a + ∂ u )f u du. This concludes the proof.
The decomposition (5) is classical in the field of measure-valued population dynamics (see [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF] and [START_REF] Bensusan | Impact of heterogeneity in human population dynamics[END_REF][START_REF] Bensusan | Impact of heterogeneity in human population dynamics[END_REF]). The first term refers to the pure jump part of arrivals of individuals with age 0, whereas the second term of transport type illustrates the aging phenomenon (all ages are translated along the time axis), as well as the time component. The fact that the drift part depends on both

Z (i) t , ∂ a f t and Z (i)
t , ∂ t f t is the starting point of our results derived in the next section. Let us remark that as a particular case, taking Φ t (a, x) = φ(a) and Ψ t (a, x) = 0, this shows why the intensity process λ t = µ + Z

(2) t-, φ is Markovian in the case where the fertility function is exponential (see [START_REF] Oakes | The markovian self-exciting process[END_REF]), that is φ(a) = αe βa . In this case, φ = βφ, and Equation (5) leads to the differential form d Z

(2)

t , φ = αdN (2) t + β Z (2) t , φ dt, where we recall that N (2) t = Z (2)
t , 1 is nothing but the Hawkes process itself. Note that dN

(2) t only depends on the past of (λ t ) by means of the current value λ t , which proves the Markov property.

3 The exponential case generalized

Assumptions on the fertility rates

In the following, we introduce the assumptions allowing to recover a finite dimensional Markovian dynamics.

Assumptions on the fertility rates

Assumption 1. (i) The birth rates Φ and Ψ are non-negative and satisfy Φ t (a, x) = v(t)φ(a, x) and Ψ t (a, x) = w(t)ψ(a, x), where

φ (n) (a, x) = c -1 + n-1 k=0 c k φ (k) (a, x) and v (p) (t) = d -1 (t) + p-1 l=0 d l (t)v (l) (t),
with n, p ≥ 1 and initial conditions φ (k) (0, x) = φ (k) 0 (x), and

ψ (m) (a, x) = r -1 + m-1 k=0 r k ψ (k) (a, x) and w (q) (t) = k -1 (t) + q-1 l=0 k l (t)w (l) (t),
with m, q ≥ 1 and initial conditions ψ (k) (0, x) = ψ (k) 0 (x). Note that we used the notation

f (k) (a, x) = ∂ k a f (a, x). (ii) The maps (d l ) -1≤l≤p-1 and (k l ) -1≤l≤q-1 are continuous.
Assumption 1 defines a wide class of self and externally exciting fertility functions of the form Φ t (a, x) = v(t)φ(a, x). Let us first focus on the time-independent part and introduce F (a, x) such that F = (1, φ, ..., φ (n-1) ) T . Then F = C(c)F , where the function C(.) which transforms a vector c into a matrix C(c) is defined as

C(c) =         0 0 0 1 . . . . . . 0 1 c -1 c 0 • • • c n-2 c n-1         . ( 7 
)
In particular, if the polynomial P (y) = y nn-1 k=0 c k y k is split with distinct roots y 1 , ..., y p and corresponding multiplicities n 1 , ..., n p , then φ can be written up to some constant as p i=1 P i (x, a)e y i a where P i is a polynomial in a with degree at most n i -1 whose coefficients may depend on x. This includes for example the framework of [START_REF] Dassios | A dynamic contagion process[END_REF] where Φ t (a, x) = Ψ t (a, x) = xe -δa . This is also a sufficiently large set of functions to approximate any fertility function outside of the range of Assumption 1. As an example, the power law kernel is of importance for many applications. In the context of earthquakes, the Omori law describes the epidemic-type aftershock (ETAS) model: it corresponds to a specific form φ(a) ∼ K a 1+ . Also in the field of financial microstructure, recent studies (see e.g. [START_REF] Hardiman | Critical reflexivity in financial markets: a hawkes process analysis[END_REF]) found that high-frequency financial activity is better described by a Hawkes process with power law kernel rather than exponential. The power law kernel with cut off can be approximated as in [START_REF] Hardiman | Critical reflexivity in financial markets: a hawkes process analysis[END_REF] up to a constant by the smooth function φ(a) = M -1 i=0 e -a/(τ 0 m i ) (τ 0 m i ) 1+ -Se -a/(τ 0 m -1 ) , where S is such that φ(0) = 0. In general, one can use approximation theory to construct a sequence of fertility functions which tends to the original one. As a 3.2 Age pyramid dynamics result, this constructs a sequence of Hawkes processes that approximate the original Hawkes process. As we also allow for time-dependency, such birth rates Φ and Ψ that satisfy 1 are also useful to define non-stationary Hawkes processes, and in particular to include seasonality. As an example, one can simply think of a kernel of the form cos 2 (αt)φ(a, x) where v(t) = cos 2 (αt) satisfies v = 4α 2 (1 -v). Note that in Assumption 1, coefficients in the equation for the time-dependent part are allowed to vary with time, therefore a wide variety of time dependence structures can be included in the model.

Age pyramid dynamics

Let us go back to the dynamics of the age pyramid over time. The key property that will allow us to compute distribution properties is that the population enables to identify the components to add to the Hawkes process and its intensity to make the dynamics Markovian. This is stated in the following proposition.

Proposition 2. Let us define for -1 ≤ k ≤ n -1 and -1 ≤ l ≤ p -1, X k,l t := Z (2) t , ∂ k a ∂ l t Φ t and for -1 ≤ k ≤ m -1 and -1 ≤ l ≤ q -1, Y k,l t := Z (1) t , ∂ k a ∂ l t Ψ t .
Let us also define the two matrices

M (2) t = X k,l t -1≤k≤n-1,-1≤l≤p-1 and M (1) t = Y k,l t -1≤k≤m-1,-1≤l≤q-1
.

(i) Let us recall that D denotes the transpose of a given matrix D. The processes M (1) and M (2) follow the dynamics

dM (i) t = R + W (i) (t, x)N (i) (dt, dx) + C (i) M (i) t + M (i) t D(i) t , where (8) 
• W

(1) (ii) As a consequence of the dynamics (8), M

k,l (t, x) = w (l) (t)ψ (k) 0 (x) for -1 ≤ k ≤ m -1 and -1 ≤ l ≤ q -1, • W (2) k,l (t, x) = v (l) (t)φ (k) 0 (x) for -1 ≤ k ≤ n -1 and -1 ≤ l ≤ p -1, • C (1) = C(r), C (2) = C(c), D (1) 
(1)

t , M (2) t t≥0
is a Markov process.

Proof of Proposition 2

We focus on the dynamics of the X k,l , the problem being the same for the Y k,l . From Lemma 1, for

0 ≤ k ≤ n -2 and 0 ≤ l ≤ p -2, dX k,l t = v (l) (t) R + φ (k) 0 (x)N (2) (dt, dx) + (X k+1,l t + X k,l+1 t )dt. (9) From Assumption 1, X n,l t = n-1 k=-1 c k X k,l t and X k,n t = p-1 l=-1 d l (t)X k,l t . This shows that for 0 ≤ l ≤ p -2 and 0 ≤ k ≤ n -2, dX n-1,l t = v (l) (t) R + φ (n-1) 0 (x)N (2) (dt, dx) + n-1 k=-1 c k X k,l t + X n-1,l+1 t dt, (10) dX k,p-1 t = v (p-1) (t) R + φ (k) 0 (x)N (2) (dt, dx) + X k+1,p-1 t + p-1 l=-1 d l (t)X k,l t dt,( 11 
)
and dX n-1,p-1 t = v (p-1) (t) R + φ (n-1) 0 (x)N (2) (dt, dx)+ n-1 k=-1 c k X k,p-1 t + p-1 l=-1 d l (t)X n-1,l t dt.
(12) In addition, Lemma 1 gives for 0 ≤ l ≤ p -2 and 0

≤ k ≤ n -2, dX -1,l t = v (l) (t)dN (2) t + X -1,l+1 t dt, ( 13 
)
dX k,-1 t = R + φ (k) 0 (x)N (2) (dt, dx) + X k+1,-1 t dt. (14) 
Finally, by Assumption 1 again, we get the following two equations:

dX -1,p-1 t = v (p-1) (t)dN (2) t + p-1 l=-1 d l (t)X -1,l t dt, (15) 
and

dX n-1,-1 t = R + φ (n-1) 0 (x)N (2) (dt, dx) + n-1 k=-1 c k X k,-1 t dt. (16) 
From Equations (9) to (16), one then deduces the dynamics [START_REF] Harris | The theory of branching processes[END_REF]. The consequence (ii) follows immediately.

Laplace transform

We here exhibit an exponential martingale which leads us to compute the Laplace transform of the whole dynamics. This is the main result of our paper. To ensure tractability of the Laplace transform, we also state the following assumptions.

Assumption 2. For each λ > 0,

R + exp λ max 0≤k≤n-1 φ (k) 0 (x) G(x)dx < +∞.
Our main result is stated below. Note that the trace of the matrix ūM given by Tr(ūM ) = k,l u k,l M k,l computes a linear combination of the components of a given matrix M , and recall that ū denotes the transposition of the matrix u. Theorem 3. Denote F M the filtration of (M (1) , M (2) ). Under Assumption 1, (i) For any deterministic and differentiable matrix-valued (A (1) t ) and (A (2) t ) with derivatives ( Å(1) t ) and ( Å(2) t ), the following process is an F M -martingale:

exp 2 i=1 Tr A (i) t M (i) t - t 0 Tr A (i) s C (i) M (i) s + A (i) s M (i) s D(i) s + Å(i) s M (i) s ds - t 0 R + e Tr A (1) 
s W (1) (s,x) -1 ρ(s)H(x)dxds

- t 0 R + e Tr A (2) s W (2) (s,x) -1 µ(s) + M (1) s [0, 0] + M (2) s [0, 0] G(x)dxds . (17) 
(ii) For each matrices u and v with dimensions (n + 1)(p + 1) and (m + 1)(q + 1) respectively, the joint Laplace transform can be expressed as

E exp Tr(ūM (1) t + vM (2) t ) = exp t 0 R + e Tr A (1) 
s W (1) (s,x) -1 ρ(s)H(x)dxds

+ t 0 R + e Tr A (2) 
s W (2) (s,x) -1 µ(s)G(x)dxds , where for i ∈ {1, 2},

Å(i) t + A (i) t C (i) + D(i) t A (i) t = R + 1 -e Tr A (2) t W (2) (t,x) G(x)dx K, ( 18 
)
with terminal conditions A

(1) T = ū and A

(2)

T = v, (19) 
where the matrix K is given by K = JJ and J is given by J = (0, 1, 0, ..., 0). (20) Moreover, solutions to (18)-( 19) exist provided that Assumption 2 is satisfied.

Proof of Theorem 3

We begin by exhibiting the exponential martingale (17). Let us denote N (i) , H t = t 0 R + H(s, x)N (i) (ds, dx). For deterministic α(t, x) and β(t, x), then by the classical exponential formula the following process is a martingale

exp N (1) , α t + N (2) , β t - t 0 R + e α(s,x) -1 ρ(s)H(x)dxds - t 0 R + e β(s,x) -1 µ(s) + Z (1) s-, Ψ s + Z (2) s-, Φ s G(x)dxds . (21) 
The aim now is to compute the joint Laplace transform of the processes M

(1) t and M

(2) t . This amounts to compute E e Tr(ū.M (1)

t +v.M (2) t ) , since Tr(ū.M ) = k,l u k,l M k,l .
Let us consider the two (deterministic) processes A

(1) t and A

(2) t with sizes (m + 1)(q + 1) and (n + 1)(p + 1) respectively. By integration by parts, d(A

(i) t M (i) t ) = A (i) t dM (i) t + Å(i) t M (i)
t dt. From (8), we get the dynamics

dTr A (i) t M (i) t = R + Tr A (i) t W (i) (t, x) N (i) (dt, dx)+Tr C (i) M (i) t + M (i) t D(i) t + Å(i) t M (i) t dt.
Let us now use Equation ( 21) with α(t, x) = Tr(A

(1) t W (1) (t, x)) and β(t, x) = Tr(A (2) t W (2) (t, x)) to get the martingale (17). To get the Laplace transform, it remains to make the random part of the integrant in (17) vanish. To do this, let us first identify the term in M (1) to get the linear equation ( 18) for i = 1. In addition, the term in M (2) leads to (18) for i = 2. If we set terminal conditions (19), we get the Laplace transform in (ii) by the martingale property of (17). To conclude on the existence and uniqueness, we use Cauchy-Lipschitz theorem. To show that solution of class C 1 to (18) exist and is unique, it is sufficient to prove that the map (Y, t) → R + e Tr(Y W (2) (t,x)) G(x)dx is of class C 1 . Since the integrant is C 1 by Assumption 1 (i) and (ii), it is sufficient to prove that its gradient given by

e Tr(Y W (2) (t,x)) Ȳ , e Tr(Y W (2) (t,x)) ∂ t W (2) (t, x) (22) 
is locally bounded by some quantity that is independent of Y and t, and is integrable with respect to G. Let us use some localization argument, and define the set B(0, r) = {A real (n + 1) × (p + 1) matrix such that A ∞ ≤ r}, where r > 0 and

A ∞ = max -1≤i≤n-1 p-1 j=-1 |A i,j |. Now, for (Y, t) ∈ B(0, r) × [0, T ] we get exp Tr Y W (2) (t, x) ≤ exp n-1 i=-1 p-1 k=-1 |Y i,k | W (2) k,i (t, x) ≤ exp (n + 1) max -1≤i≤n-1 p-1 k=-1 |Y i,k | W (2) k,i (t, x) ≤ exp r(n + 1) max -1≤l≤p-1 sup t∈[0,T ] v (l) (t) max -1≤k≤n-1 φ (k) 0 (x) ,
where the last inequality uses that Y ∈ B(0, r). As for the first component of ( 22), Ȳl,k ≤ r (since Y ∈ B(0, r)), and for the second component we have

∂ t W (2) k,l (t, x) ≤ φ (k) 0 (x) sup t∈[0,T ] v (l+1) (t)
, this concludes the proof by the use of Assumption 2.

Pathwise representation of Hawkes population

Definition 1 uses a classical formulation to define a counting process with its own intensity. However, it does not keep track of the branching population and also does not give a concrete pathwise representation. Also, the definition in terms of an immigration-birth process (see Section 2) is intuitive and gives more information through the age pyramid. The aim of this section is to discuss the pathwise representation of the age pyramid process with its own intensity by means of Poisson point measures. This approach allows both to keep track of the age pyramid (branching population) and to represent it as a process with its own intensity in a pathwise way. This way, it seems to reconcile the two standard definitions of the Hawkes process, through a counting process or a branching dynamics.

Let us describe the thinning construction of a general random point measures on R + × E, say Γ(ds, dy) = n≥1 δ (Tn,Yn) (ds, dy), where (E, E) is some measurable space. Assume that its intensity measure γ(ds, dy) admits a density: γ(ds, dy) = γ(s, y) ds µ(dy). In this model, events occur with intensity s → x∈E γ(s, x)µ(dx), and if a birth occurs at time T n , then the characteristics Y n of the newborn are drawn with distribution γ(Tn,y)µ(dy) x∈E γ(Tn,x)µ(dx) . Let Q(ds, dy, dθ) be a Poisson point measure on R + × E × R + with intensity measure dsµ(dy)dθ (see e.g. Çınlar (2011) for a definition). Denote (F Q t ) the canonical filtration generated by Q, and introduce P (F Q t ) the predictable σ-field associated with F Q t . We further assume that γ(t, y) is P (F Q t ) × E-measurable and also that t 0 E γ(s, y)dsµ(dy) < +∞ a.s.. Now, define Γ(ds, dy) = R + 1 [0,γ(s,y)] (θ)Q(ds, dy, dθ). This clearly defines a point measure and the martingale property of Q ensures that the random point measure Γ(ds, dy) has intensity measure γ(s, y)dsµ(dy). Such construction can be found in [START_REF] Massoulié | Stability results for a general class of interacting point processes dynamics, and applications[END_REF]; we refer to this paper for more details.

We are now ready to construct the age pyramid processes of Definition 2. Let us introduce two independent Poisson point measures Q (1) (dt, dx, dθ) and Q (2) (dt, dx, dθ) on the probability space (Ω, F, P) (enlarged if necessary) with same intensity measure dsdxdθ on R + ×R + ×R + . The construction of the first population is immediate since its intensity does not depend on it. Let us define

Z (1) t (da, dx) = (0,t] R + ×R + 1 [0,ρ(s)H(x)] (θ)δ (t-s,x) (da, dx)Q (1) (ds, dx, dθ). (23) 
As for the second population (which size is the Hawkes process), the intensity is given as a particular for of the process itself, see Equation (4). Therefore, the idea is to define the population underlying the Hawkes process as the solution to the following stochastic equation, often called thinning problem:

Z (2) t (da, dx) = (0,t] R + ×R + 1 0, µ(s)+ Z (2) s-,Φs + Z (1) 
s-,Ψs G(x) (θ)δ (t-s,x) (da, dx)Q (2) (ds, dx, dθ).

(24) Such representations are used in the field of stochastic population dynamics for populations with ages and/or characteristics (see in particular [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF] and [START_REF] Bensusan | Impact of heterogeneity in human population dynamics[END_REF][START_REF] Bensusan | Impact of heterogeneity in human population dynamics[END_REF]). This formulation makes the link between Hawkes process and the field of stochastic population dynamics. To further investigate this link seems to be a promising direction for future research.

Remark 1. General results about existence and uniqueness for the Hawkes process (even non-linear) as the solution of a thinning problem can be found in [START_REF] Brémaud | Stability of nonlinear hawkes processes[END_REF] and Massoulié (1998) (see also [START_REF] Delattre | High dimensional hawkes processes[END_REF] and the books of Daley and Vere-Jones (2008) and Çınlar (2011)). The thinning method to represent a counting process as the solution of a stochastic equation is in fact classical. This general mathematical representation goes back to [START_REF] Kerstan | Teilprozesse poissonscher prozesse[END_REF] and [START_REF] Grigelionis | The representation of integer-valued random measures as stochastic integrals over the poisson measure[END_REF]. One often refers to the thinning algorithms that have been proposed by [START_REF] Lewis | Simulation of nonhomogeneous Poisson processes by thinning[END_REF] and [START_REF] Ogata | On lewis' simulation method for point processes[END_REF], which are very useful to perform numerical simulations for quite complex intensity processes.

5 The special case of standard Hawkes process

Assumption and dynamics

This section focuses on the special case of standard Hawkes process (N t ) with intensity process λ t = µ + (0,t) φ(t -s)dN s . Let us denote Z t (da) = Tn<t δ t-Tn (da) the associated age pyramid (see Definition 2). We express below Assumption 1 in this context, as well as the associated dynamics (see Proposition 2). Assumption 3. The map a ∈ R + → φ(a) is non-negative, of class C n (R + ), and there exists c = (c -1 , ..., c n-1 ) ∈ R n+1 such that φ statisfies φ

(n) = c -1 + n-1 k=0 c k φ (k) , with initial conditions φ (k) (0) = m k , for 0 ≤ k ≤ n -1.
Proposition 4. Under Assumption 3, the process X t = ( Z t , 1 , Z t , φ , ..., Z t , φ (n-1) ) T satisfies the dynamics

X t = N t m + t 0 CX s ds, (25) 
where m = (1, m 0 , ..., m n-1 ) T ,

and the matrix C = C(c) is given in (7). In particular, X is a Markov process.

Laplace transform

We express below the Laplace transform of the standard Hawkes process, both in the direct form of Theorem 3 and also in terms of a single function.

Proposition 5. Let us work under Assumption 3.

(i) For any (n + 1) real vector v,

E [exp (v.X T )] = exp -µ T 0 (1 -e As.m )ds , (27) 
where the vector map A satisfies the following non linear differential equation

CA t + A t + (e At.m -1)J = 0, (28) 
with terminal condition A T = v. Here, v.X T denotes the scalar product between v and X T , C is the transpose of the matrix C, and J is defined in (20).

(ii) The Laplace transform of the Hawkes process is given for each real θ by

E [exp (θN T )] = exp -µ (-1) n G (n) (0) + n-1 k=0 (-1) k+1 c k G (k) (0) , ( 29 
)
where G satisfies the non-linear differential equation: for each 0 ≤ t ≤ T ,

(-1) n-1 G (n+1) (t) + n-1 k=0 (-1) k c k G (k+1) (t) + exp θ -c -1 G(t) + n-1 k=0 b k G (k+1) (t) -1 = 0,
with terminal conditions G (k) (T ) = 0 for 0 ≤ k ≤ n, and for 0

≤ k ≤ n -1, b k = (-1) k m n-1-k -n-1 l=k+1 m n-1-l c n-l+k .
Numerical example Before giving the proof of Proposition 5, we illustrate it numerically for the computation of the generating functional E[u N T ] (the survival probability at time T of a system which survives with probability u at each shock) as well as quantities as

P(N T = k) = 1 k! ∂ k u E u N T | u=0
(the probability to get exactly k shocks until time T ). Setting u = e θ , an explicit discretization scheme has been used to solve the non-linear differential equation satisfied by G and the differentiation step for the derivatives of the generating functional has been chosen carefully. The results for the two critical cases φ(a) = e -a (case 1) and φ(a) = ae -a (case 2) are described in Tables 1 and2 with three significative numbers. Note that even if the mean number of children per individual is one in each case, the results are different due to the shape of each birth rate φ. This promotes the use of many kernels, beyond the exponential case. To conclude this numerical experiment, we emphasize that the computation of P(N t = k) for higher values of k will require more stable numerical differentiation methods, and are therefore beyond the scope of the present paper. Proof of Proposition 5 Let us prove the second point (ii), the proof of point (i) being a direct adaptation of that of Theorem 3. Let us denote A t = (A -1 (t), ..., A n-1 (t)) and identify the terms in Equation (28), leading to

c -1 A n-1 (t) + A -1 (t) = 0, (30) 
A 0 (t) + c 0 A n-1 (t) + e At.m -1 = 0.

(31)

Moments

As for 1

≤ k ≤ n -1, we get A k-1 (t) + c k A n-1 (t) + A k (t) = 0, whose recursive computation provides for 0 ≤ k ≤ n -1, A k (t) = (-1) n-1-k A (n-1-k) n-1 (t) + n-1-k l=1 (-1) l c k+l A (l-1) n-1 (t).(32) One then deduces that A 0 (t) = (-1) n-1 A (n) n-1 (t) + n-1 k=1 (-1) k c k A (k) n-1 (t). ( 33 
)
Let us intoduce the function G(t) = t T A n-1 (s)ds and choose A -1 (t) = θ -c -1 G(t) that satisfies (30). Now, put (32) and ( 33) into (31) to get the following non-linear ordinary differential equation for G,

(-1) n-1 G (n+1) (t) + n-1 k=0 (-1) k c k G (k+1) (t) + exp θ -c -1 G(t) + m n-1 G (t) + n-2 k=0 m k (-1) n-1-k G (n-k) (t) + n-1-k l=1 (-1) l c k+l G (l) (t) -1 = 0. (34) 
Let us simplify the sum in the exponential. By changing variable

k into n-1-k, it is equal to n-1 k=1 m n-1-k (-1) k G (k+1) (t) + n-1 k=1 k l=1 (-1) l m n-1-k c n-1-k+l G (l) (t).

Then exchanging the sums leads to

n-1 k=1 m n-1-k (-1) k G (k+1) (t)+ n-1 l=1 (-1) l n-1 k=l m n-1-k c n-1-k+l G (l) (t).
Finally, by setting l ← l + 1 and exchanging notations k and l, (34) becomes

(-1) n-1 G (n+1) (t) + n-1 k=0 (-1) k c k G (k+1) (t) + exp θ -c -1 G(t) + n-1 k=0 b k G (k+1) (t) -1 = 0, where for 0 ≤ k ≤ n -1, b k = (-1) k m n-1-k -n-1 l=k+1 m n-1-l c n-l+k . Now, let us use (27) with (31) to get E [exp (v.X T )] = exp -µ T 0 (A 0 (t) + c 0 A n-1 (t))dt , = exp -µ (-1) n-1 (G (n) (T ) -G (n) (0)) + n-1 k=0 (-1) k c k (G (k) (T ) -G (k) (0)) ,
where the last equality comes from (33). Let us set for 0

≤ k ≤ n -1, A k (T ) = 0.
One can show by (32) that the previous conditions are equivalent to the terminal values G (k) (T ) = 0 for 1 ≤ k ≤ n -1. Note that by definition of G we also get G(T ) = 0. This concludes the proof.

Moments

On the particular case of the standard Hawkes process, we illustrate how to compute first and second order moments explicitely.

Moments

First order moments The differential system of Equation ( 25) is linear and allows us to propose a straightforward differential equation for the first order moments. We also perform explicit computations for small dimensions n = 1 and n = 2. Proposition 6. Under Assumption 3, the vector map u(t) := E [X t ] is solution to

u (t) = µm + Au(t), (35) 
where the (n + 1) × (n + 1) matrix A is given by

A = C + mJ, (36) 
where C, m and J are given in ( 7), ( 26) and ( 20) respectively. Equation (35) allows to get explicit formulas for the expected number of events. We derive such results for the popular exponential case φ(a) = e -ca (see also [START_REF] Dassios | A dynamic contagion process[END_REF]) and also for the birth rate φ(a) = α 2 ae -βa . This case can be useful for a variety of applications to model a smooth delay at excitation. Remark the different behavior of the first moment, in particular in the critical case. For the two examples given below, the computations are left to the reader. Corollary 2. For the Hawkes process with φ(a) = α 2 ae -βa ,

Proof of

E[N t ] = µ 8β 1 -e -2βt + 3µ 4 t + βµ 4 t 2 , if α = β, E[N t ] = µβ 2 β 2 -α 2 t + αµ 2 e (α-β)t -1 (α -β) 2 - e -(α+β)t -1 (α + β) 2 , if α = β.
Second order moments We now derive the dynamics of the matrix V t := X t Xt with X t = (N t , Z t , φ , ..., Z t , φ (n-1) ) T . As a consequence, we represent the variancecovariance matrix of the process (X t ) as the solution to a linear ordinary differential equation. Our method is based on differential calculus with the finite variation process (X t ) with dynamics (25) and could be extended to higher moments.

Moments

Proposition 7. Let us introduce the matrix V t := X t Xt , where Xt denotes the transpose of X t . Then the matrix V t satisfies the dynamics dV t = dN t X t-m + m Xt-+ m m + dt V t C + CV t .

In particular, the variance-covariance matrix v(t) := E [V t ] satisfies: v (t) = v(t) Ā + Av(t) + µ(m m + u(t) m + mū(t)) + Ju(t)m m.

(37)

where u(t) is solution to (35) and the matrix A is defined in (36).

Proof of Proposition 7. Denote X t = (X

[-1] t
, X

[0] t , ..., X

[n-1] t

). Integration by parts leads to, for -1 ≤ l, k ≤ n -1, d(X

[k] t X [l] t ) = X [k] t-dX [l] t + X [l] t-dX [k] t + m k m l dN t .
The previous equation shows that dV t = X t-d Xt + (dX t ) Xt-+ dN t .m m. By Proposition 4 we get dV t = dN t X t-m + m Xt-+ m m + dt V t C + CV t . Now, take expectation in the previous equation to get

v (t) = E[(µ + X [0] t )X t ] m + mE[ (µ + X [0] t ) Xt ] + (µ + E[X [0]
t ])m m + v(t) C + Cv(t).

Finally since X

[0] t X t = V t J, see (20), the previous equation reduces to (37).

We give explicit formulas for φ(a) = e -ca and at a higher order for the critical case φ(a) = β 2 ae -βa . Computations are based on (37) and are left to the reader. 

Conclusion

We introduced the concept of age pyramid for Hawkes processes with general immigrants. The virtue of this approach is to keep track of all past events. This allows tractable computations for the Hawkes process with general immigrants whose fertility functions are time dependent generalizations of the popular exponential case, providing natural extensions of the existing results in this direction. In addition, we illustrated the pathwise construction of the Hawkes dynamics and its underlying population process. On the whole, our approach seems to reconcile two definitions of Hawkes processes, through an intensity process or a branching dynamics. This framework appears to be a promising direction for further research. As an example, the large population asymptotics in the field of measure-valued population dynamics could give further insights on the macroscopic behavior of Hawkes processes.
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 1 Figure 1: Population dynamics of the Hawkes process with general immigrants

  t = C(k(t)) and D (2) t = C(d(t)) where C(.) is defined by Equation (7).

  φ(a) = e -a 0.490 0.532 0.588 0.672 0.828 Case 2, φ(a) = ae -a 0.494 0.546 0.615 0.714 0.874 Table 1: Computed values of E[u N T ] with µ = 0.15 and T = 5. φ(a) = e -a 0.472 0.165 0.0894 0.0577 0.0407 Case 2, φ(a) = ae -a 0.472 0.203 0.113 0.0700 0.0451 Table 2: Computed values of P(N T = k) with µ = 0.15 and T = 5.

Proposition 6

 6 Let us use the martingale property of the compensated counting process to get E [N t ] = t 0 (µ + E[ Z s , φ ]) ds. Now, let us take expectation in (25) and use the previous formula to get Equation (35).

Corollary 1 .

 1 For the Hawkes process with φ(a) = e -ca ,E[N t ] = µ t + t 2 2 if c = 1, and E[N t ] = µ 1 -c e (1-c)t -1 1 -c -ct , if c = 1.

Corollary 3 .t 3

 33 For the Hawkes process with φ(a) = e -ca ,Var(N t ) = µt 1 if c = 1, Var(N t ) = µ (1 -c) 3 1 -c/2 1 -c e 2(1-c)t + 3c 2 -1 1 -c -2ct e (1-c)t -c 3 t + c(1/2 -3c) 1 -c , if c = 1.Corollary 4. For the Hawkes process with φ(a) = β 2 ae -βa

  ,

	Var (λ t ) = βµ -	7 128	+	3β 32	t +	β 2 16	t 2 +	1 -βt 8	e -2βt -	9 128	e -4βt .
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